
MAE 501 March 3, 2009

Homework problem:
Find all digits to the repeating decimal 1/19 = 0.052631578947368421 using a calculator.

Katie’s way…

On calculator, we find the multiples of 1/19:

1/19 ≈ 0.0526315789
2/19 ≈ 0.10526315789
3/19 ≈ 0.1578947368
4/19 ≈ 0.2105263158
5/19 ≈ 0.2631578947
6/19 ≈ 0.3157894737
7/19 ≈ 0.3684210526
etc.

Above, the numbers in bold are the subsequent numbers in the decimal of 1/19.  These 18 numbers will 
continue to be in this order in any multiple of 1/19.  This is because 1/19 is known as a cyclic number, 
defined as an (n-1)-digit integer that, when multiplied by 1, 2, 3,…, n-1, produces the same digits in a 
starting in different order.   They are generated by the full repetend primes, or primes for which 1/p has 
a maximal period decimal expansion of p-1 digits , i.e. 7, 17, 19, 23, 29, 47, 59, 61, 97,… 

Deana’s Way…

This way is similar to Katie’s way.  Let's show with 1/7, which is equal to 0.142857, repeating.  If we had 
a calculator that only could find 4 digits, 0.1428, how would we use this same calculator to find the 
remaining  digits, before it repeats?

First, we divide and get as many digits as we can.  Since we have a 4-place calculator, we get:
1/7≈ 0.1428

Now multiply our answer by 7, and subtract from 1:
1 -  (0.1428 * 7) =  1 – 0.9996 = 0.0004

Now we repeat the process with our 4-place calculator, to determine what 4/7 is:
4/7≈ 0.5714

We can see that it is repeating, however, if we want to do one more round to be sure, we can.
This time we subtract from 4:
 4-(0.5714 * 4) = 4 – 3.9998 = 0.0002
Thus, the next section will be whatever we get from 2/7:

2/7≈ 0.2857
Putting  these together, we have

1/7≈ 0.1428 5714 2857
That is,  0.142857 repeating.

This is basically the same as long division - when we do it by hand, we compute one digit at a time, and 
with the calculator we are able to compute many digits (about 7-10) at one time.    Just to clarify, I'll 



write out the calculation of 1/19 in the usual division tableau,  listing the 10 digits at a time my 
calculator gives (staggering the lines so you can tell what's going on)

           0.           4736842105

           ___0526315789__________2631578947_____

       19 | 1.0000000000

             .9999999991

                       90000000000

                       89999999995

                                 50000000000

                                 49999999993

Of course, the last multiplication wasn't really necessary, since we see that it had begun to repeat. 
Notice the similarities between this and Katie's method above.  In Katie's method,  all of the divisions of 
n/19 are calculated, and then the appropriate digits are picked out.  In the “long division” method 
(Deanna's method), we look at the digits of just those that we need.

Question:  Which method would you use to find the digits of 1/199, which has an expansion of 

    1/199=0.00502512562814070351758793969849246231155778894472361809045226130653266331
65829145728643216080402 (repeating)

The Long Division Algorithm is very useful, but in the last several years is downplayed in schools due to 
an increased reliance on calculators.  What we have shown with this problem is that even with the 
calculator, we are only able to get to a certain point.  The knowledge about long division has enabled us 
to compute the digits beyond one calculation on the calculator.  Furthermore, this algorithm is very 
useful in other contexts, which we see again when we look at division of polynomials.

Back to Complex Numbers 

To get the Complex Numbers, C,  we take the Real Numbers R and add i (√-1) .

C = R[i] = {a+bi │a,b є R}

This is a field extension.  Another example of a field extension would be to take the rationals, Q, and 
adjoin  3√2, giving us Q[ 3√2], which are all possible combinations of rationals and 3√2, as well as powers 
of 3√2.  This means  

Q[ 3√2] = { a + b 3√2 + c 3√4 |  a, b, c  є Q}

We only need to add rational multiples of  3√2 and  3√4 (and no others), because  ( 3√2)3   is again a 
rational number, and 1/3√2 = 3√4/2,  also a rational multiple of 3√4.  On the other hand, if we want to 
consider  Q[ π], we need to add in all the rational multiples of all the powers of  π.

When high school students think about building the Real Numbers, R, they typically think that you can 
just throw in the rationals , square roots, and maybe multiples of π and e, and then you get the Real 



Numbers.  However, there are many sub-groups added to make R, e.g. Q[√2], Q[√5], as well as 
uncountably many other transcendental numbers.

However, to build the Complex Numbers, it is a much easier concept for our students - you simply add 
the number I = √-1 to the Real Numbers, as well as all of its multiples.  We don't need to add more, since 
i2=-1 and 1/i = -i.  This is easy for the students to understand because the notion of the Complex 
Numbers is new and easier than the notion of the Real Numbers, which is more complicated, older and 
harder to grasp. 

A Complex Number is written in the form: a + bi, where a and b are Real Numbers, and i is the imaginary 
number  (√-1).  Complex Numbers can be added, subtracted, multiplied and divided as Real Numbers 
can be, using the associative, commutative, and distributive laws of algebra.  This makes the Complex 
Numbers a field.

• Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

• Subtraction: (a + bi) - (c + di) = (a - c) + (b - d)i

• Multiplication: (a + bi) ● (c + di) = ac + bci + adi + bdi2 = (ac-bd) + (bc + ad)i

• Division:   (a + b  i  )    = (ac + bd) + (bc – ad) i
    (c + di)  =  (c2 + d2) +  (c2 + d2)

Because the Complex Numbers are a field they also have the following:

• Additive identity (zero): 0 + 0i = 0

• Multiplicative identity (one) : 1 + 0i = 1

• Additive Inverse (-a + bi): (a + bi) + (-a - bi)

• Multiplicative Inverse (   a     +      -b    i ) :   (a + bi) ●  (   a     +      -b    i ) = 1
             a2+b2     a2+b2                              a2+b2     a2+b2

It is important to note, however, that the complex numbers cannot be made into an ordered field. 

Because of the natural isomorphism between the complex numbers and pairs of real numbers given by 

a + bi ↔  (a,b)

we can view a complex number as a point in the plane (or as a vector).  Below we have a Complex 
Number shown on this graph as a vector, where the horizontal axis is the Real Numbers and the vertical 
axis is the Imaginary Numbers.



A vector z can be represented with its complex conjugate in the complex plane.

Addition of Complex Numbers corresponds to vector addition, and multiplication of Complex Numbers is 
multiplying the lengths of the corresponding vectors and adding the angles that the vectors make.  This 
can be shown using polar coordinates.

Just to confirm this,  let’s take two vectors z and w…

z = a + bi, which is the vector with length r, and angle φ.  
This can be written in polar coordinates as: z = r (cos φ + i sin φ ) because a  =  r (cos φ) and b = r (sin φ)

z

θ

●w

s

http://upload.wikimedia.org/wikipedia/commons/a/af/Complex_number_illustration.svg
http://upload.wikimedia.org/wikipedia/commons/6/69/Complex_conjugate_picture.svg
http://upload.wikimedia.org/wikipedia/commons/7/7a/Complex_number_illustration_modarg.svg


Similarly, w can be written as w = s (cos θ + i sin θ),  where the vector length is  s, and the angle 
produced is θ.

Multiplying the vectors, we find:
z●w = r (cos φ + i sin φ ) ● s (cos θ + i sin θ)
         = rs (cos φ cos θ + sin φ sin θ + i (sin φ cos θ + sin θ cos φ)
         = rs (cos(φ + θ) + i sin(φ + θ))

Using Euler’s formula, we can write z  = r (cos φ + i sin φ ), as z = reiφ.  This formula, developed by 
Leonard Euler, shows a relationship between the exponential function e and the trigonometric 
functions, as shown geometrically below.

In this form, it is easier to see that zw =  (reiφ)(seiθ) = (rs) e i(φ + θ), that is, the lengths of the vectors are 
mulitplied and the angles are added.

It is easy to see that addition of Complex Numbers corresponds to our definitions  for the Real Numbers, 
using the geometric interpretation with vectors strictly on the x-axis.

We can look at multiplication of real numbers the same way.
Product of two positives is positive:    r●s = r●s (cos 0 + i sin 0) = rs
product of a positive and a negative is negative:   r●(-s) = (r cos 0) ● (s sin π) = -rs
product of two negatives is negative:    (-r)●(-s) = (r cos π) (s sin π) = rs (cos 2 π) = rs
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