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Abstract
Using the interplay between topological, combinatorial, and geometric 
properties of polynomials and analytic results (primarily the covering 
structure and distortion estimates), we analyze a path-lifting method for 
finding approximate zeros, similar to those studied by Smale, Shub, Kim, and 
others. Given any polynomial, this simple algorithm always converges to a 
root, except on a finite set of initial points lying on a circle of a given radius.

Specifically, the algorithm we analyze consists of iterating

z − f (z)− tkf (z0)

f ′(z)

where the tk form a decreasing sequence of real numbers and z0 is chosen on a 
circle containing all the roots. We show that the number of iterates required to 
locate an approximate zero of a polynomial f depends only on log | f (z0)/ρζ | 
(where ρζ is the radius of convergence of the branch of f−1 taking 0 to a root ζ) 
and the logarithm of the angle between f (z0) and certain critical values. Previous 
complexity results for related algorithms depend linearly on the reciprocals of 
these angles. Note that the complexity of the algorithm does not depend directly 
on the degree of f, but only on the geometry of the critical values.

Furthermore, for any polynomial f with distinct roots, the average number 
of steps required over all starting points taken on a circle containing all the 
roots is bounded by a constant times the average of log(1/ρζ). The average 
of log(1/ρζ) over all polynomials f with d roots in the unit disk is O(d). This 
algorithm readily generalizes to finding all roots of a polynomial (without 
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deflation); doing so increases the complexity by a factor of at most d.
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1.  Introduction

We analyze a path-lifting method called the α-step method (see section  3 for specifics), 
which locates an approximate zero (see definition 3.1) for a complex polynomial f (z); from 
an approximate zero, Newton’s method converges quadratically to a root. For any polynomial, 
the α-step method converges everywhere except on a finite set of starting points lying on a 
circle of given radius. This is established in this paper, but also follows from [K88, theorems 
5A, 5B].

We consider monic polynomials of degree d with distinct roots in the unit disk, and denote 
the set of all such polynomials by Pd,1. Our main results bound the number of iterations required 
to locate an approximate zero in three contexts: we bound the number of steps needed to locate 
an approximate zero starting from any point z0 on a circle containing all the roots; we compute 
the average number of steps over the circle of initial points; we average this quantity over all 
polynomials in Pd,1 to get a bound in terms of the degree. These bounds apply to all roots of a 
given polynomial, and can be applied to locate all of the roots with a d-fold increase in effort.

While we analyze the complexity of the α-step method, it is not our primary goal to dem-
onstrate that this achieves the optimal bound. Indeed, there are certainly other algorithms with 
a lower worst-case arithmetic complexity (at least for finding ε-roots) such as that of Pan [P02] 
which achieves the nearly optimal bound, or of Renegar [Ren] or Kim and Sutherland [KS]. 
Some further remarks discussing the arithmetic complexity of these and other related methods 
appear toward the end of this section.

Rather, our goal is to examine how the underlying geometry of a polynomial can be 
exploited in root-finding methods. Tight upper and lower bounds on the radius of convergence 
of the inverse of an analytic map are given by α-theory; these are useful in understanding the 
geometry of the polynomial. Since the α-theory also applies in the multivariate case, it is our 
belief that a better understanding of the univariate case will be aid in understanding the case 
of several variables.

1.1.  Background

We now discuss some background related to path-lifting methods in general.
Path-lifting methods are a class of homotopy methods, and are also refered to as ‘modified 

Newton’s method’ or ‘guided Newton’s method’. In such methods, it is often useful to distin-
guish between the domain and range, so we have

f : Csource → Ctarget;

the goal is to lift a path γ  lying in Ctarget to one in Csource leading from an initial point z0 to 
a root ζ. Numerically, this is accomplished by constructing a sequence of points zj ∈ Csource 
via analytic continuation, in such a way that each f (zj) approximates the path γ  in Ctarget and 
gives an approximation of the lift f−1(γ) in Csource.
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In this form, such methods were introduced by Shub and Smale (see, for example, [SS86] 
or [Sm85]), although one could argue (as Smale points out in [Sm81]) that in some sense this 
idea goes back to Gauss. See [Ren] and the references therein, as well as [KS]. The series 
[SS93a, SS93b, SS93c, SS96, SS94, Sh09, BS09] discusses related methods for systems of 
polynomial equations, as does [BP]. A survey of complexity results for solving polynomial 
equations in one variable can be found in [P97]; see also [B08].

The difficulty of computing a local branch of f−1 along a path γ  in the target space is 
related to how close γ  comes to a critical value of f. However, not all critical values of f are 
relevant: if we fix a branch of f−1, then for points y ∈ γ the only critical points that have an 
impact are those c for which f (c) lies on the boundary of the largest disk where f−1(y) is 
analytic. Consequently, it is useful to factor f through the (branched) Riemann surface S  for 
f−1, giving

Denoting the set of critical points cj of f by Cf  and the branch points of S  by Vf , we require 
the map f̂  to be a biholomorphism from C� Cf  to S � Vf  and a bijection from Cf  to Vf . 
Furthermore, the projection π is a d-fold branched cover, and we can choose a metric on S  so 
that π is a local isometry away from the branch points. See figure 1.

The construction of the branched Riemann surface S  for f−1 is quite standard, going back 
to Riemann’s dissertation [Rie], although often it is presented somewhat abstractly. Many 
readers will be familiar with the corresponding surfaces for the logarithm and square root; the 
explicit view taken here of S  as a collection of copies of C identified along slits is similar 

Figure 1.  For a degree 7 polynomial f, on the right is a depiction of the branched 
Riemann surface S  as stack of 7 slit planes. One side of each slit (indicated by a 
dashed line) is joined to the other side of the parallel slit in a plane above or below it, 
and vice-versa. Each slit joins a branch point (indicated by a cross ) to infinity. On 
the left, Csource is shown, colored by the corresponding region of S ; the map f̂  sends 
Csource to S . Each critical point of f is marked by a cross, and the preimages of the slits 
which terminate at each critical point are indicated by dashed lines. For reference, the 
roots of f and their images under f̂  are indicated by circles ( ). The projection map 
π : S → Ctarget identifies a point in one of the sheets of S  with all other points directly 
above and below it; Ctarget is not shown in this figure.
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to the one in [GK, section 10.4] or [MH, section 6.1], to which we refer the interested reader. 
Note that each point of S  corresponds to a pair (z, w) with z ∈ Csource and w ∈ Ctarget, and 
w = f (z). It is often helpful to think of the path γ  as lying in S  rather than in Ctarget; this is 
possible since for any ray which avoids Vf  there is a neighborhood U containing it which is 
isometric to its projection π(U) in Ctarget.

In order to explicitly describe which critical values are relevant for the path-lifing process, 
it is helpful to introduce the Voronoi decomposition of S  relative to the branch points Vf . That 
is, for each branch point v of S , the Voronoi domain Vor

(
v
)
 is the set of points in S  which are 

closer to v than any other branch point of S . See figure 4. Note that y ∈ Vor
(
v
)
 exactly when 

‖v − y‖ is the radius of convergence of f̂−1 at y. We show in section 4 that the projection map 
π restricted to any single Vor

(
v
)
 is at most (m + 1)-to-one, where m is the multiplicity of the 

critical point of f corresponding to v (hence the projection π is generically at most 2-to-one on 
Vor

(
v
)
). When lifting a path γ , the number of steps required depends directly on the size of a 

neighborhood of γ  on which a branch of f−1 can be defined. If we think of γ  as lying in S , 
then the size of this neighborhood is the distance between γ  and branch points vj for which γ  
intersects Vor

(
vj
)
. We refer to such a critical value f (cj) = π(vj) ∈ Ctarget as relevant  or say 

that it influences the points on γ .
As noted earlier, in a path-lifting method we choose a path γ  in the target space which 

connects 0 to a point w0 for which we know a point z0 with f (z0) = w0. Path-lifting methods 
attempt to calculate a sequence of points {zj} so that f (zj) ≈ wj , and terminate when a point 
zn is sufficiently close to a root of f.

Typically the chosen path γ ∈ Ctarget is a segment of a ray, and we use such paths 
here. It is common (e.g. [SS86] and [KS]) to choose the guide points wj to be of the form 
h jw0 for some h < 1, and then use one step of Newton’s method to obtain zj+1 from zj as 
zj+1 = zj − ( f (zj)− wj+1)/f ′(zj). To ensure convergence, one must choose the wj sufficiently 
closely spaced along γ ; exactly how close depends strongly on the size of a neighborhood 
around γ  on which a branch of f−1 can be defined via analytic continuation.

While the ultimate goal of root-finding is typically to find a point that lies within an ε-ball 
of some root ζ of f (called an ε-root of f), we instead focus on the problem of locating an 
approximate zero of f. This notion is was introduced by Smale (see [Sm81]): a point z∗ is an 
approximate zero for f if Newton iteration converges at a definite, rapid rate to a root of f when 
begun at z∗. (See definition 3.1 for a precise statement.) From an approximate zero an ε-root 
for any desired value of ε can be produced rapidly, with O(log | log ε|) iterations of Newton’s 
method (see [Sm85]).

Unlike ε-roots, the set of approximate zeros is an intrinsic feature of a polynomial and 
does not depend on an externally imposed quantity ε. We restrict our attention to polynomials 
with distinct roots, so approximate zeros always exist for each root ζ. See also remark 11.3 
concerning locating ε-roots.

Rather than using a regular spacing for the target points wj in the path-lifting process, the 
α-step method considered here selects the points wj adaptively, spacing them as far apart as 
possible while ensuring that at each step zj is an approximate zero for the function f (z)− wj+1 
(and hence zj+1 is a good approximation for wj+1 with known error bounds). The algorithm 
terminates when zn is an approximate zero for f (z). The tool we use to detect approximate 
zeros is the Kim-Smale α function: if αf (z) < 3 −

√
8 , then z is an approximate zero for f. See 

the beginning of section 3 for further details regarding the α function and approximate zeros, 
as well as the specifics of the α-step method.
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1.2.  Main results

Our first main result gives an upper bound on the number of steps required by the α-step 
algorithm to converge to an approximate zero of some root ζ of f, starting from an initial point 
z0 ∈ Basin (ζ). The set Basin (ζ) is the collection of all points which converge to the root ζ 
under the Newton flow (see section 2). The union of these basins over all roots has full mea-
sure; in fact, the complement is a collection of d − 1 curves.

The upper bound in the theorem depends on several quantities closely related to the geom-
etry of the critical values of f. Specifically, the number of steps required depends on the radius 
of convergence ρζ of the branch of f−1 taking 0 to ζ (that is, the norm of some critical value 
| f (cζ)|; this is closely related to f ′(ζ)), as well as on the angle that the path γ  makes with the 
relevant critical values f (cj) (these angles are denoted θj in the statement below) and on the 
length of the path (which is | f (z0)|). As noted earlier, a critical value f (cj) is relevant if the 

corresponding lift of the path γ  to S  intersects the Voronoi domain of f̂ (cj). The appearance 
of ρζ in our estimates is not surprising, since the radius of a disk of approximate zeros about 
a root ζ is at most ρζ.

Note that the number of steps will be infinite if either the root ζ is a multiple root (in which 
case ρζ = 0) or there is a relevant critical value f (cj) lying on the path γ  (in which case 
θj = 0). Since we are working in Pd,1, the roots are all distinct (so ρζ > 0) and there are at 
most d − 1 paths γ  which can contain critical values.

Precise definitions of the terms in the theorem below will take some time to set up, but we 
hope the informal discussion above will give the reader a sense of their meaning.

Theorem 1'.  Let f ∈ Pd,1, and let z0 be an initial point for the α-step path lifting algorithm 
with |z0| > 1. Then the maximum number of steps required for the algorithm to produce an 
approximate zero in Basin (ζ) starting from z0 is

#f (z0) � 67 ·


log

| f (z0)|
ρζ

+ log 40 +

β+(z0)∑
j=1

(3 − 2 log |θj|)


 .

Observe that theorem 1' implies that for f ∈ Pd,1, the α-step algorithm converges to a 
root ζ for every initial point z0 as long as θj �= 0. Thus, the algorithm can only fail for at most 
2d − 2 initial points z0 on a circle of fixed radius larger than 1. See also remark 7.3.

The details of this theorem are established in section 7. It is worth noting that for every 
polynomial, the expected number of relevant critical values (β+(z0)) is no more than 2  
(as shown in proposition 8.3); a relation between ρζ and f ′(ζ) is given in lemma 9.1.

We should emphasize that in the literature the dependence on the reciprocal of the angle 
|θj| is linear (see [Sm97] for an overview), while in theorem 1' the dependence is logarithmic. 
Beltrán and Shub have recently shown (see section 7 of [BS13] or [BS10]) the existence of 
homotopy methods whose number of steps depends logarithmically on a quantity comparable 
to our θj (in projective space), but currently there is no known constructive method to produce 
the necessary path. Since our paths are line segments in the target space, this is a significant 
improvement.

For any fixed polynomial f, our second main result gives a bound on the expected value of 
the number of steps required when an initial point is taken on the circle of radius 1 + 1/d  (with 
uniform measure on the circle). This is established in section 8.

Theorem 2'.  Let f : C → C be a monic polynomial with distinct roots ζi in the unit disk. Let 
#f  be the average number of steps required by the α-step algorithm to locate an approximate 
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zero for f, where the average is taken over starting points on the circle of radius 1 + 1/d  with 
uniform measure. Then

#f � 134

(
1
d

d∑
i=1

log
1
ρζi

+ 6.2

)
.

We wish to emphasize that for a specific polynomial f, this bound does not depend directly 
on the degree, but only on the arrangement of the critical values (or, more precisely, on the 
geometry of the branched surface S ). While log 1/ρζ is not bounded above or below for 
f ∈ Pd,1, its average value grows no more than linearly in the degree of f (as stated in theorem 
3, established in section 9).

As is apparent in theorem 2, the sum of the logarithms of the ρζ plays a crucial role in the 
estimates. Indeed, this quantity is a direct measurement of the difficulty of solving f (z) = 0.

We let Kf =
∑

f (ζ)=0 log
1
ρζ

, and consider its average over all polynomials of a given degree 
(including those with multiple roots).

Theorem 3'.  Let Λ be the average value of Kf /d  over f ∈ Pd,1, where Pd,1 is parameter-
ized by the polydisk of the roots endowed with Lebesgue measure. Then

Λ < 3d/2.

Consequently, the average of #f  over Pd,1 is O(d).

Remark 1.2.  The cost of each step of the α-step algorithm is dominated by the calculation 

of αf (z) (defined in equation (3.1)), which can be done with O
(

d log2 d
)
 arithmetic operations 

(see [BM], for example). Consequently, theorem 2' implies that for a specific polynomial f, the 

expected arithmetic complexity to locate an approximate zero via the α-step algorithm is less 

than O
(

Kf log
2 d

)
. Combining this with theorem 3 gives an expected arithmetic complexity 

of O
(

d2 log2 d
)
 to locate a root for a polynomial in Pd,1.

Remark 1.3.  For f ∈ Pd,1, by choosing d appropriate starting values, an approximate zero 
can be found for each root ζj in O(Kf ) steps of the α-step algorithm. This has an average 

arithmetic complexity of O
(

d3 log2 d
)
. An explicit method for choosing initial points is given 

in section 10.

In addition to the theorems above, we wish to highlight several surprising intermediate 
results which appear in section 5. Specifically, let |zr| = r  with r > 1. Then a bound on the 
rate of change of Arg f (zr) is given by our angular speed lemma (lemma 5.1); applying this 
improves proposition 2 of [SS86] regarding the measure of ‘good starting points’ from 1/6 to 
5/6 (see remark 5.5).

Also worth noting are corollary 5.10, which shows that the average value of | f (zr)| is 
d log r, and proposition 5.13, which states that | f (zr)| is bounded below by a constant times ρζ.

1.3.  Related work

In [Ren], Renegar gives an algorithm which approximates all d roots of a polynomial with 
an arithmetic complexity of O

(
d3 log d + d2 log d log | log ε|

)
 in the worst case. However, 

this algorithm includes a component requiring exact computation. Pan’s algorithm 
[P97] achieves the nearly optimal bound with a complexity of O

(
d2 log d log | log ε|

)
,  

M-H Kim et alNonlinearity 31 (2018) 414
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but implementation requires high precision computations (of the order exceeding the degree 
of the input polynomial).

In practice, the software package MPSolve [BF] is widely used and empirical data indi-
cates good global convergence properties; the software uses the Aberth–Ehrlich method (see 
[Ab] and [Ehr]) to locate the roots of the given polynomial. There is not a lot of theoretical 
support, however: to our knowledge the global behavior of the Aberth–Ehrlich method is not 
understood.

In [KS], a worst-case complexity of O
(

d2 log2 d + d log d| log ε|
)
 yields an ε-factorization 

for a polynomial f. This relies on a path-lifting algorthm which finds half the roots, then 
deflates the polynomial (that is, divides out by the approximations).

Recent work of Schleicher ([Sch, BAS] and his co-authors have extended the results 
of [HSS] to obtain bounds for the complexity of finding ε-roots. In [HSS], it is shown 
that there is a universal set of 1.1d log2 d  points on a circle containing all the roots; if 

the roots are uniformly and independently distributed, [BAS] shows that O
(

d2 log4 d
)
 

iterations of Newton’s method will locate all of the roots (an arithmetic complexity of 

O
(

d3 log6 d + d2 log d log | log ε|
)
) with a high probability, comparable with the average 

arithmetic complexity of O
(

d3 log2 d + d2 log d log | log ε|
)
 for the α-step method in this 

paper (here the log | log ε| term is added to account for the cost of refining an approximate 

zero to an ε-root).
One significant advantage of path-lifting methods over other methods is that of stability: 

as a consequence of estimates in [K85], as long as f and its derivatives are computed with a 
relative error of 10−3, the algorithm will converge to an approximate zero in the same way.

1.4.  Organization

The paper is organized as follows. In section 2, we set out notation and preliminary notions. Section 3 
describes the α-step path-lifting algorithm explicitly. In section 4, we discuss the branched surface 
S  and the corresponding Voronoi partition. This section discusses underlying topological and 
geometric properties, and may be of interest independent to the question of root-finding.

Section 5 computes several estimates related to how the polynomial f behaves on the initial 
circle. In section 6, we bound the distance bewteen wn and wn+1, and use this in section 7 to 
estimate the number of steps needed for the algorithm to locate an approximate zero from a 
given starting point z0, proving theorem 1.

In section 8, we combine the topological and geometric results of section 4 with the more 
analytical results from section 7 to calculate an average upper bound over all starting points 
for a given polynomial, proving theorem 2. In section 9, we discuss the relation between the 
number of steps required and the degree of f and proves theorem 3. This is followed by sec-
tion 10 where we describe how to use this method to locate all roots of a polynomial f. We con-
clude in section 11 with some remarks and comments regarding extensions of these results.

2.  Preliminaries

We will use the following general notions and notations throughout.
An open disk of radius r > 0 centered around z ∈ C is denoted by Dr(z).
Let Sr(z) denote the circle of radius r and center z; if the circle is centered at the origin, we 

will denote it by Sr.
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The function Arg denotes the argument of a complex number (in the interval (−π,π] unless 
otherwise noted).

The ray �w ⊂ C of a point w ∈ C� {0} is

�w = (0,∞) · w = {z ∈ C | Arg w = Arg z} ,

and the slit  of this point is the part of the ray extending outward from w, that is

σw = [1,∞) · w = {z ∈ �w | |z| � |w|}

For a polynomial f : C → C, denote the critical points of f by

Cf = {z | f ′(z) = 0} .

For a regular point z0, we shall use f−1
z0

 to denote a holomorphic branch of the inverse of f for 
which f−1( f (z0)) = z0.

We now discuss the Newton flow, and some notation related to it. Consider the following 
vector field on C,

X(z) = − f (z)
f ′(z)

.

The corresponding flow is called the Newton flow. This vector field blows up near the criti-
cal points of f. By rescaling the length of the vector X(z) by 2| f ′(z)|2, the critical points of f 
become well-defined singular points of the rescaled vector field. This rescaled vector field is 
the gradient vector field ż = −∇| f (z)|2; the solution curves of the former coincide with the 
latter, and we will use the two interchangably. The equilibria of the Newton flow are exactly 
the roots and critical points of f. Each root ζ is a sink; we shall denote its basin of attraction 
by Basin (ζ). Critical points are saddles for the flow. Furthermore, we can extend the flow 
to infinity, which is the only source. Each boundary component of Basin (ζ) contains criti-
cal points c ∈ Cf : generically, each critical point c has an unstable orbit leaving from c and 
converging to ζ, as well as stable orbits from infinity to c, which are separatrices for the flow. 
Generically, there is a unique critical point in each boundary component; in the degenerate 
cases, there could be saddle connections resulting in multiple critical points on one boundary 
component. A general discussion regarding the Newton flow can be found in [STW] and [JJT], 
as well as [KoS]. See figure 2.

It is important to note that if ϕ(t) is a solution curve for the Newton flow, f (ϕ(t)) lies along 
a ray. To see this, observe that

d
dt

f (ϕ(t)) = f ′(ϕ(t)) ·
(
− f (ϕ(t))

f ′(ϕ(t))

)
= −f (ϕ(t)),

and hence f (ϕ(t)) = e−tf (z0) for some z0 = ϕ(t0), provided f ′(ϕ(t)) is never zero. (If ϕ(t) 
contains a critical point of f, the result follows by continuity.)

Since f has distinct roots, f ′(ζ) �= 0 for each root ζ, and so f is a local diffeomorphism in 
a neighborhood of ζ. Thus, for every angle θ there will be a solution ϕθ(t) in this neighbor-
hood with Arg ( f (ϕθ(t))) = θ. Noting that the ray f (ϕθ(t)) extends to infinity unless ϕθ(t) 
encounters a critical point c, we obtain the following lemma.

Lemma 2.1.  For each root ζ, f is a biholomorphism

f : Basin (ζ) → C�
⋃

σf (c),

where the union is taken over the critical points c which lie on the boundary of Basin (ζ).

M-H Kim et alNonlinearity 31 (2018) 414
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Remark 2.2.  Observe that iteration of Newton’s method beginning at a point z0 corre-
sponds to construction of an approximate solution to the Newton flow with intial condition 
ϕ(0) = z0 using Euler’s method with stepsize h = 1. When the path γ  is a ray in the target 
space, a path-lifting method corresponds to constructing approximate solutions of the Newton 
flow via a method that self-corrects to always follow a solution curve that containing the initial 
condition.

Throughout the paper, we will consider polynomials f ∈ Pd,1, that is, f : C → C given by

f (z) =
d∏

j=1

(z − ζj) with |ζj| � 1,

with distinct roots ζj. The set of roots of f will be denoted by

Rf = {ζj | j = 1, . . . , d} .

The restriction to Pd,1 is not severe; provided its roots are simple, an affine change of coor-
dinates depending only on the coefficients will transform any polynomial into one in Pd,1 (see 
[Mar], for example). The space Pd,1 is somewhat different from that considered in other works 
(such as P1 of [Sm81], Pd(1) of [KS], etc), where the space of polynomials is represented as 

Figure 2.  The direction field for the Newton flow corresponding to a degree 7 
polynomial is shown. For each root ζi (indicated by a circle ), its basin is bounded by 
the stable manifolds (thick curves ) of one or more critical points cj (indicated by a 
cross ). Also shown are solution curves ϕ(t) for which Arg f (ϕ) is 0, 2π/3, or −2π/3 
(thin curves). Compare figure 1.
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{
f (z) =

∑
ajz j | |aj| � 1

}
. In this case, all the roots lie in the disk of radius 2, and our results 

are readily adapted to any set of polynomials where the roots lie in any disk of a known radius.
We shall use the following standard result several times.

Lemma 2.3 (Koebe distortion theorem).  Let g : Dr(0) → C be univalent with g(0) = 0 
and g′(0) = 1. For z ∈ Dr(0) with s = |z|/r, we have

1 − s
(1 + s)3 � |g′(z)| � 1 + s

(1 − s)3� (2.1)

and

|z|
(1 + s)2 � |g(z)| � |z|

(1 − s)2� (2.2)

Consequently,

Dr/4(0) ⊂ g(Dr(0)).� (2.3)

Remark 2.4.  The statement in equation (2.3) is known as the Koebe 1
4-theorem. The proof 

can be found in [Ko, Po], or [Du], among others. See also corollary 2.6 of [K88].

3. The path-lifting algorithm

In this section, we present the path-lifting algorithm that we use to find an approximate zero of 
f ∈ Pd,1. First, we discuss approximate zeros and the Kim–Smale α function.

Definition 3.1.  Let zn ∈ C be the nth iterate under Newton’s method of the point z∗ ∈ C, 
that is,

zn+1 = zn −
f (zn)

f ′(zn)
, z0 = z∗.

The point z∗ is called an approximate zero of f if

|zn+1 − zn| �
(

1
2

)2n−1

|z1 − z∗| for all n > 0.

Newton’s method converges quadratically to a root when started from an approximate zero 
(see [Sm85] for example).

Approximate zeros are an intrinsic, dynamical feature of a polynomial. They form disjoint 
connected neighborhoods of the roots ζi on which the Newton map Nf (z) = z − f (z)/f ′(z) 
converges quadratically to the root, which is a super-attracting fixed point for the rational 
map Nf.

A sufficient condition for a point to be an approximate zero is developed in [K85] and 
[Sm86]. We will use the criterion formulated by Smale in [Sm86] to locate approximate zeros. 
It uses α : C� Cf → R defined by

α(z) = max
j>1

∣∣∣∣
f (z)
f ′(z)

∣∣∣∣
∣∣∣∣
f ( j)(z)
j!f ′(z)

∣∣∣∣
1

j−1

.� (3.1)

M-H Kim et alNonlinearity 31 (2018) 414



424

It is sometimes useful to use the related function γ(z) instead, where

γ(z) = max
j>1

∣∣∣∣
f ( j)(z)
j!f ′(z)

∣∣∣∣
1

j−1

.� (3.2)

While we will primarily use α(z), we make use of γ(z) in corollary 5.3, sections 6 and 9.

Theorem 3.2 ([K85, Sm86]).  There is a number α0 such that if α(z) < α0 , the point z is 
an approximate zero.

Remark 3.3.  It has been shown that α0 � 3 −
√

8 ≈ 0.171 57 (see [WH] or [WZ], for example).

Remark 3.4.  The number α0 is given in [Sm86] and in many places throughout the literature 
as α0 ≈ 0.130 707. However, this specific value is very likely the result of a typographic error in 
the fifth decimal place. Smale’s bound for α0 is stated as a solution to (2r2 − 4r + 1)2 − 2r = 0 
[Sm86, section 4]; the relevant root of this equation is 0.130 716 944 . . ..

We shall analyze the following algorithm to find an approximate zero for f ∈ Pd,1.

The α-step path-lifting algorithm.

Input a polynomial f ∈ Pd,1.

       Step 0: Choose z0 ∈ C with |z0| = 1 + 1
d. Let

                  w0 = f (z0) and w = w0
|w0| .

       Step 1: Stop if α(zn) � 3 −
√

8; Output zn, an approximate zero for f.
       Step 2: Let

                  wn+1 = wn − 1
15 · | f (zn)|

α(zn)
· w

       and

                  zn+1 = zn − f (zn)−wn+1
f ′(zn)

.

       Continue with Step 1.

Sometimes we shall refer to the points wn generated by the algorithm above as guide points 
or target points.

If z0 ∈ Basin (ζ) then the α-step algorithm will terminate with an approximate zero for ζ. 
This follows from the fact that Arg wn = Arg f (z0) for all n, and, by the estimates in section 6, 
wn+1 is close enough to wn to ensure that f−1 is univalent on a region containing wn, wn+1, 
f (zn), and f (zn+1). Since z0 ∈ Basin (ζ), the entire ray �w0 lifts to a curve lying in Basin (ζ) 
since �w0 does not contain a critical value f (c) with c in the closure of Basin (ζ).

Remark 3.5.  There may be some values of n for which zn /∈ Basin (ζ); even if this occurs, 
there is a neighborhood U ⊂ C of the ray �w0 which contains f (zj) for all j and on which there 
exists a univalent inverse branch of f−1 mapping w0 to z0. As noted in the previous paragraph, 
wn+1 and f (zn) both lie in a neighborhood of �w0 on which f−1 is univalent, even if zn is 
outside Basin (ζ). In this case, Basin (ζ) can be enlarged to a neighborhood U of γ  which 
contains all the zj. See figure 3. A more detailed description and explicit construction of U can 
be found in section 7. Denote this inverse branch by f−1

z0
: U → C.

Definition 3.6.  For every zero ζ ∈ Rf , let

ρζ = min
c∈Cf (ζ)

| f (c)| where Cf (ζ) = Cf ∩ Basin (ζ).
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Remark 3.7.  Note that ρζ is the radius of convergence of f−1
ζ  at 0, and is the distance in the 

surface S  between f̂ (ζ) and the nearest branch point of S . This follows from the fact that 
f̂ : Basin (ζ) → S � Vf  is a biholomorphism and π is an isometry (see lemma 4.1) from the 
disk Dρζ

 about f̂ (ζ) into Ctarget. Hence, f−1
ζ : Dρζ

(0) → Csource is a univalent analytic function.

Definition 3.8.  For any polynomial f, we define Kf =
∑

ζ∈Rf
log 1

ρζ
.

Remark 3.9.  Notice that Kf < ∞ if and only if the set of roots Rf  and critical points 
Cf  are disjoint. This holds generically for polynomials f, and Kf = ∞ exactly when f has a 
multiple zero. Root-finding problems for which there is a multiple zero are typically called 
ill-conditioned  or ill-posed .

Remark 3.10.  One can introduce a measure of difficulty Kf ,ζ = log 1/ρζ for a specific 
given root ζ ∈ Rf . Then theorem 1 describes the cost of reaching an approximate zero for ζ in 
terms of Kf ,ζ , theorem 2 gives the cost of finding any approximate zero in terms of the average 
value of Kf ,ζ , and theorem 3 averages Kf ,ζ  over all polynomials f of a given degree.

4. The Voronoi partition in the branched cover

Given a polynomial f : C → C of degree d, recall from section 2 that we denote its critical 
points by Cf = {z | f ′(z) = 0}. For any such f, we can express it as a composition f = π ◦ f̂ ,

Figure 3.  An illustration of the α-step method beginning at z0, with Csource on the left 

and Ctarget on the right. The guide points wj (and their preimages) are shown along γ  and 

f−1
ζ1

(γ) as the intersection of perpendicular segments. The points z0 and their images 
f (z0) are indicated by solid dots, two roots ζ1 and ζ2 (and their image 0) are denoted by 
circles ( ), and a nearby critical point c and its image f (v) are marked by a cross ( ). 
Basin (ζ2) is shaded. In this illustration, z0 ∈ Basin (ζ1) but z3 ∈ Basin (ζ2). However, 
as noted in remark 3.5, there is a neighbourhood U of the ray on which there is a branch 
of the inverse which contains all the zn. U is shown bounded by a dashed line.
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where f̂  is a biholomorphism except on Cf  (on which it is merely a bijection), and π is a d-fold 
branched cover, ramified at points of Vf = f̂ (Cf ). We deonte the metric on S  by ‖·, ·‖; this 
metric is such that away from points in Vf , π is a local isometry into Ctarget (with the standard 
metric). See also figure 1 and the corresponding discussion in section 1.1.

The multiplicity of a critical point c ∈ Cf  is

mc = min
{

k | f (k+1)(c) �= 0
}

.

Notice that
∑
c∈Cf

mc = d − 1.

The points in Vf  are called critical values in S , and we define the multiplicity mv of 

v = f̂ (c) ∈ Vf  to be the multiplicity of c; this is also the local degree of the projection π in a 
neighborhood of v.

Note that for each root ζ ∈ Rf ,

π : f̂ (Basin (ζ)) → C�
⋃

y∈Vf (ζ)

σy

is an isometry (where Vf (ζ) = f (Cf (ζ)), and σy is the ray outward from y as defined in 
section 2).

The Voronoi domain of a point v ∈ Vf  is

Vor
(
v
)
= {u ∈ S | ‖u, v‖ � ‖u, w‖ , ∀w ∈ Vf } ;

this is exactly the set of points u ∈ S  such that the critical value π(v) lies on the boundary of 

the disk about π(u) on which the inverse f−1
x  will be analytic (x satifies f̂ (x) = u). See also 

remark 3.7. We will refer to such critical values π(v) as relevant  to the construction of f−1
x .

Recall from section 2 that Dr(u) = {y | ‖u, y‖ < r} denotes the open disk of radius r about 
u. For u ∈ S , such disks will be isometric to their projections (i.e. be ‘Euclidean disks’) 
exactly when they avoid the branch points of S .

Lemma 4.1.  A point u ∈ S  is in Vor
(
v
)
 if and only if π : D‖u,v‖(u) → D|u−v|(π(u)) is an 

isometry. In particular, if u ∈ Vor
(
v
)
 then

D‖u,v‖(u) ∩ Vf = ∅.

Proof.  If u ∈ Vor
(
v
)
 then D‖u,v‖(u) ∩ Vf = ∅. Thus, π is a local isometry on all of D‖u,v‖(u), 

and in particular, π is a global isometry on this disk. Conversely, If π is an isometry on all of 
D‖u,v‖(u), there can be no critical values in the disk, and so u ∈ Vor

(
v
)
.� □ 

Let u1, u2 ∈ S . If the line segment [π(u1),π(u2)] ⊂ C has a lift in S  which connects u1 
with u2, we denote this lifted line segment by 

[[
u1, u2

]]
. Observe that many pairs u1, u2 do not 
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have such a connecting line segment. In this case we write 
[[
u1, u2

]]
= ∅. When 

[[
u1, u2

]]
 is non-

empty, we say that u1 is visible from u2 in S . Also observe, if v ∈ Vf  then
[[
u, v

]]
�= ∅ for all u ∈ Vor

(
v
)
.

We can form the visibility graph for S  as follows. The vertices of the graph are the criti-
cal values Vf , and there is an edge from v to w if and only if 

[[
v, w

]]
 is non-empty. We can 

identify the visibility graph with the subset of S  given by

G =
⋃

v,w∈Vf

[[
v, w

]]
.

Since f̂  is a bijection between Csource and S , f̂−1(G ) is well-defined, so we can also view G  
as a graph immersed in Csource, with the critical points of f as vertices.

Question 4.2.  Characterize the graphs which occur as a visibility graph G  for a polynomial.

Recall from section 2 that the ray �y ⊂ C of a point y ∈ C� {0} is the set of points which 
have the same argument as y.

If 0̂ ∈ S  projects onto 0 and 
[[
0̂, u

]]
�= ∅, the geodesic starting at 0̂  and containing 

[[
0̂, u

]]
 is 

the ray through u ∈ S , which we denote by �̂u. Observe that if �̂u ∩ Vf = ∅ then π : �̂u → �π(u) 
is a surjective isometry.

Figure 4.  As in figure 1, the surface S  for a degree 7 polynomial is shown as a stack of 
seven slit planes, but with Voronoi domains shaded. Each sheet is f̂ (Basin (ζi)) for the 
root ζi, and is slit along σvj (dashed lines), which terminate at the branch points vj ∈ Vf  
(indicated by crosses ). The circles ( ) in each sheet indicate π−1(0). For readability, 
σvj is labeled as σj in the figure. The Voronoi domains of each of the vj are the labeled 
regions in the same shade, with boundaries marked by heavy solid lines (these regions 
will pass through slits σvk  and appear in two or more sheets). Note that while Vor

(
vj
)
 may 

enter many sheets, the projection is at most 2-to-1, as in corollary 4.4. See also figure 5.
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Let y = π(u). If �y ∩ f (Cf ) = ∅, then

π−1(�y) = �̂y1 ∪ �̂y2 ∪ · · · ∪ �̂yd ,

where the points yi ∈ S  are the d different preimages of y.

Proposition 4.3.  Given v ∈ Vf  and y ∈ C� f (Cf ). Then

card
{

i | �̂yi ∩ Vor
(
v
)
�= ∅

}
� mv + 1.

Furthermore, each �̂yi ∩ Vor
(
v
)
 is a connected set.

Proof.  Suppose �̂y1 , �̂y2 , . . . , �̂yk intersect Vor
(
v
)
, with v = f̂ (c), c ∈ Cf . Pick a point ui in 

each of these intersections, that is,

ui ∈ �̂yi ∩ Vor
(
v
)
.

Let Di = D‖v,ui‖(ui). According to lemma 4.1, we know that π : Di → π(Di) is an isom-

etry. Let pi ∈ �̂yi be the perpendicular projection of v onto �̂yi and let p be the projection of 
f (c) = π(v) onto �y (see figure 6). Then for all i � k, π( pi) = p,

∅ �=
[[
v, pi

]]
⊂ Di and ∅ �= [π(v), p] ⊂

⋂
i�k

π(Di).

Figure 5.  The Voronoi regions of figure 4 are shown in the source space Csource. The 
roots of f are indicated by circles ( ), the critical points by crosses ( ) and labeled as 
cj. The dashed lines are the boundaries of Basin (ζj) for each root; each such boundary 
contains a unique critical point ck; observe that each Voronoi domain enters the basin 

of at least two roots. For each critical point cj ∈ Cf , f̂−1(Vor
(
vj
)
) is shown bounded by 

the heavy solid lines, shaded as in figure 4, and labeled as Vor
(
cj
)
. The visibility graph 

f̂−1(G ) is also shown, indicated by solid curves connecting pairs of critical points cj 
and ck.
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Since for each i between 1 and k, π is a surjective isometry from 
[[
v, pi

]]
 to [π(v), p], k can be 

no larger than the the degree of π on a neighbourhood of v. That is,

k � 1 + mv.

The connectedness of �̂yi ∩ Vor
(
v
)
 follows from the triangle inequality.� □ 

Corollary 4.4.  Each projection π : Vor
(
v
)
→ C is at most (mv + 1)-to-one.

Let z ∈ C. We will say that a critical point c ∈ Cf  influences the orbit of z if the segment [[
0̂, f̂ (z)

]]
 passes through Vor

(
f̂ (c)

)
.

We are interested in the critical points which influence the starting points for our algorithm, 
and, conversely, the starting points which are influenced by a given critical point.

Definition 4.5.  For starting points z on the circle of radius r, we define the following sets:

I =
{
(t, c) ∈ [0, 1]× Cf |

[[
0̂, f̂ (re2πit)

]]
∩ Vor

(
f̂ (c)

)
�= ∅

}

It = {c ∈ Cf | (t, c) ∈ I } Ic = {t ∈ [0, 1] | (t, c) ∈ I }

Notice that, for z = re2πit  fixed, we have c ∈ It precisely when, for some y ∈ �f (z), 
D| f (c)−y|(y) is the largest ball on which f−1

z  is defined. Similarly, for this pair (t, c), we also 
have t ∈ Ic.

Figure 6.  As proven in proposition 4.3, the projection π is at most (mv + 1)-to-one on 
Vor

(
v
)
.

M-H Kim et alNonlinearity 31 (2018) 414



430

5. The behavior of f on the initial circle

Consider the function ar : [0, 1) → R defined by

ar(t) = Arg f (re2πit),

with r > 0. We can easily bound the rate of change of ar(t); while elementary, these bounds 
play a crucial role for us.

Lemma 5.1 (Angular speed lemma).  Let r > 1. Then for all t ∈ [0, 1), we have

2πd · r
r + 1

� a′r(t) � 2πd · r
r − 1

.

Proof.  Let z = re2πit , with r > 1. Since |ζ| � 1, we have ζz ∈ D 1
r
(0) =

{
w | |w| � 1

r

}
.  

A calculation shows

a′r(t) = Im d
dt log f (re2πit) = Im

( d
dz log f (z)

) (
re2πit

)
· 2πi

= 2π · Re
(

f ′(z)
f (z) · z

)
= 2π · Re

d∑
j=1

z
z−ζj

= 2π · Re
d∑

j=1

1
1−ζj/z .

�

(5.1)

For each root ζi, we have

r
r + 1

� Re
1

1 − ζi/z
�

r
r − 1

.

Summing this inequality over the d roots and applying it to equation (5.1) gives the desired 
result.� □ 

Remark 5.2.  The estimates in lemma 5.1 are sharp.

The following bounds α(z) for points on the initial circle. This will be of use in proving 
lemma 6.10, used in selecting starting points to locate all d roots of f in section 10.

Corollary 5.3.  For z with |z| = 1 + 1/d , we have
∣∣∣∣

f (z)
f ′(z)

∣∣∣∣ <
3
d

, γ(z) �
d(d − 1)

2
, and α(z) <

3
2
(d − 1).

Proof.  Since r = |z| = 1 + 1
d , lemma 5.1 gives us π d < a′r . From this and the observation 

that Re (w) � |w|, we have

πd <

∣∣∣∣
f ′(z)
f (z)

∣∣∣∣ · 2π(1 +
1
d
) < 3π

∣∣∣∣
f ′(z)
f (z)

∣∣∣∣ , and so
∣∣∣∣

f (z)
f ′(z)

∣∣∣∣ <
3
d

.

Note that if ξi are the k solutions to f (k−1)(ξi) = 0 (with multiplicity), then by Lucas’  
theorem [Lu], we have each ξi in the unit disk and so |z − ξi| � 1/d. Thus

∣∣∣∣
f (k)(z)

f (k−1)(z)

∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

1
z − ξi

∣∣∣∣∣ � d(d − k).

Observe that
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∣∣∣∣
f j(z)
j!f ′(z)

∣∣∣∣
1

j−1

=

∣∣∣∣
1
j!

f ′′(z)
f ′(z)

· f ′′′(z)
f ′′(z)

· · · f ( j)(z)
f ( j−1)(z)

∣∣∣∣
1

j−1

�

(
1
j!

d(d − 1) · d(d − 2) · · · d(d − j + 1)
) 1

j−1

�
d(d − 1)

2
.

Since γ(z) is the maximum of the above expression over j, we have γ � 1
2 d(d − 1); combining 

the two estimates also gives α(z) < 3
2 (d − 1).� □ 

The corollary below has direct implications for path-following methods that use a constant 
ratio step-size (such as [Sm85] or [KS]), which need a cone of a given angular width about �w0 
containing no (relevant) critical values in order to set the stepsize that ensures convergence. 
The α-step algorithm considered here adjusts for the presence of critical values (unless they 
fall on �w0) and does not need a constant width cone, although a starting value lying in Badθ 
will have a contribution of at least log(1/θ) to the arithmetic complexity caused by the corre

sponding critical point c. Recall from definition 4.5 that c ∈ It means that the segment [[
0̂, f̂ (re2πit)

]]
∈ S  intersects Vor

(
c
)
.

Corollary 5.4.  Let r = 1 + 1/d, and define

Badθ =

{
t ∈ [0, 1)

∣∣∣∣
∣∣Arg

f (re2πit)

f (c)

∣∣ < θ, for some critical point c ∈ It

}
.

Then

measure(Badθ) �
2θ
π

· d − 1
d

.

Proof.  For fixed r, the set Badθ consists of the inverse image by f̂  of d − 1 arcs of angle 2θ 
in S  (one for each critical point). Each of these will grow by no more than 1/min a′

r(t), so by 
lemma 5.1, when r = 1 + 1/d we have

measure(Badθ) �
∑
c∈Cf

2θ
max a′r(t)

� (d − 1)
r + 1
2πrd

= (d − 1)
θ(2d + 1)
πd(d + 1)

�
2θ(d − 1)

πd
.

� □ 

Recall that here we are using the convention that the circle has measure 1.

Remark 5.5.  Let Goodθ be the complementary notion to Badθ, that is,

Goodθ =

{
t ∈ [0, 1)

∣∣∣∣
∣∣Arg

f (re2πit)

f (c)

∣∣ � θ, for all critical points c ∈ It

}
.

For each t ∈ Goodθ, f−1
re2πit : Ctarget → Csource will be analytic in a cone

{
w ∈ Ctarget

∣∣|Arg (w)− Arg ( f (re2πit))| < θ
}

,

and consequently such t correspond to ‘good starting points’ for a path-lifting algorithm: in a 
method with a fixed-ratio stepsize, the convergence is assured, and for the α-step algorithm, 
convergence is rapid.

This is essentially Condition Θ of [Sm85] and [SS86], with θ = π/12. Both these works 
use Vf to denote our Goodπ/12 (also taking r = 3/2), and show in proposition 2 that Goodπ/12 
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has measure at least 1/6. Above in corollary 5.4, we show that the measure of Goodπ/12 is at 
least 5/6.

Recall from section 2 that the circle of radius r is denoted by Sr = {z | |z| = r}.

Lemma 5.6.  Let c be a critical point on the boundary of Basin (ζ), and let γc be the solution 
to the Newton flow emanating from c whose interior lies in Basin (ζ). Then if r > 1, γc ∩ Sr = ∅.

Proof.  Note that the Newton flow points inward on Sr for r > 1, which follows from the 
observation that

f (z)
f ′(z)

=
1∑ 1
z−ζi

.

The uniqueness of γc follows from lemma 2.1 (which says that f is a biholomorphism from 
Basin (ζ) onto a slit plane) and the observation that f sends solutions into rays: if there were 
two solutions γc and ϕc both emanating from c and lying in Basin (ζ), f (γc) and f (ϕc) would 
coincide near 0, and thus γc = ϕc.

The transversality and uniqueness facts immediately imply lemma 5.6.
The transversality of the Newton flow to Sr appears in many places (e.g. [STW]), but we in-

clude a justification here. Observe that since |z| > 1 and |ζi| � 1, the vectors z − ζi all lie in a half-
plane H  which does not include the origin. Consequently, their inverses and hence their sum ∑

1/(z − ζi) lie in a (possibly different) half-plane H ′. Inverting again gives f (z)/f ′(z) ∈ H . 
Since f (z)/f ′(z) lies in the original half-plane H , it is transverse to Sr.� □ 

Observe that Basin (ζ)� D1(0) will consist of one or more connected components. The 
following lemma enables us to estimate the width of these.

Lemma 5.7.  Let r > 1, ζ ∈ Rf , and let υ be a connected component of Sr ∩ Basin (ζ). 
Then

length (υ) ·min a′
r(t) � 2πr,

where the minimum is taken over points with re2πit ∈ υ.

Proof.  Let B ⊂ Basin (ζ) be a boundary component of Basin (ζ) which does not intersect 
υ, and let c be a critical point of f contained in B. Let γc be the orbit of the Newton flow 
which begins at c and ends at the root ζ; then γc � {c} will be contained in Basin (ζ) since 
f (γc) ∈ Ctarget  is the segment (0, f (c)).

Observe that f (γc ∪ B) is exactly the ray through f (c). From the definition of υ and lemma 
5.6 we get int (υ) ∩ (B ∪ γc) = ∅. Hence,

Arg ( f (int (υ))) ∩ Arg ( f (c)) = ∅,

that is, the image of υ cannot make more than a full turn in the target space. The lemma  
follows.� □ 

The following corollary follows immediately from the proof.

Corollary 5.8.  Let z1 and z2 satisfy |z1| = |z2| = r with r � 1, and suppose also that they 
lie in the same connected component of Sr ∩ Basin (ζ). Then there is a well-defined branch of 
the argument Arg which is continuous on Sr ∩ Basin (ζ) and such that

|Arg f (z1)− Arg f (z2)| � 2π.
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In the sequel we will consider integrals over the circle Sr = {z ∈ C | |z| = r}, which, for 
all r > 0, carries Lebesgue measure with unit mass.

We require the following lemma and its corollary in the proofs of lemmas 9.4 and 8.4.

Lemma 5.9.  Let r > 0 and |ζ| < r  then
∫ 1

0
log |re2πit − ζ|dt = log r.

Proof.  Define

S(ζ) =
∫ 1

0 log |re2πit − ζ|dt =
∫

Sr
Re (log(z − ζ)) · 1

2πi
dz
z

= Re 1
2πi

∫
Sr
log(z − ζ) · dz

z .

Note that

dS
dζ = −Re 1

2πi

∫
Sr

1
z−ζ

dz
z

= −Re 1
2πi

∫
Sr

(
1/ζ
z−ζ − 1/ζ

z

)
dz = 0.

Hence,

S(ζ) = S(0) = log r.� □ 

The following corollary is needed in the proof of lemma 8.4, but is also interesting in its 
own right.

Corollary 5.10.  Let f (z) =
∏d

j=1(z − ζj), with |ζj| < r. Then
∫ 1

0
log | f (re2πit)|dt = d log r.

Remark 5.11.  Notice that if r = 1 + 1/d, we have d log r < 1.

Proof. 

∫ 1

0
log | f (re2πit)|dt =

∫ 1

0
log

∣∣∣∣∣∣
d∏

j=1

(re2πit − ζj)

∣∣∣∣∣∣
dt =

d∑
j=1

∫ 1

0
log |re2πit − ζj|dt = d log r,

where the last equality follows from lemma 5.9.� □ 

Question 5.12.  The previous corollary shows that the average value of log | f (z)| on Sr is 
d log r. Is there a constant cr independent of d so that

measure
{

t | log | f (re2πit)| < d log r
}
> cr?

We now establish a lower bound on |w0| = | f (z0)| for starting points z0 on the circle Sr with 
r > 1. We shall use this in lemma 6.9 to give a lower bound on the size of our final point wN. 
The existence of such a bound should be expected, since z0 is taken outside the disk contain-
ing all the roots; we need this result in the proof of theorem 2 to handle the case where z0 is 
already an approximate zero of f.
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Proposition 5.13.  Let z ∈ Basin (ζ) with |z| = r > 1. Then

| f (z)| � sr · ρζ ,

where ρζ is the radius of convergence of the branch of f−1 taking 0 to ζ, and sr < 1.
If r > 1 + 2π

d , sr =
1
4 . Otherwise, for r = 1 + C

d , sr is the smallest positive solution of

C = 8π
s

(1 − s)2 .

Remark 5.14.  For 0 < C � 2π , we have 0 < sr � 3 −
√

8. For C = 1, we have 
sr ≈ 0.0369 > 1

28.

Proof.  Without loss of generality, we may assume that ζ is a non-negative real number. 
Define l to be the radius of the largest disk centered at ζ which is mapped univalently into 
Dρζ

(0), that is,

Dl(ζ) ⊂ f−1
ζ (Dρζ

(0)).

Observe that these lie entirely inside Basin (ζ).
Applying the Koebe 14-lemma (equation (2.3)) to f−1

ζ , we then obtain

l �
1

| f ′(ζ)|
· ρζ

4
.� (5.2)

Let z be a point in Basin (ζ) with |z| = r.
First consider the case |z − ζ| � l. Here, we must have | f (z)| � ρζ/4. If not, the Koebe 

1
4-lemma is violated: by definition of l, the map f is univalent on Dl(ζ) and so f (Dl(ζ)) con-
tains a disk of radius ρζ/4 about 0. Thus, we need only consider the case when |z − ζ| < l.

Observe that the function g(w) = ( f−1
ζ (w)− ζ) f ′(ζ) satisfies the hypotheses of the Koebe 

distortion theorem (lemma 2.3) on the disk of radius ρζ. Take w = f (z) to obtain

|z − ζ|| f ′(ζ)| � | f (z)|
(1 − s)2 or, equivalently |z − ζ| � 1

| f ′(ζ)|
· ρζ ·

s
(1 − s)2 ,

�
(5.3)

where s = | f (z)|/ρζ .

We now look for a lower bound on |z − ζ| by estimating |z−ζ|
l  for z ∈ Sr ∩ Dl(ζ).

Since we have z ∈ Dl(ζ) and also |z| > 1, there is a point A ∈ S1
⋂

Dl(ζ); let φ be the angle 
of the sector connecting 0, A, and 1. See figure 7.

Notice that

l =
√
ζ2 − 2ζ cos(φ) + 1, since (cosφ− ζ)2 + sin2 φ = l2

where (cos(φ), sin(φ)) is the coordinate of the point A on Sl(ζ) ∩ S1.
From corollary 5.8, we have |Arg ( f (A))− Arg ( f (Ā))| � 2π, and by the angular speed 

lemma (lemma 5.1), we have
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φ = Arg (A) �
π

d
· r + 1

r
�

2π
d

, for all r > 1.

Since r = 1 + C
d  and 0 < φ � π , we have

|z − ζ|
l

�
1 + C

d − ζ√
ζ2 − 2ζ cos(φ) + 1

�
1 + C

d − ζ√
ζ2 − 2ζ cos( 2π

d ) + 1
.

Since we are only considering 0 < C < 2π  and |ζ| � 1, the above expression is minimized 
when ζ = 1. Hence, we have

|z − ζ|
l

�
C
d√

1 − 2 cos( 2π
d ) + 1

�
C
2π

,

for all d. Using this with equation (5.2), we obtain

|z − ζ| �
C l
2π

�
C
2π

· ρζ
4| f ′ζ)|� (5.4)

This, together with the estimate from equation  (5.3), gives the lower bound on s as the 
solution to

C
2π

· ρζ
4| f ′(ζ)|

�
s

(1 − s)2

ρζ
| f ′(ζ)|

,

which simplifies as

C � 8π
s

(1 − s)2 .

Denote the smaller positive solution of the above by sr. Since s was defined by s = | f (z)|/ρζ , 
this gives us | f (z)| � sr · ρζ, as desired.� □ 

Figure 7.  Using the Koebe lemma to calculate a lower bound on | f (z)| for z on Sr, in 
proposition 5.13.
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6. The size of the step

Recall that the α-step algorithm (see section 3) generates a sequence of points zn with

zn+1 = zn −
f (zn)− wn+1

f ′(zn)
,

where the wn are a sequence of points tending towards 0 with the same argument as w0 = f (z0).
In this section, for notational convenience we will sometimes write fn for f (zn), f̂n for 

f̂ (zn), f ′n for f ′(zn), αn for α(zn), and so on.
We call the distance between wn+1 and wn the nth-jump and denote it by

Jn = |wn+1 − wn| = A · | f (zn)|
α(zn)

.

The coefficient A (and hence wn+1) must be chosen so that f (zn) will lie close enough to 
wn to ensure that the algorithm efficiently follows the ray �w0. In particular, we show in propo-
sition 6.7 that taking A = 1

15 gives us Jn � rn/66, where rn is the radius of convergence of 
the appropriate branch of f−1 centered at wn. The proof of this uses induction; the inductive 
hypothesis is established in proposition 6.1.

If f were linear, the algorithm would follow wn exactly, and f (zn) ≡ wn. When the degree 
of f is at least 2, there will be a small error which we denote by

δn = | f (zn)− wn|.

While the algorithm is described in terms of Csource (the zn) and Ctarget ( f (zn) and the wn), 
it is more straightforward to think of it in terms of the branched surface S .

Let rn � 0 be maximal such that

f−1
z0

: Drn(wn) → U

is univalent, where U is a neighborhood of zn. This is the distance between ŵn ∈ S  and the 
critical value v ∈ Vf  for which ŵn ∈ Vor

(
v
)
. Also, let Rn � 0 be maximal such that

f−1
z0

: DRn( fn) → V

is univalent, where V is a neighborhood of zn. Note that f̂n could be in Vor
(
v′
)
 for a critical 

value different from that used for ŵn; in this case, we still use Rn = |v′ − fn|.
We introduce the following notation, used throughout this section.

εn = zn − zn+1 and hn = (zn − zn+1) ·
f ′n
fn

= εn ·
f ′n
fn

.

As noted earlier, we use fn = f (zn), f ′n = f ′(zn), f ′′n = f ′′(zn), and f ( j)
n = f ( j)(zn) as notation 

for the derivatives of f at zn, and use αn = α(zn). Let γn = γ(zn), where

γ(z) = max
j>1

∣∣∣∣
f ( j)(z)
j!f ′(z)

∣∣∣∣
1

j−1

as defined in section 3; hence αn = γn| fn/f ′n|.

Proposition 6.1.  Using the preceding notation, suppose we have A > 0 and c > 0 given 
by

δn < c · | f ′n|
γn

and |wn+1 − wn| = A · | fn|
αn

.
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Let ψ(u) = 1 − 4u + 2u2. Then if A + c satisfies (A + c)2 < cψ(A + c)2, we have

δn+1 < c ·
| f ′n+1|
γn+1

.

In order to establish this, we need some preparatory lemmas.

Lemma 6.2.  If |αnhn| < 1 then

δn+1 = | fn+1 − wn+1| � |hnfn| ·
|αnhn|

|1 − αnhn|
.

Proof.  Note that since

zn+1 = zn −
fn − wn+1

f ′n
, we have wn+1 = fn − (zn − zn+1) f ′n = (1 − hn) fn.

Thus,

δn+1 = | fn+1 − (1 − hn) fn| = | f (zn + εn)− (1 − hn) fn|

=

∣∣∣∣ fn + f ′nεn +
f ′′n

2!
ε2

n + · · · − fn + hnfn

∣∣∣∣

=

∣∣∣∣∣
f ′′n

2!
ε2

n +
f (3)
n

3!
ε3

n + . . .

∣∣∣∣∣

= |hnfn| ·

∣∣∣∣∣
f ′′n

2!f ′n
εn +

f (3)
n

3!f ′n
ε2

n + . . .

∣∣∣∣∣

� |hnfn| ·
∣∣∣∣αn

f ′n
fn
εn + (αn

f ′n
fn
εn)

2 + . . .

∣∣∣∣
� |hnfn| ·

∣∣αnhn + (αnhn)
2 + . . .

∣∣

� |hnfn| ·
|αnhn|

|1 − αnhn|
.

� □ 

The proof of the following lemma can be found in [BCSS] (lemma 8.2b and proposition 
8.3b).

Lemma 6.3.  Let un = αnhn and ψ(u) = 1 − 4u + 2u2. Then if un < 1 − 1/
√

2, we have
∣∣∣∣

f ′n
f ′n+1

∣∣∣∣ �
(1 − un)

2

ψ(un)
and

γn+1

γn
�

1
(1 − un)ψ(un)

Remark 6.4.  In [BCSS], un is defined as (zn − zn+1)γn. We use

hn =
fn − wn+1

fn
= (zn − zn+1)

f ′n
fn

,

and so our usage and that of [BCSS] agree.
We are now ready for the proof of proposition 6.1.

Proof of proposition 6.1.  First, observe that if A and c satisfy

δn < c · | f ′n|
γn

and |wn+1 − wn| = A · | fn|
αn

.� (6.1)
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we have |αnhn| � A + c.

|hnfn| = | fn − wn+1|
� |wn − wn+1|+ | fn − wn|
� Jn + δn

� A · | fn|
αn

+ c · | fn|
αn

= (A + c) · | fn|
αn

.

�

(6.2)

We impose the further condition

A + c < 1 − 1√
2

which allows us to apply lemma 6.3; this also ensures that the hypothesis of lemma 6.2 is 
satisfied.

Since αn = γn · | f ′n/fn|, by equation (6.2) we have

|hnfn| � (A + c)
| f ′n|
γn

.

In lemma 6.2, we obtained

δn+1 �

∣∣∣∣hnfn
αnhn

1 − αnhn

∣∣∣∣ � (A + c)
| f ′n|
γn

· αnhn

1 − αnhn
.

Thus, it is sufficient to impose the condition

(A + c)
| f ′n|
γn

· αnhn

1 − αnhn
� c ·

| f ′n+1|
γn+1

,

or equivalently,

(A + c) · γn+1

γn
· | f ′n|
| f ′n+1|

· 1
c
· αnhn

1 − αnhn
< 1.

From lemma 6.3, after simplification we obtain

(A + c)
αnhn

ψ(αnhn)2 · 1
c
< 1.

Since αnhn � A + c and u/ψ(u) increases monotonically for u ∈ [0, 1 − 1/
√

2], we must 
have

(A + c)2

ψ(A + c)2 · 1
c
< 1.� (6.3)

Thus, if A and c satisfy the hypotheses of the proposition, the conclusion follows.� □ 

Remark 6.5.  To optimize the speed of the algorithm, we need to find the largest A > 0 for 
which there is a c > 0 such that the pair (A, c) satisfies inequality Equation (6.3). Numerics 
show that such solutions exist for A < 0.070 3039 < 1/14.223 96; one can readily check that 
taking A = 1/15 and c = 1/74 satisfies the conditions. We will use these values of A and c 
henceforth.
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In order to prove proposition 6.7, we need the following lemma, which is essentially cor-
ollary 4.3 of [K88]; the lower bound of 1

4 follows from the extended Löwner’s theorem in 
[Sm81]. See also [DKST], where the same constant is obtained for the inverse of an analytic 
map between Hilbert spaces.

Lemma 6.6. 

1
4
· Rn �

| fn|
αn

�
Rn

3 −
√

8

Proposition 6.7.  If in the α-step algorithm, we choose wn+1 along �w0 so that

Jn = |wn − wn+1| =
1
15

· | fn|
αn

,

we have Jn � 1
66 · rn for all n.

Proof.  First, observe that since w0 = f0 , we have δ0 = 0.
Applying proposition 6.1 with A = 1/15 and c = 1/74 then gives us

δn �
1

74
·
∣∣∣∣

fn
αn

∣∣∣∣� (6.4)

for all n � 0.
From lemma 6.6, we get

Jn = A · | fn|
αn

�
| fn|
15

· Rn

4| fn|
=

1
60

· Rn

rn
· rn.

The radius of convergence at wn is

rn = |wn − vn|,

where vn is the critical value for which ŵn ∈ S  lies in Vor
(
vn
)
. It might be that the radius at fn 

is determined by another critical value, say

Rn = | fn − v′n|.

Let r′n = |wn − v′n|. Then we have

rn � r′n � |v′n − fn|+ | fn − wn| = Rn + δn.

In the case when vn = v′n we get the same estimate for rn. Notice, by using equation (6.4) and 
lemma 6.6,

rn � Rn + δn � Rn +
1

74
· | fn|
αn

� Rn +
1/74

3 −
√

8
· Rn =

3 −
√

8 + 1/74
3 −

√
8

· Rn.

Consequently, we have

Jn �
3 −

√
8

3 −
√

8 + 1/74
· rn

60
>

rn

66
,

as desired.� □ 
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The following corollary tells us how well fn tracks wn and how wn+1 relates to wn as the 
algorithm progresses. We use this below in order to estimate the size of our final guide point 
wN.

Corollary 6.8.  If αn > 3 −
√

8 , then

| fn| �
35
38

· |wn| and |wn+1| �
30
49

· |wn|.

Proof.  Observe,

| fn| � wn + δn � |wn|+
1

74
· | fn|
αn

.

Hence,

| fn| �
1

1 − 1/74
αn

|wn| =
αn

αn − 1
74

|wn| �
38
35

· |wn|,

where we used αn > 3 −
√

8  to finish the estimate.

For the second estimate, we have

|wn+1| = |wn| −
1

15
· | fn|
αn

� |wn| −
1

15αn
· αn

αn − 1
74

|wn|

� |wn| ·

(
1 − 1

15
· 1

3 −
√

8 − 1
74

)
�

30
49

· |wn|.
� □ 

Using this corollary, we can also obtain a relationship between the guide point wN where 
the algorithm terminates and ρζ, the norm of the closest critical value to 0. Since the algorithm 
halts when wN is an approximate zero for f, we have αN � 3 −

√
8 but αN−1 > 3 −

√
8.

Lemma 6.9.  For r � 1 + 1
d

|wN | �
1
40

· ρζ .

Proof.  From proposition 5.13 and remark 5.14, we have

|w0| � sr · ρζ �
ρζ
28

.

If wN = w0, the lemma holds trivially.
If N > 0, then αN−1 � 3 −

√
8 (and αN � 3 −

√
8).

From lemma 6.6, we get

| fN−1| �
1
4
· αN−1 · RN−1 �

3 −
√

8
4

· RN−1 �
3 −

√
8

4
· (ρζ − | fN−1|) .

This last inequality follows from the triangle inequality: if v is the critical value with |v| = ρζ , 
then 0, v, and fN−1 form a triangle with side lengths ρζ, RN−1, and | fN−1|. Rewriting the above 
yields
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| fN−1| �
3 −

√
8

4 + 3 −
√

8
· ρζ .� (6.5)

We now apply corollary 6.8 to obtain

|wN | �
30
49

· |wN−1| �
30
49

· fN−1

35/38
.� (6.6)

Combining equations equation (6.5) and equation (6.6) gives

|wN | �
30 · 38 · (3 −

√
8)

38 · 49 · (4 + 3 −
√

8)
· ρζ >

ρζ
40

.
� □ 

Finally, we give a lemma which allows us to measure the size of an angular neighborhood 
about a point z0 on the initial circle for which the α-step algorithm will lift �w0. We use this in 
section 10.

Lemma 6.10.  For |z0| > 1 + 1
d, if

δ0

| f0|
�

1
111d

, then δ0 <
1

74
| f ′0|
γ0

and the hypotheses of proposition 6.1 are satisfied at z0.

Proof.  Since |z0| � 1 + 1
d, corollary 5.3 gives us | f ′0/f0| > d/3 and γ0 < d2/2. Hence,

δ0

| f0|
�

1
111d

=
1

37d2 · d
3
<

1
37d2

∣∣∣∣
f ′0
f0

∣∣∣∣ .

Thus

δ0 �
| f ′0|

37d2 =
| f ′0|
74

· 2
d2 <

1
74

| f ′0|
γ0

.

7. The pointwise cost

In this section we will estimate the number #f (z0) of iterates needed to find an approximate 
zero starting at z0. We need some preparation to be able to state the estimate. To simplify nota-
tion and without loss of generality, throughout this section we shall assume that �w0 lies along 
the positive real axis; this can be ensured by an appropriate change of variables. Furthermore, 
we shall assume that no relevant critical values of f lie on �w0 (that is, �̂f (z0)

∈ S  is disjoint 
from Vf ); otherwise, #f (z0) will be infinite.

As before, let w0 = f (z0) and the let the wn be the guide points along �w0 as produced by 

the algorithm. Also let ŵ0 = f̂ (z0) and ŵn be the corresponding points in the surface S , lying 
along the ray �̂w0 (see figure 8).

We divide �̂w0 into subintervals as follows: as noted in proposition 4.3, for each v ∈ Vf  the 
intersection of �̂w0 with Vor

(
v
)
 will either be an interval or the empty set. Set q̂0 = ŵ0, and 

denote the first interval by 
[[
q̂0, q̂1

]]
 with corresponding critical value v1. In general, set

[[
q̂j−1, q̂j

]]
= Vor

(
vj
)
∩ �̂w0 .
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Let β = β(z0) denote the total number of such intervals. Note that for a point z0 = re2πit0 on 
our initial circle, we have

β(z0) = card It0 ,

where It0 is the set of critical points which influence the orbit of z0, as in definition 4.5.
So that we may work in the target space C rather than in the surface S , we make the 

following observation. The projection π is an isometry in a neighbourhood of �̂w0, since 

Vf ∩ �̂w0 = ∅. We define a set U(�̂w0) ⊂ S  as

U(�̂w0) =
{

ŷ |
[[
ŷ, ŷ⊥

]]
�= ∅

}
,

where for y ∈ C, y⊥ denotes the orthogonal projection of y onto �w0 (or its extension �−w0).
That is, for each critical point ci which influences the orbit of w0, we remove the ray 

perpendicular to �w0 starting at the critical value f (ci). Lifting the result to S  via the branch 

of π−1 taking �w0 to �̂w0 yields the set U(�̂w0).
Observe that π is an isometry on U(�̂w0), and furthermore, U(�̂w0) contains �̂w0 and a unique 

lift of each of the points f (zn) produced by the algorithm. Consequently, we have a well-defined 
correspondence between the target space C (minus finitely many rays) and a subset of S  most 
relevant to the α-step algorithm starting at z0. In what follows, we shall use the notation

vor
(
vi
)
= π(Vor

(
vi
)
∩ U(�̂w0)),

and shall slightly abuse notation by using vi for f (ci).
Note that the branch of f−1 which takes w0 to z0 is well-defined throughought all of 

π(U(�̂w0)); in particular, it coincides with analytic continuation of f−1 along �w0.
Let pj be the orthogonal projection of vj onto the ray �w0 (or its extension, �−w0), and  

let xj = |vj − pj|. See figure 9. Also, let θj ∈ (−π,π] be the angle between vj and the ray �w0; 
that is,

θj = Arg (vj/w0).

Figure 8.  The various notations used througout this section, shown in the target space.
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Furthermore, use β+(z0) to denote the number of θj for which |θj| � π/2 (or, equivalently, for 
which pj lies on �w0).

With this notation in hand, we can state an upper bound on the cost of finding an approxi-
mate zero starting from a point z0.

Theorem 1.  Let f ∈ Pd,1 and let z0 be an initial point for the α-step path-lifting algorithm 
with |z0| > 1. Denote f (z0) by w0. Then the maximum number of steps required for the algo-
rithm to produce an approximate zero starting from z0 is

#f (z0) � 67 ·


log

|w0|
|wN |

+

β+(z0)∑
j=1

(3 − 2 log |θj|)




� 67 ·


log

| f (z0)|
ρζ

+ log 40 +

β+(z0)∑
j=1

(3 − 2 log |θj|)


 ,

where β+(z0) is the number of relevant critical values along �w0 with angle |θj| < π/2, and wN 
is the final ‘guide point’ for the algorithm.

Remark 7.1.  The second inequality follows from the fact that ρζ/40 � |wN | < ρζ, as estab-
lished in lemma 6.9. We shall use this fact in the proving theorem 2.

Remark 7.2.  As is shown in proposition 8.3 below, for a typical starting point, β+(z0) � 2 
and there are no more than two angles θj which are relevant.

Remark 7.3.  In theorem 1, the algorithm converges to a root ζ as long as θj �= 0. If θj = 0, 
there is a relevant critical value on �w0 and the algorithm converges to the corresponding criti-
cal point; in this case, z0 �∈ Basin (ζ) for any root ζ because z0 lies on the stable manifold of 
a critical point. If ρζ = 0, the algorithm will converge to a root ζ but the number of steps #f  
will be infinite; in this case ζ is a multiple root. This remark is a restatement of [K88, theorem 
5B] in the current context.

Figure 9.  We divide �w0 into intervals where it is influenced by each critical value; the 
various notations used in this section are labeled as in the figure.
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In order to establish theorem 1, we estimate the number of steps required to pass each 
Voronoi domain, and then sum over the β(z0) domains that �w0 passes through.

If wj and wk are two guide points lying on �w0 with k > j, we can define the rather trivial 
function Cost(wj, wk) = k − j. This measures the number of iterations required by the α-step 
algorithm beginning at a point zj near f−1

z0
(wj) to obtain a point zk near f−1

z0
(wk). We extend 

this function to all pairs of points y1 and y2 lying on �w0 by linear interpolation. It is our goal in 
this section to estimate N = Cost(w0, wN) where wN corresponds to an approximate zero of f.

Rather than count the number of steps directly (which is possible, but tedious), instead we 
follow a suggestion of Mike Shub and integrate the reciprocal of the stepsize along �w0.

Lemma 7.4.  Let y1 and y2 be two points of �w0. Then

Cost(y1, y2) � 67
∫ y1

y2

dy
ry

,

where ry = |y − v| for each y ∈ vor
(
v
)
∩ �w0.

Proof.  Recall that in section 6, we used Jn to denote the nth jump, that is, Jn = |wn − wn+1| 
where wn is a guide point for the algorithm. Set J(wn) = Jn, and extend the function J(y) to 
all of �w0 by linear interpolation. Now consider the differential equation along �w0 given by

dy
dt

= −J(y) y(0) = w0.� (7.1)

Since J(y) is Lipschitz, equation (7.1) has a unique solution. Observe that the points wn are ex-
actly the values given by using Euler’s method with stepsize 1 to solve equation (7.1) numer
ically.

Now consider instead the differential equation given by

dy
dt

= −
ry

67
y(0) = w0.� (7.2)

We wish to compare the solution of equation (7.2) to the Euler method for equation (7.1). 
We will show that for every y in any interval [wn+1, wn], we have ry/67 � J(y). Consequent-
ly, if ϕ(t) is the solution to equation  (7.2) and ϕ(t1) = y1, ϕ(t2) = y2 , then we will have 
t2 − t1 � Cost(y1, y2).

To see that ry/67 � Jy  for all y ∈ [wn+1, wn], we must examine a few cases. First, note that 
if y ∈ vor

(
vi
)
, we have

r2
y = (y − pi)

2 + x2
i .

Also, recall that by virtue of proposition 6.7, we have J(wn) � rwn/66.
First consider the case where the interval [wn+1, wn] lies entirely in vor

(
vi
)
. If wn+1 � pi, then 

since ry is decreasing on the interval [ pi, wn], we have J(y) � ry/66. If pi � wn+1, ry will be non-
decreasing. However, we can apply the triangle inequality (recalling that J(wn) = wn − wn+1) 
to see that

ry � J(wn) + rwn � J(wn) + 66J(wn),

and so J(wn) � ry/67 for all y in the interval.
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In the case where the interval intersects more than one Voronoi region, we proceed as fol-
lows. First, observe that for all y ∈ [qi, wn], we have already established that J(y) � ry/67 
holds (where qi is the smallest point of [wn+1, wn] ∩ vor

(
vi
)
). Since |vi − qi| = |qi − vi+1|, we 

have J(qi) � rqi/67, and we continue as above.
Finally, equation (7.2) is separable; elementary calculus yields

t(y) = 67
∫ w0

y

dy
ry

.
� □ 

Let y be a point on �w0, and let c be a critical point which influences w0; as before, let p be 
the orthogonal projection of f (c) onto �w0, and let x denote the distance between f (c) and p.

For each y and a fixed critical point c, we also define the angle Ay, which is the angle 
that the segment from y to f (c) makes with the segment between f (c) and p. Notice that 
ry = | f (c)− y|. As before, use θc to denote the angle between f (c) and �w0. See figure 10.

We now define the following function, related to Cost(y1, y2):

£(y1, y2, c) = log

(
(y1 − p) + ry1

(y2 − p) + ry2

)
.

By virtue of lemma 7.4, if y1 and y2 are both in vor
(
f (c)

)
, we have

Cost(y1, y2) � 67
∫ y1

y2

dy
ry

= 67£(y1, y2, c).� (7.3)

However, £ will still be useful even when one or both of its first two arguments are not in 
vor

(
f (c)

)
. We establish some bounds on the value of £ in the next few lemmas.

Lemma 7.5. 

ry + (y − p) �
{

3(y − p) if Ay >
π
6

x
√

3 if Ay � π
6

Proof.  Note that ry + (y − p) = x(tanAy + secAy). If Ay > π/6, we have 
x(tanAy + secAy) � 3x tanAy = 3(y − p). When Ay � π/6, note that tanAy + secAy is in-
creasing in Ay; at Ay = π/6, ry + (y − p) = x

√
3 .

We remark that this holds even if p < 0.� □ 

Figure 10.  The quantities y, ry, p, x, Ay, and θc.
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Lemma 7.6.  Let y1, y2 ∈ �w0 with y1 > y2 � 3p > 0. Then

£(y1, y2, c) < log
y1

y2
+ log

9
4

.

Proof.  We consider two cases: when the angle Ay is large and when it is small.
If Ay1 � π/6, since y2 > p

£(y1, y2, c) < £(y1, p, c) � log
x
√

3
x

= log
√

3,

where we have used lemma 7.5 in the second inequality.
If Ay1 > π/6, we have (using lemma 7.5 again)

£(y1, y2, c) � log
3(y1 − p)
2(y2 − p)

= log
3y1(1 − p/y1)

2y2(1 − p/y2)
.

Since y2 � 3p, we have (1 − p/y1)/(1 − p/y2) < 3/2, and so

£(y1, y2, c) � log
y1

y2
+ log

9
4

.

Since 
√

3 < 9/4, the above bound holds in either case.� □ 

Lemma 7.7.  If p > 0,

£(3p, 0, c) � log
4 + tan |θc|
sec |θc| − 1

.

We note that since p > 0, we have −π/2 < θc < π/2. Consequently, 4+tan |θc|
sec |θc|−1 > 1.

Proof.  We have

£(3p, 0, c) = log
(3p − p) + r3p

r0 − p
� log

2p + (2p + p tan |θc|)
p sec |θc| − p

= log
4 + tan |θc|
sec |θc| − 1

.
�

□ 

Finally, we handle the case where |θc| � π/2.

Lemma 7.8.  If y1 > y2 > 0 � p,    £(y1, y2, c) � log(y1/y2).

Proof.  Observe that ry2 � y2 − p, since ry2 is the hypotenuse of the right triangle with a leg 
of length y2 − p. Also, by the triangle inequality, ry1 − ry2 � y1 − y2.

Using this, we have

ry1+(y1−p)
ry2+(y2−p) �

(ry2+y1−y2)+(y1−p)
2(y2−p)

=
2y1−p+ry2−y2

2(y2−p)

�
2(y1−p)+ry2−(y2−p)

2(y2−p)

� y1−p
y2−p < y1

y2
.

Consequently, £(y1, y2, c) = log
ry1+(y1−p)
ry2+(y2−p) < log(y1/y2) as desired.� □ 

The next lemma enables us to complete the proof of theorem 1.
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Lemma 7.9.  Let z0 be an initial point for the α-step path lifting algorithm, with |z0| > 1, 
let f ∈ Pd,1, w0 = f (z0). Then the maximum number of steps required for the algorithm to 
produce an approximate zero starting from z0 is

#f (z0) � 67 ·


log

|w0|
|wN |

+ β+(z0) log
9
4
+

β+(z0)∑
j=1

log

(
4 + tan |θj|
sec |θj| − 1

)
 ,

where β+(z0) is the number of relevant critical values along �w0 with angle |θj| < π/2, and wN 
is the final ‘guide-point’ for the algorithm.

Proof.  First, divide �w0 into segments where it intersects each of the β(z0) Voronoi re-
gions vor

(
vj
)
; the jth segment will be bounded by points qj−1 and qj (we set q0 = w0, and 

qβ(z0) = wN ). See figure 9.

Now, we have

N = Cost(w0, wN) =

β(z0)∑
j=1

Cost(qj−1, qj) � 67
β(z0)∑
j=1

£(qj−1, qj, cj),� (7.4)

where the inequality follows from lemma 7.4 and equation (7.3). Applying lemmas 7.6 and 
7.7 gives us

β+(z0)∑
j=1

£(qj−1, qj, cj) �
β+(z0)∑

j=1

log+

∣∣∣∣∣
qj−1

q∗j

∣∣∣∣∣+ β+(z0) log
9
4
+

β+(z0)∑
j=1

log
4 + tan |θj|
sec |θj| − 1

where q∗
j = max(|qj|, |3pj|).

Note that since q∗
j � |qj|, replacing q∗

j  with qj will still give us an upper bound; furthermore, 
since |qj−1| > |qj|, the logarithm of their ratio is positive. Thus, we have

β+(z0)∑
j=1

£(qj−1, qj, cj) �
β+(z0)∑

j=1

log

∣∣∣∣
qj−1

qj

∣∣∣∣+ β+(z0) log
9
4
+

β+(z0)∑
j=1

log
4 + tan |θj|
sec |θj| − 1

.

�

(7.5)

Now we apply lemma 7.8 to the remaining intervals (if any).

β(z0)∑
j=β+(z0)+1

£(qj−1, qj, cj) �
β(z0)∑

j=β+(z0)+1

log

∣∣∣∣
qj−1

qj

∣∣∣∣� (7.6)

Combining equation (7.5) and equation (7.6) with equation (7.4) and recalling that q0 = w0, 
qβ = wN  gives the desired result.� □ 

Proof of theorem 1.  The proof of the main result of this section now follows immediately 
from lemma 7.9. First combine the term β+(z0) log

9
4 with the sum, and then observe that for 

|θ| < π/2, we have

log
9(4 + tan |θ|)
4(sec |θ| − 1)

� log
1
θ2 + 3.

This can be readily seen via the series expansion, which is log(18)− 2 log(θ) + θ/4+ 
O
(
θ2
)
.� □ 
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8. The average cost

In this section we shall prove theorem 2, which follows from averaging the bound found in 
section 7 over the starting points on the circle of radius r = 1 + C/d.

Recall from definition 4.5 that I  is the set of pairs (t, c) for which the critical points c ∈ Cf  
influence the starting points z0 = reit on the initial circle of radius r, It  is the set of critical 
points which influence a given t, and Ic  are the t ∈ Sr which are influenced by c.

For each pair in (t, c) ∈ I , we use θ = θ(t, c) to denote the angle between [0, f (re2πit)] and 
[0, f (c)], that is

θ(t, c) = Arg
f (re2πit)

f (c)
.

In the notation of section 7, θ(t, cj) = θj where vj = f̂ (cj) and (t, cj) ∈ I .
Note that for each fixed c, Ic  is a collection of finitely many intervals: Ic  consists of for 

those t such that �̂f (reit) intersects Vor
(
f̂ (c)

)
.

Define for every critical point c ∈ Cf  the function θc : Ic → R by

θc(t) = θ(t, c) = Arg
f (re2πit)

f (c)
.

Lemma 8.1.  For each c ∈ Cf , the map θc is at most (mc + 1)-to-one.

Proof.  For every θ ∈ (−π,π] there are at most (mc + 1) rays �̂ ⊂ S  for which the angle 

between [0, f (c)] and π(�̂) is θ and which also intersect Vor
(

f̂ (c)
)
. This is a consequence of 

proposition 4.3. � □ 

As an immediate consequence of the angular speed lemma (lemma 5.1), we have

2πd · r
r + 1

�
d
dt
θc(t) � 2πd · r

r − 1
.� (8.1)

Proposition 8.2.  Let f ∈ Pd,1 be of degree d and r > 1. Then

∫ 1

0

∑
c∈It

|θ(t,c)|<π/2

log
4 + tan |θ(t, c)|
sec |θ(t, c)| − 1

dt � 3 · r + 1
r

.

Proof.  Througout the proof, let ψ(θ) = 4+tan |θ|
sec |θ|−1 . From lemma 8.1 and equation  (8.1),  

we see that for fixed values of c, we have
∫

t∈Ic
|θc(t)|<π/2

logψ(θc(t)) dt � (mc + 1)
∫ π/2

−π/2
logψ(θ)

dθ
θ′c(t)

� (mc + 1)
r + 1
2πrd

∫ π/2

−π/2
logψ(θ) dθ.

Thus
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∫ 1

0

∑
c∈It

|θc(t)|<π/2

logψ(θ(t, c)) dt =
∑
c∈Cf

∫
t∈Ic

|θc(t)|<π/2

logψ(θ(t, c)) dt

�
∑
c∈Cf

(mc + 1)
r + 1
2πrd

∫ π/2

−π/2
logψ(θ) dθ

�
2d − 2

2πd
· r + 1

r
· 9.2901

< 3 · r + 1
r

.
� □ 

Recall from section 7 that β+(z) denotes the number of critical points that influence the 
orbit of z = re2πit  with the critical value in the same half-plane, i.e.

β+(re2πit) = card {c ∈ It | −π/2 < θ(t, c) < π/2} .

The next proposition bounds the number of such Voronoi domains a starting point encounters, 
on average.

Proposition 8.3. 
∫ 1

0
β+(re2πit)dt �

1 + r
r

.

Proof.  Note that

∫ 1

0
β+(re2πit) dt =

∫ 1

0

∑
c∈It

|θc(t)|<π/2

1 dt =
∑
c∈Cf

∫
t∈Ic

|θc(t)<π/2

1 dt.

As in the proof of proposition 8.2, we transport the calculation from the source space to the 
target space using the bound on θ′c(t) in equation (8.1) and the fact that for fixed c, θc(t) is at 
most (mc + 1)-to-one (lemma 8.1). This gives us

∫ 1

0
β+(re2πit) dt �

∑
c∈Cf

∫ π/2

−π/2

dθ
θ′c(t)

�
∑
c∈Cf

(mc + 1)
r + 1
2πrd

· π � 2(d − 1)
r + 1
2rd

<
r + 1

r
.

Above, we used the fact that 
∑

c∈Cf
mc = d − 1.� □ 

Lemma 8.4.  If r � 1 + 1
d

∫ 1

0
log

|w0|
|wN |

dt � d log r + log 40 +
1
d
· 1 + r

r
· Kf .

Proof.  Corollary 5.10, proposition 5.13, lemma 5.1, and lemma 6.9 are used in the follow-
ing calculation.
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∫ 1

0
log

|w0|
|wN |

dt =
∫ 1

0
log |w0| dt −

∫ 1

0
log |wN | dt

� d log r −
∫ 1

0
log

ρζ
40

dt

� d log r + log 40 +
∑
ζ∈Rf

| log ρζ | ·
1
d
· 1 + r

r

� d log r + log 40 +
1
d
· 1 + r

r
· Kf .

� □ 

Remark 8.5.  If r = 1 + 1
d, then d log r < 1, giving 

∫ 1
0 log |w0|

|wN | dt � 1 + log 40 +
2Kf

d .

Now we are ready to provide a proof of the following

Theorem 2.  Let f : C → C be a monic polynomial with distinct roots ζi in the unit  
disk. Let #f  be the average number of steps required by the α-step algorithm to locate an  
approximate zero for f. Then

#f � 67

(
12.4 +

2Kf

d

)
.

where the average is taken over starting points on the circle of radius 1 + 1/d  endowed with 
uniform measure.

Proof.  Let r = 1 + 1/d. Lemma 7.9, proposition 8.3, lemma 8.4, and proposition 8.2 imply

#f =

∫ 1

0
#f (re2πit) dt

�
∫ 1

0
67 ·


log |w0|

|wN |
+ β+(re2πit) log

9
4
+

∑
c∈It

|θ(t,c)|<π/2

log
4 + tan |θ(t, c)|
sec |θ(t, c)| − 1


 dt

�67
[(

1 + log 40 +
2Kf

d

)
+ 1.622 + 6

]

�67 ·
[

12.4 +
2Kf

d

]
.

�
□ 

9. The relation between cost and degree

In the previous section, we showed that the expected number of steps required for the algo-
rithm to converge to an approximate zero is bounded by #f , which depends directly on Kf /d . 
For every degree d, this is neither bounded above nor below, even if we restrict f to monic 
polynomials with distinct roots in the unit disk. As noted in remark 3.9, Kf (and hence #f ) is 
infinite precisely when f has a multiple zero. Since distinct roots of f ∈ Pd,1 may be arbitrarily 
close together, Kf cannot be bounded above.

We can, however, estimate the average value of Kf /d  as f ranges over Pd,1 (in fact, its clo-
sure Pd,1). We shall see in this section that this average value grows no faster than linearly in 
d, using the product measure on the distribution of roots on Pd,1.
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The value of ρζ is closely related to the function γ(z) mentioned in section 3. Indeed, we 
have the following relationship, which enables us to bound #f  and Kf from γ(ζ) and f ′(ζ) at 
each of the roots ζ.

Lemma 9.1.  Let γ(z) = maxj>1

∣∣∣ f ( j)(z)
j!f ′(z)

∣∣∣
1

j−1
 and let ζ be a nondegenerate root of f. Then

(3 −
√

8)
| f ′(ζ)|
γ(ζ)

� ρζ � 4
| f ′(ζ)|
γ(ζ)

.

Proof.  This follows immediately from [K88, theorem 4.1].� □ 
It is not hard to show by induction that

f ( j)(z) =
∑

k1

∑
k2 �=k1

∑
k3 /∈{k1,k2}

· · ·
∑

kj /∈{k1,k2,...,kj−1}

∏
i/∈{k1,k2,...,kj}

(z − ζi),

and so

f ( j)(ζm) =
∑
k2 �=m

∑
k3 /∈{m,k2}

· · ·
∑

kj /∈{m,k2,...,kj−1}

∏
i/∈{m,k2,...,kj}

(ζm − ζi),� (9.1)

that is, a sum of (d−1)!
(d−j)!  terms, each of which is a product of d − j  factors. Using this observa-

tion, we obtain the following. (Compare to [Ded, proposition 5.1].)

Lemma 9.2.  γ(ζm) � d−1
2

1
mini�=m |ζm−ζi|

Proof.  Using equation  (9.1) above and cancelling common factors between f ′ and f ( j) 
yields

∣∣∣∣
f ( j)(ζm)

j!f ′(ζm)

∣∣∣∣ =
∣∣∣∣∣∣
1
j!

∑
k2 �=m

∑
k3 /∈{m,k2}

· · ·
∑

kj /∈{m,k2,...,kj−1}

1∏
i=k2,...,kj

(ζm − ζi)

∣∣∣∣∣∣

�
1
j!

∑
k2 �=m

∑
k3 /∈{m,k2}

· · ·
∑

kj /∈{m,k2,...,kj−1}

1
(mini�=m |ζm − ζi|) j−1

=
1
d

(
d
j

)[
1

mini�=m |ζm − ζi|

] j−1

.

Consequently,

γ(ζm) = max
j>1

∣∣∣∣
f ( j)(z)
j!f ′(z)

∣∣∣∣
1

j−1

� max
j>1

∣∣∣∣
1
d

(
d
j

)∣∣∣∣
1

j−1 1
mini�=m |ζm − ζi|

�
d − 1

2
1

mini�=m |ζm − ζi|
.

�
□

 

We now turn to estimating the average value of the components which control Kf: the deriva-
tive at each root and the minimal inter-root distance. Identify a polynomial f (z) =

∏d
i=1(z − ζi) 

in Pd,1 with the d-tuple of its roots, and thus we can view its closure Pd,1 as the polydisk Dd. 
Using Lebesgue measure on Dd gives Pd,1 a volume of πd.

Lemma 9.3.  For each m, we have
∫

(ζ1,...,ζd)∈Dd
log

1
mini �=m |ζm − ζi|

dζ1 dζ2 · · · dζd � 2(d − 1)πd.
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Proof.  Without loss of generality, we may take m = 1.
Let |ζ1| = R1, and let ζk be a root for which |ζ1 − ζk| is minimized. Set ζk − ζ1 = rkeiθk. Let 

Drk(ζ1) be the disk centered at ζ1 with radius rk, and let Ek = D� Drk(ζ1) denote the part of 
the unit disk exterior to it. See figure 11. There are two possibilities: either Ek is an annulus 
(which occurs when R1 + rk < 1), or R1 + rk � 1 and Ek is a crescent. Let sk represent the arc 
length of the part of boundary of Ek which contains ζk.

Observe that for fixed ζ1, we have (ζ2, . . . , ζd) ∈ Ed−1
k  (with ζk on the interior boundary). 

So we have

L1 =

∫

(ζ1,...,ζd)∈Dd
log

1
mink �=1 |ζ1 − ζk|

dζ1 dζ2 · · · dζd =

∫

ζ1∈D

∫

(ζ2,...,ζd)∈Ed−1
k

log
1
rk

dζ2 · · · dζddζ1.

The closest root to ζ1 could be any of remaining d − 1 roots; we shall do the calculation for ζk; 
by symmetry, the remaining cases will have the same value.

Observe that all roots except ζ1 lie in in Ek. The area of Ek is always less than π (since it is 
a subset of the unit disk), and we always have sk � 2πrk (since sk is part of the circumference 
of a disk of radius rk.)

If we also write ζ1 = R1eiφ and ζk − ζ1 = rkeiθk, and note that integrating φ and θk give  
factors of 2πR1 and sk. Calculating the integral for each k and summing gives

L1 � πd−2(d − 1)
∫ 1

0

∫ 1+R1

0
(2πR1)(sk) log

1
rk

drk dR1.

Observe that the integrand log(1/rk) is positive only for 0 < rk < 1. Thus, we can give an  
upper bound on the integral by ignoring the contribution when rk > 1.

This gives us the following bound on the integral.

L1 � 4πd(d − 1)
∫ 1

0

∫ 1

0
R1rk log

1
rk

drkdR1 = 2(d − 1)πd.
� □ 

Lemma 9.4.  For f (z) =
∏
(z − ζk) with |ζk| � 1, we have

∫

(ζ1,...,ζd)∈Dd
log

d∏
m=1

1
| f ′(ζm)|

dζ1 · · · dζd =
d(d − 1)

4
πd.

Figure 11.  The two cases for Ek in lemma 9.3: when rk + R1 � 1 (left), and when 
rk + R1 > 1 (right). All the roots except for ζ1 lie in the shaded region Ek.
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Proof.  From equation  (9.1) in the case j = 1, we obtain 
∏d

m=1 f ′(ζm) =
∏d

m=1
 ∏

k �=m(ζm − ζk), and so

∫

(ζ1,...,ζd)∈Dd
log

d∏
m=1

1
| f ′(ζm)|

dζ1 · · · dζd = −
d∑

m=1

∑
k �=m

∫

(ζ1,...,ζd)∈Dd
log |ζm − ζk| dζ1 · · · dζd

= −πd−2
d∑

m=1

∑
k �=m

∫

ζk∈D

∫

ζm∈D
log |ζm − ζk| dζmdζk.

For each of the integrals in the sum, we divide D2 into two parts: those where |ζm| � |ζk| 
and the complement where |ζm| > |ζk|. When |ζm| > |ζk|, we let ζm = re2πit  and apply lem-
ma 5.9:∫

ζk∈D

∫

|ζm|>|ζk|
log |ζm − ζk| dζmdζk = 2π

∫

ζk∈D

∫ 1

|ζk|

∫ 1

0
log |re2πit − ζk| r dt dr dζk

= 2π
∫

ζk∈D

∫ 1

|ζk|
r log r dr dζk = −π2

8
.

Similarly, the value of the integral when |ζm| � |ζk| is also −π2/8. Summing the d(d − 1) 
integrals, each of which contributes πd/4, gives the desired result.� □ 

Theorem 3.  For f ∈ Pd,1 , let Λf  be the average value of log(1/ρζ), that is, Λf = Kf /d . 

Define Λ to be the average value of Λf  over f ∈ Pd,1 , where we parameterize Pd,1 by the 
polydisk of the roots with Lebesgue measure. Then

Λ < 3d/2.

Proof.  Applying lemmas 9.1 and 9.2 and using the fact that 3 −
√

8 < 1/6, we have

Λf =
Kf

d
=

1
d

∑
ζ∈Rf

log
1
ρζ

�
1
d

∑
ζ∈Rf

log
6γ(ζ)
| f ′(ζ)|

� log 6 +
1
d

∑
ζ∈Rf

log γζ +
1
d

∑
ζ∈Rf

log
1

| f ′(ζ)|

� log 6 + log
d − 1

2
+

1
d

∑
ζ∈Rf

log
1

minζk �=ζ |ζ − ζk|
+

1
d

∑
ζ∈Rf

log
1

| f ′(ζ)|
.

Integrating over f ∈ Pd,1  and applying lemmas 9.3 and 9.4 yields
∫

f (z)∈Pd,1

Λf � πd
(
log 3 + log(d − 1) +

2(d − 1)
d

+
d − 1

4

)
< πd · 3d

2
.

Since the volume of Pd,1 is πd, we obtain Λ � 3d/2 for all d (and is asymptotic to d/4).� □ 

Corollary 9.5.  For f ∈ Pd,1 , the average number of steps required to locate an approxi-
mate zero is O(d).
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Question 9.6.  How does the bound in theorem 3 change if we average with respect to a 
measure on the coefficients of f rather than uniform measure on the roots of f? 

10.  How to find all roots of a polynomial

The focus of the paper has been on the question of locating a single approximate zero for a 
given polynomial, but these results can easily be used to locate all d roots of a polynomial 
f ∈ Pd,1.

To do so, we need to locate d initial points, one in Basin (ζj) for each root ζj. Then we 
apply the α-step algorithm starting at each of these, and as long as f ∈ Pd,1, the algorithm 
will produce an approximate zero for each root. Our estimates do not rely on roots with special 
properties (such as being ‘exposed’ as in [Man], or having a large sector in the target space 
which is free of critical values as in [KS] or [Sm85]); consequently they apply equally well to 
each of the roots ζj.

To choose these initial points, we can do the following.

	(1)	Choose 
⌈
111πd2

⌉
 points yj equally spaced around the circle of radius 1 + 1

d . Let z̃0 = y0.
	(2)	Let k = 1. For each j > 0, evaluate f (yj).

		 If Arg f (yj) � Arg f (y0) but Arg f (yj−1) < Arg f (y0), set z̃k = yj and increment k.

At the end of step (2), there will be exactly d points z̃k  with Arg f (z̃k)− Arg f (y0) � 1
111d . 

This holds as a result of the angular speed lemma (lemma 5.1) and the fact that the image of 
the circle winds exactly d times around the origin.

Now we use the d points z̃k  to lift d copies of the same ray �f (y0), one in each basin, by 
using a slight modification of the α-step algorithm from section 3. Specifically, we modify 
Step 0 to set

w0,k = | f (z̃k)|
f (y0)

| f (y0)|
,

that is, for each k we choose initial target points on the ray �f (y0) with norm | f (z̃k)|. Then the 
α-step algorithm proceeds as usual.

While there could be some k for which z̃k �∈ Basin (ζk), as a consequence of lemma 6.10, 
each of the points z̃k  are close enough to some point z0,k ∈ Basin (ζk) (and with f (z0,k) ∈ �f (y0)) 
so that the α-step algorithm will converge to an approximate zero for the root ζk.

The above method for determining the points z̃k  requires O
(
d2
)
 evaluations of f, at an 

arithmetic complexity of O
(

d3 log2 d
)
; the number of steps required to find all d roots is 

O(Kf ) = O(
∑

log(1/ρf )). Applying corollary 9.5, the average complexity to find approxi-

mate zeros for all d roots of f will be O
(

d3 log2 d
)
.

Remark 10.1.  For f ∈ Pd,1, by using the method given above, d approximate zeros can be 
found (one for each root ζj) in O(Kf ) steps of the α-step algorithm. This has an average arith-

metic complexity of O
(

d3 log2 d
)
.

11.  Concluding remarks and extensions

Remark 11.1.  Our major goal in this work was to bound the number of iterations of the α-step 
algorithm and examine the relationship to the underlying geometry of the polynomial, rather 
than to optimize the arithmetic complexity. Since each step of the algorithm requires computing 
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of all of the derivatives of f, one could use a higher-order method instead of Newton’s method 
(as in [K88, Ho], [SS86]) in the algorithm without a significant increase in cost. In this case, 
we calculate zn+1 by a single step of a method using higher derivatives of f to approximate the 
zero of f (z)− wn+1 from zn. Use of such a method results in a larger stepsize (and consequently 
fewer steps). For example, the stepsize is nearly doubled by a method using the first three deriva-
tives of f. The interested reader should see [K88], where such methods are examined in depth.

Remark 11.2.  Alternatively, the use of α could be curtailed (or even entirely removed) 
by dynamically adjusting the guide points wn as follows. At each step, set wn+1 to be 
(1 − hn)| f (zn)|w. Initially, take hn = h0, but if f (zn) is not sufficiently close to wn+1, divide 
hn by 2 and try again until it is. At the next step, start with hn+1 = min(h0, 2hn). Note that this 
approach, while similar in spirit, is somewhat different from the variable stepsize methods 
explored in [HS]. One can still use α to detect whether an approximate zero has been located, 
or, if evaluating higher derivatives of f is impractical, other methods such as those in [B02] or 
[O] can be used.

Remark 11.3.  The α-step algorithm could easily be adapted to locate ε-roots with no sig-
nificant increase in complexity. In addition to stopping the iteration when an approximate 
zero is found, the algorithm could also stop if zn is an ε-root for a pre-determined ε. This can 
be checked at essentially no cost merely by determining if | f (zn)/f ′(zn)| < ε/d  (this follows 
from the well-known fact that there is always a root within the disk of radius d times the 
Newton step at z.)

Remark 11.4.  Using some of the ideas in [GLSY], the results here can be extended to deal 
more directly with multiple roots.

Remark 11.5.  The selection of initial points in section 10 can almost certainly be improved 
from O

(
d2
)
 evaluations of f, most likely to O(d log d) evaluations. However, this does not af-

fect the overall complexity of the algorithm.
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