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Field of Rationals 

          In mathematics, a field is a set F. together with two operations, called addition +, and 
multiplication, ·, such that the following axioms hold [2]: 

1. (closure) Addition and multiplication are binary operations such that for all 𝑎 and 𝑏 in F,  
𝑎 + 𝑏 and 𝑎 · 𝑏  are also in F. 

2. (associativity) The operations of addition and multiplication are associative: for all 𝑎, 𝑏, 
and 𝑐 in F . we have 𝑎 +  𝑏 + 𝑐 =  𝑎 + 𝑏 + 𝑐 and 𝑎 ·  (𝑏 ·  𝑐)  =  (𝑎 ·  𝑏)  ·  𝑐. 

3. (commutivatity) The operations of addition and multiplication are commutative for all 𝑎 
and 𝑏 in F,   𝑎 +  𝑏 =  𝑏 +  𝑎 and 𝑎 ·  𝑏 =  𝑏 ·  𝑎. 

4. (distributive) Multiplication is distributive over addition: for all 𝑎, 𝑏, and 𝑐 in 𝐹 . we have  

𝑎 ·  (𝑏 +  𝑐)  =  (𝑎 ·  𝑏)  +  (𝑎 ·  𝑐). 

5. (identity) There exists an additive identity element, which is denoted by 0, such that for 
any element 𝑎,   𝑎 + 0 = 𝑎. In addition, there exists a multiplicative identity element, 
denoted by 1, such that  𝑎 · 1 = 𝑎. 

6. (inverse) For each element 𝑎, there exists an additive inverse element, denoted by is – 𝑎, 
such that 𝑎 +  −𝑎 = 0.  In addition, for each element 𝑎 except 0,  there exists a 

multiplicative inverse element, denoted by  𝑎−1 or  
1

𝑎
, so that  𝑎 ·  𝑎−1 = 1 .    

 In some cases (typically when the field is the reals or a related field), we call addition of 
an additive inverse subtraction (which we write omitting the +, as  𝑎 − 𝑏 instead of 
𝑎 + (−𝑏), and multiplication by a multiplicative inverse is called division, written   𝑎/𝑏. 

 
          One of the primary examples of a field is the set of rational numbers 𝐐. Recall that a 
rational number can be expressed as a fraction or a quotient of two integers [3]. Symbolically, 
the rational number can be expressed as 𝐐 =  𝑝 𝑞 : 𝑝 ⋲ 𝐙, 𝑞 ⋲ 𝐙, 𝑞 ≠ 0 , where Z is the set of 
integers [3].  We remark that here we have not been careful to ensure that the representation 
of a rational number 𝑝 𝑞  is unique.  For example, 1/3 and 3/9 both represent the same rational 
number.  If we want to ensure this (as is typically done), we say that a pair or rational numbers 
𝑝 𝑞  and 𝑟 𝑠  are equivalent if 𝑝𝑠 = 𝑟𝑞; we then prefer the representative with the smallest 
positive value of 𝑞.  (This is called “writing the fraction in least terms”, or “reducing” it). 
 
           As we saw last time, attempting to extend 𝑄 to a new set 𝐐  which is both an additive and 
multiplicative group leads to additional issues.  We can’t just “define” division by zero so that it 
makes sense, without introducing a lot of other issues. 
 

Discussion of homework problem 

Question: What is wrong with trying to define addition of rationals in the naïve way, so that 

𝒑 𝒒 + 𝒓 𝒔 = (𝒑 + 𝒓) (𝒒 + 𝒔) ?  What are the consequences of trying anything different 

from the usual definition  𝒑 𝒒 + 𝒓 𝒔 = (𝒑𝒔 + 𝒓𝒒) 𝒒𝒔 ? 

 



          First, let’s address the problem of naïve addition.  If addition of fractions worked this way, 

the naïve definition gives  
𝑝

𝑞
+

𝑝

𝑞
=

2𝑝

2𝑞
.  But since 2𝑝𝑞 = 2𝑞𝑝, we must have 

2𝑝

2𝑞
 equivalent to 

𝑝

𝑞
.   

That is, adding any rational to itself gives the same rational back.  This also leads to trouble with 

the distributive law: 2
𝑝

𝑞
=  1 + 1 

𝑝

𝑞
=  

𝑝

𝑞
+

𝑝

𝑞
=

2𝑝

2𝑞
=

𝑝

𝑞
 

(We remark that this kind of addition is actually useful in some contexts, and is called Farey 

Addition.  However, it is more a kind of averaging  than addition in the regular sense.) 

    

We now turn to the more general question: why must addition be 
𝑝

𝑞
+

𝑟

𝑠
 =

𝑝𝑠+𝑞𝑟

𝑞𝑠
?  The answer 

has to do with both how we define multiplication and that we want the subset Z of  𝑸 to 

behave “the same”.  Let us first examine multiplication: the closure axiom tells us that the 

product of two rationals  must be another, that is, we have 
𝑝

𝑞
·
𝑟

𝑠
=

𝑎

𝑏
, for some integers 𝑎 and 𝑏.  

We have to show that 𝑎 = 𝑝𝑟, and 𝑏 = 𝑞𝑠.  In addition, we want to have multiplication in Z 

correspond to multiplication in 𝑸. So, given an integer 𝑛 Є 𝒁 , we see that  if this corresponds to 

a rational 
𝑝

𝑞
 , we must have 𝑝 = 𝑛 and 𝑞 = 1. If 𝑞 = 𝑠 = 1, then 

p

1
·

r

1
= p · r = pr. This means 

that if we want the same formula to work for rationals which are not equivalent to integers, we 

must have 𝑎 = 𝑝𝑟; continuing this argument shows that 𝑏 = 𝑞𝑠. 

 Use of this, together with a similar argument shows that we have no choice but to define 

addition of rationals as 
𝑝

𝑞
+

𝑟

𝑠
 =

𝑝𝑠+𝑞𝑟

𝑞𝑠
.   Since it is a homework assignment, I’ll omit the details 

here. 

  

How do we build real number from rational numbers? 

 One of the ways to look at the establishment of the numbers is the elements of the set 

such that  

𝑵 ⊂  𝒁 ⊂ 𝑸 ⊂ 𝑹 

where 

N: The set of natural numbers, (1, 2, 3, 4, 5,….) 

Z: The set of integers, (….,-3, -2, -1, 0, 1, 2, 3,….) 

Q: The set of the rational numbers (…., -8, -1/4, 0, 1, 2/3, 4.76, 5.09, 6,….) 

R: The set of real number, (…., -8,− 2, -1/4, 0, 1,  3, 6,….) 

 

A standard metaphor for the reals is that each real number corresponds to a definite 

length.  We arrange these lengths along a straight line (designated as the x-axis), and this axis is 

graduated so that each point is associated with a number. Take two arbitrary points on the line 

as the positions for 0 and 1 such that the distance between these two points is the unit length.  

 



The 0-point is called the origin. The points to the right of the origin are the positive 

numbers, and the points to the left of the origin are associated with negative numbers (that is, 

the additive inverses of the positive numbers). In this way a number is attached to each point, 

the number being the distance from the point to the origin either with a plus sign if the point 

goes to the right or with minus sign if the point goes to the left. Rational numbers such as -1/4, 

0, 1, 2/3, 4.76 and 9 are readily located by their relation to the unit length. For example, one of 

the way to think of 6/3 is 

 

-----→         

 

 

We extend this metaphor to obtain all rationals as ratios of lengths.  But as has been 

known for thousands of years, there are more lengths than can not be expressed as ratios 

integers. 

 

For example, the symbol  2  represents a 

number which would yield 2 when multiplied by itself. 

That is,  2 ·  2 = 2. In geometry, we consider a unit 

square (with side lengths 1 and 1); from the  

Pythagorean Theorem, we know that the length of the 

diagonal is  1 + 1. Therefore, we represent the length 

of the diagonal by  2 and associate the number  2 

with that point on the line whose distance from the 

origin is equal to the length of the diagonal of our unit 

square [4].  

This method gives us some of the real numbers, 

but there are many other reals which cannot be constructed in this way.  In fact, we can only 

obtain a small subset of the reals in this way, called the constructible numbers. 

One way to go from 𝑸 𝑡𝑜 𝑹 is via Cauchy sequences. Recall that Cauchy sequence is a 

sequence whose elements become arbitrarily close to each other as the sequence progresses 

[1]. In other words, suppose ε is chosen as a positive real number. Beginning with a Cauchy 

sequence and eliminating terms one by one from the beginning, small ε is any pair chosen from 

the remaining terms will be within distance ε of each other after a finite number of steps [1]. 

Let’s consider a sequence  𝑆𝑛  , where  𝑆𝑛  = 𝑆1 , 𝑆2 , 𝑆3 , 𝑆4 , 𝑆5, … . . 𝑆𝑛 .  𝑆𝑛   is Cauchy if every 

ε > 0, there is an N so that for all 𝑛, 𝑚 ≥ 𝑁, we have  𝑆𝑛 − 𝑆𝑚  < ε. This is the Cauchy 

sequences of real numbers.   We can define R as the collection of all Cauchy sequences of 

rational numbers, although as before, we have many Cauchy sequences which represent the 

same real number.  We can say that two Cauchy sequences represent the same real number if 



“they have the same limit”, although this idea is a little circular (since the limit is what we are 

trying to define as a number.)  Instead, we will say that two sequences  𝑆𝑛   and  𝑇𝑛   represent 

the same real if, for every ε > 0, there is an N so that for all 𝑛 ≥ 𝑁, we have  𝑆𝑛 − 𝑇𝑛  < ε. 

 

One drawback of this approach is that, while rigorous, it isn’t a metaphor that high 

school students can relate to.  Indeed, it is not one that most undergraduates relate well to. 
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