Chapter 2
If the Curve Fits, Wear It

It is not uncommon in science and mathematics to have a collection of data points

(‘Tla y1)7 (:E?v y2)7 ety (xn: yn)

for which we believe there is a functional relationship between the z; and the y;. Often, we
want to get some idea of what might be happening at points other than those for which we
have data. That is, we want to find some f so that f(z;) = y; for each of our points. Of course,
in order to do this, we will need to have some knowledge (or make some guesses) about the
function f, or sometimes about how precisely the points are known. In this chapter, we’ll look
at several different approaches to this problem of fitting a curve through (or near) some given
data.

1 Interpolation

First, we will look at the situation where we the data points are assumed to be known exactly
(or at least to good enough precision that we ignore any errors), and we want to find a curve
of some type is chosen that passes through each of the data points. This practice is called
interpolation. In the latter part of this chapter (beginning with §2), we will relax the restriction
that the curve pass exactly through the points.

Of course, there are serious restrictions involved in interpolation. Since a line is determined
by two points, if we have more points, we must either use a higher degree polynomial, or use
several line segments. If we have n data points we wish to interpolate, either we can fit a
polynomial of degree n — 1 or find n — 1 line segments which “connect the dots”. We’ll address
both of these in this section, as well as a method which is a cross between the two approaches.

1.1 Polynomial Interpolation

Given n data points (z1,v1), (Z2,%2), - - -, (Tn, Yn), there is a unique polynomial of degree n — 1
passing through them. Finding this polynomial is just a matter of solving the n linear equations

2:1

2:2 CHAPTER 2. IF THE CURVE FITS, WEAR IT

for the coefficients. For example, suppose we have 4 data points (x1,v1), (z2,v2), (23, y3), and
(74,94). There is exactly one degree 3 polynomial p(z) = az® + bx? + cx + d which passes
through all four points. Plugging in our data yields the equations

ard +bzi+cri+d = y
azy + by + cxy +d Yo
azy +bx3 + cxy +d Y3
ari +bx2+cxs+d = y,

These are easily solved for the coefficients a, b, ¢, and d.
Maple 7! has a built-in command called PolynomialInterpolation to do this automatically
for us, as part of the CurveFitting package. We'll do a brief example.

> data:=[[1,3],[2,4],[4,9],[5,11]1]:

with(CurveFitting):
cubfit:=PolynomialInterpolation(data,x);

1 5 17 13
bfit .= —— a3 4+ - 2% — — —
cubfi 636 +3x 6x+3

> plots[display](
plot(data,style=point,color=black,symbol=B0X),
plot (cubfit,x=0..6,thickness=2));

10

0 1 2 3 4 5 6

That seems to have worked pretty well. However, we should remark that polynomials are
somewhat inflexible: minor variations in the data can have drastic effects on the behavior
between the points. To emphasize this, we’ll generate 10 points along the line y = 2x 4 1, with
one more point in the middle that is a bit above the line.

> data2:=[seq([i,2*i+1],i=0..4),[9/2,11],seq([i,2%i+1],i=5..9)];

Learlier versions of Maple have a similar command called interp with slightly different syntax.

1. INTERPOLATION 2:3

data2 = [0, 1], [1, 3], [2, 5], [3, 7], [4, 9]. [g, 1], 5, 11, [6, 13], [7, 1], [8, 17], [9, 19]]

> plots[display](
plot(data2,style=point,color=black,symbol=B0X),
plot(PolynomialInterpolation(data2,x) ,x=0..9,thickness=2));

60-
50-
40-
30-
20
10

o' 5 i ¢ 5
This doesn’t look much like a straight line, does it? Even though there is only one data

point which is 1 unit above the line y = 2z 4+ 1, at £ = 1/2 the polynomial is about 50 units
above this line.

1.2 Connect-the-Dots and Splines

As we said at the start of this section, another choice is not to use a single function, but to
use several segments which connect the dots. The result would be a piecewise-affine function
consisting of several line segments defined on a number of intervals. In the example using data?2
from the previous section, this function would be

20 +1 ifz <4
)4z =7 if4<x§%
J@=91n #<a<6
20 +1 if6<z

Although writing a maple procedure to figure this out for us would not be hard, such a
piecewise affine curve is a version of something called a spline, which we will discuss more soon.
This type of connect-the-dots curve is a linear (or degree 1) spline, and Maple can find it using
the Spline command out of the CurveFitting? package.

> 1spline:=Spline(data2,x,degree=1):

Zyversions prior to Maple 7 have a similar command called spline which takes slightly different arguments.

2:4 CHAPTER 2. IF THE CURVE FITS, WEAR IT

> plots[display](
plot(data2,style=point,color=black,symbol=B0X),
plot(1spline,x=0..9,thickness=2));
18-
16
14-
121
10-

0 2 4 6 8
If we leave off the degree=1, Maple gives us a cubic spline instead:
> plots[display](
plot(data2,style=point,color=black,symbol=B0X),
plot(Spline(data2,x),x=0..9,thickness=2));
18-
16
14-
121
10-

2 4 6 8

o

Notice how the cubic spline fits the points about as well as the “connect-the-dots” piecewise
affine curve, but has no corners. What is this curve that Maple is showing us?

To make a spline, instead of connecting each pair of points by a straight segment, we put in a
polynomial of degree d. We must ensure that the polynomial passes through the two endpoints
of each segment, but this still leaves us an additional d — 1 conditions per polynomial segment.
The entire curve can be made smoother by choosing each polynomial segment so that the first
d — 1 derivatives at one endpoint agree with the derivatives of the previous segment. Since
there is no segment before the first or after the last, this leaves d — 1 more conditions still to
specify. For a “natural spline”, the high order derivatives at the endpoints are set to zero:

(@

p(d—l)(m) = p(d_Q)(m) =...=p ?)(9”1) =0

and

2. WHEN THE DATA IS APPROXIMATE 2:5

(if d — 1 is odd, we have one fewer zero derivative at x, than at z1). Thus, for a cubic spline,
the second derivatives vanish at eachpoint, and the polynomial segments have the same value,
slope, and concavity at each interior point.

You might think that using higher degree polynomials in between would give a better
appearance, but the same issues that arose in earlier begin to show up. Note that if we have n
data points, fitting a spline of degree n — 1 is exactly the same as the interpolating polynomial
of degree n — 1. Cubic splines are the most widely used, because they look quite smooth to the
eye, but have enough freedom that they don’t have to wiggle too much in order to pass through
each data point. Many computer drawing programs have the ability to fit cubic splines through
a set, of points.

2 When the data is approximate

Now we relax the restriction that the function we are searching for must pass exactly through
each of the data points. This is the typical situation in science, where we make a measurement
or do an experiment to gather our y values from the input z values.

More specifically, let’s assume that y = f., .. (21,...,2y) is a real-valued function of
(x1,...,2;) which depends upon k parameters cy,...,c;. These parameters are unknown to
us. However, suppose that we can perform repeated experiments that for given values of
(x1,...,2,) allows us to measure output values for y. How can we estimate the parameters
c1,...,c, that best correspond with this information?

Let us assume that the experiment measuring the value y = f.(z) for specific input values
x = (z1,...,Ty) is repeated n times. We will then obtain a system of equations

fcl,...,ck (mllv T12," ", xlm) = N
fcl,...,ck (£217 T2, -, x?m) = 1Y
fcl,...,ck ($n1a Tp2,y axnm) = Un

where z,, and y, are the measurements of z, and y in the +'" experiment. These experimental
results gives us information about the unknown coefficients c,.

Since we may perform the experiments as many times as we wish, we may end up with more
relations of the type above than unknowns (that is, n is larger than k). The larger the n, the
more information we have collected about the coefficients. However, even if the experiments are
carried out with great care, they unavoidably will contain some error. The question remains:
how may we estimate judiciously the coefficients ¢y, ..., ¢; using the collected information about
y = f.(z)? What is the best fit?

A very common method to respond to this question is known as the method of least-squares.
The idea is simple: per realization of the experiment, we measure the fitting error by the distance
from the real number f.(z1, zs, - - -, ;) and the observed value of y. The best fit for the distance
though will also lead to a best fit for the square of the distance. To avoid absolute values, we

2:6 CHAPTER 2. IF THE CURVE FITS, WEAR IT

change our viewpoint slightly and measure the fitting error by (fe,... . (71, %2, .., Tm) — y)2
The error function that considers all the information obtained from the n experiments is then

n

Eler,...,c) = Z((fcl,...,ck (@ir, Taz, ==+, Tim) — Yi)”

=1

where (x;1, Zig, - - -, Tim) and y; are the it" input for z and value of the measurement for y.

This turns out to be a function of ¢ = (¢q, ..., cx). Mathematically, our best fit problem is
now reduced to finding the value of ¢ which produces a minimum for this error function E. The
details of how this can be done depends intrinsically upon the assumed form of the function f,
and its relation to the parameters cy, ..., cg.

We should remark that in some cases, we might want to use E(cy,...,c)/n, the mean-
squared error. This will not change the answer we get (because the minimum occurs at the
same value of ¢), but does allow us to compare sets of data with different numbers of data
points.

3 Fitting a line to data

Suppose that we are in the situation described above, with m = 1, and that the function f is a
polynomial of degree 1. Hence, the number of parameters is two, and for convenience we write

f(z)=mz+0b,

in order to interpret the parameters m and b as the slope and y-intersect of the graph of f. We
have data points (z1,%1), --., (Zn,Yn). Our problem is to find the values of m and b will best
fit this data. Or to put it simply and geometrically, what is the straight line that best fit the
information contained in the data (x1,41), --., (Tn, Yn)?-

The contribution to the error function coming from the i*" piece of data, (z;,;), is given
by (mx; + b — y;)?, and therefore, the total error is

n

E(m,b) = Z(m:l:Z +b—1y)?.

i=1

The problem then becomes that of searching for the values of m and b where the error E(m, b)
achieves a minimum. Let us solve this problem using Maple.

First, let us type in some data to try to fit our line to:
> pts := [[0,0.25], [1/2,2]1, [1,41, [5,81, [6,10]1 1:

3. FITTING A LINE TO DATA 2:7

> plot(pts, style=point, axes=boxed);

10
8 a
.
N
2 a
o 1 2 3 4 5 &

In order to solve the problem at hand, we could use Maple’s built-in regression package to
find the answer, but that would not help much in explaining what is going on. However, let us
do this anyway.

We can use the LeastSquares command from the CurveFitting package®

> CurveFitting[LeastSquares] (pts,x);

1.271370968 + 1.431451613x

This says that the best values of m and b are m = 1.431451613 and b = 1.271370968, respec-
tively. Now let’s go through the steps ourselves, to better understand the process.

First, we define the error function according to the data points to fit that we have. Notice
again that this function is the square of the distance from the line to the data:

> E := (m,b,pts)-> sum(((mxpts[i] [1]+b)-pts[i][2])~2, i=1..5);

5

E :=(m, b,pts) — Z (m pts;, + b — pts;y)*
i=1

For example, had we guessed that the line y = 2z + 1 is the answer to our problem, we
could compute the distance:

3As we noted before, the CurveFitting package was introduced in Maple 7. Earlier versions of Maple (as
well as Maple 7) can accomplish the same thing using the fit command from the stats package, as follows.
with(stats):
fit[leastsquare[[x,y]1]1]([[pts[i][1] $i=1..5], [pts[il[2] $i=1..5]11);
As you can see, the syntax is a little different.

2:8 CHAPTER 2. IF THE CURVE FITS, WEAR IT

> E(2,1,pts);

19.5625

However, decreasing m and increasing b produces a smaller value of E, so that guess cannot
be the best fit:

> E(1.5,1.2,pts);

3.125000000

We want to minimize the error function. Since minima of differentiable functions occur at
critical points, we begin by solving for the values of (m,b) which annihilate the two partial
derivatives. Notice that Maple happily computes partial derivatives:

> diff(E(m,b,pts), m);

24
79771 + 25b — 210

We may then ask Maple to solve the system of equations obtained by equating the two
partial derivatives by

> solve({ diff(E(m,b,pts), m)=0, diff(E(m,b,pts), b)=0 }, {m,b});

{m = 1.431451613, b = 1.271370968 }

Maple thus finds only one solution, and not surprisingly, it coincides with the solution found
using the built-in version.

If we now want to use this values of m and b without retyping it, one way to do that is to
use the command assign(%) to let b and m be given these constant values.*

> assign(%);

Maple executes this assignment silently, without reporting the assignment. However, now
both m and b have the assigned values:

> m;

1.431451613

4We are using Maple’s ditto operator % to refer to the result of the previous command. In versions of Maple
prior to release 5 of Maple V, the double quote " was used for this operator instead.

3. FITTING A LINE TO DATA 2:9

> E(m,b,pts);

2.929334677

The value of E(m,b,pts) calculated above, is the value of E when (m,b) is the critical point
found earlier.

We may visualize how good our fit is, using plot to display the data points and the fit line
on the same graph. We load the plots package, so that we can use display:

> with(plots):

display({plot (m*x+b, x=-1..6.5, axes=boxed),
plot(pts, style=point)}):

107

Notice that at this point, m and b have constant values previously assigned to them, the
values producing the minimum of F up to 9 decimal places. Let us try to verify that our
solution is indeed correct, via an argument which is independent of the one described above.

Geometrically, the error function F is the square of the Euclidean distance between m +b
and the vector ¢, where T = (21, %2, ..., Zy), b= (b,b,...,b) and ¥ = (y1,...,yn). Clearly then,
the best fit is achieved when the coefficients m and b are chosen so that mZ+b is the orthogonal
projection of the vector % onto the subspace of R® spanned by # and (1,1,...,1). That is to
say, the best fit occurs when the vectors ¥ — (mZ + 5) and mZ + b are perpendicular to each
other. Let us verify this:

> sum((pts[i] [2]-m*pts[i] [1]1-b)* (m*pts[i] [1]1+b),i=1..5);

—.16-107"

The resulting inner product is not quite zero, but the first non-zero digit of its decimal expansion
occurs in the eighth decimal place. This is because the calculations were only done with finite
precision, and the discrepancy above is attributable to round-off errors..

2:10 CHAPTER 2. IF THE CURVE FITS, WEAR IT

As a final remark, we observe that if you now execute the command diff(E(m,b,pts),m),
you will obtain an error. This is due to the fact that m and b are constants at this point, and
not independent variables. If you would like to continue making use of the function E(m, b, pts)
for general m and b, you will have to unassign the values of m and b first:

)m) .
)b) .

o
o

4 Fitting a cubic to data

Let us now try to fit a cubic polynomial to some data. We do so directly, without using Maple’s
built-in fitting package.

We randomly generate a set of 21 data points to be fitted to a cubic using a Maple program.
(Don’t worry about how this program works just now. We’ll get into those details later).

> Seed:=readlib(randomize) ():

with(stats):
myrand := (a,b) -> evalf (a+(b-a)*(rand()/10712)):
points_wanted := 21:

> cubic_pts := proc()

local fuzz, a, b, ¢, d,s,x,i;

a:= myrand(-3,3);

b:= myrand(-3,3);

c:= myrand(-3,3);

d:= myrand(-10,10);

if (myrand(-10,10) > 0) then s:=1 else s:=-1 fi;
fuzz := [random[normald[0,0.5]] (points_wanted)];
X := [random[uniform[-3,3]] (points_wanted)];

RETURN ([seq([x[i],s*(a-x[i]1)*(b-x[i]) *(c-x[i])+d+fuzz[il],
i=1..points_wanted)]);
end:

Now we can put the data to be fitted into a list, and visualize the result with plot:

> data:=cubic_pts():
plot(data, style=point, axes=boxed);

4. FITTING A CUBIC TO DATA 2:11

251 |
20+
151

10

-3 -2 -1 0 1 2
Now we have a set of 21 data points which are to be fitted to a cubic polynomial. A

polynomial function of degree n is determined by n + 1 coefficients. So we define

> cub := (x,a,b,c,d)->a*x"3+b*x"~2+c*x+d;
cub == (z, a,b,¢,d) —az®+bz’>+cx+d

and then define the error function:
> E:=(a,b,c,d,data)->sum((cub(datal[i][1],a,b,c,d)-data[i] [2])"2,i=1. .nops(data));

nops(data)

E = (a, b, ¢, d, data) — Z (cub(data;r, a,b, c,d) — data;s)®

=1

We have four parameters to determine, the coefficients of the function cub. We find its
values by

> assign(solve({diff(E(a,b,c,d,data),a)=0,
diff(E(a,b,c,d,data),b)=0,
diff(E(a,b,c,d,data),c)=0,
diff(E(a,b,c,d,data),d)=0},
{a,b,c,d}));

Of course, we do not see the answer, but the resulting values have already being assigned to
the coefficients a, b, ¢, d:

> cub(x,a,b,c,d);

—1.0061419152> + .75058691762° + 2.487673553z + 3.430571969

Finally, let’s make a picture of the result, showing both the data and the fitted curve:

2:12 CHAPTER 2. IF THE CURVE FITS, WEAR IT

> with(plots):
cplot := plot(cub(x,a,b,c,d), x=-4..4, axes=boxed):
pplot := plot(data, style=point):
display({cplot,pplot});

60

40

201

0

—20

—40-

For comparison, let us find the answer using Maple’s built-in statistical package:

> with(CurveFitting):
LeastSquares(data,x,curve=A*x"3+B*x~2+C*x+D) ;

—1.006141912% + .750586919322 + 2.487673537z + 3.430571965

For this particular version of least square fitting, we may once again interpret the eITor,
function E' geometrically as the square of the Euclidean distance between aZs + bZy + c71 +d
and the vector ¢, where Z; = (23,23, ...,27), d= d(1,1,...,d) and ¥ = (y1,.-.,Yn). The best
fit is thus achieved when the coefficients a, b, ¢ and d are chosen so that aZs + bZy + ¢y + d
is the orthogonal projection of the vector ¥ onto the subspace of R” spanned by #3, ¥3, Z; and
(1,1,...,1). That is to say, the best fit occurs when the vectors 7 — (aZs + b + ¢ + d) and
af's + by + ¢y + d are perpendicular. You should verify that this is the case for the solution
given above.

In both cases, you should consider why there is only one critical point for the error function,
and why it is of necessity a global minimum.

5 Fitting other types of funtions

In the previous constructions, we dealt with functions that depended linearly upon the param-
eters to be fitted. We found them by solving a linear system of equations, a relatively easy
task.

However, as explained at the beginning of this chapter, the same scheme works equally

6. FITTING A CIRCLE 2:13

well for any function. In the general case, though, the resulting system that we must solve
to find the best fit could depend non-linearly on the parameters, and the mere existence of
solutions to such systems is not a trivial problem to settle. Take for instance, a function such
as y = y ., sin(m;z). Assuming measurements (z1,41),..., (Zx, Yx), we may take as our error

the function
n

E(my,...,my) = 2:(!1;_7 —) sin (myx;))?.

Its partial derivatives are quite easy to calculate, but it is far from clear if there are values
of my,...,m, where they all vanish simultaneously. For a particular set of values, we may
ask Maple to solve the resulting system and get absolutely nothing. This either indicates an
inability of Maple to handle such a system, or worse yet, the fact that such a system has no
solution at all. Even when the latter happens, Maple itself might not be able to tell us so.

Sometimes, even if the function does not depend linearly on the coefficients, it can trans-
formed to one which does. For example, if our data points {(z;,y;)} were believed to approxi-
mate an exponential function of the form y = ae*®, then setting

m
E(a,k) = 2:(yZ — aek®i)?,
i=1
would require us to solve the system
m m
Z(yz _ aekwi)ekwi =0 Z(yl _ aekwi)axiekwi =0.
i=1 i=1

While this isn’t impossible, it is much more straightforward to make a change of variables.

Assuming the y; are all positive (which is reasonable since we believe the data is exponential),
we can let z; = Iny;. Then we are trying to fit a function z = In (aekm), which reduces to the
line z = Ina + kx. This is familiar territory, and we can just proceed as before.

6 Fitting a circle

In a slightly different vein, suppose that the data points {(x;,y;)} lie near a circle of unknown
center and radius. Note that if we did know the center, this problem would be very simple: the
desired radius would be the average distance from the points to the center. If you don’t think
very hard, you might suspect that the desired center would be very near the center of mass of
the points {(x;,y;)}, but this will only be the case if the points are evenly distributed around
the circle.

Instead, we can come up with a function that measures the error between an arbitrary circle
and our data points.

2:14 CHAPTER 2. IF THE CURVE FITS, WEAR IT

Recall that the general equation of a circle centered at (a,b) with a radius of r is
(z—a)®+ (y—b)* =1

Unlike the previous cases, there is no independent variable. (Note that we could try to fit
yi ~ b+ /12 — (2; — a)?, but not only would the resulting equations be messy, this would bias
things very badly; do you see why?). Nevertheless, we press on.

One reasonable measure of the distance between the points and a circle is the “area differ-
ence”, that is

E(a,b,7) = Z (i —a)” + (yi — b)* — r2)2.
7

One difficulty with this is that E is not quadratic in a, b, and r. However, Maple is able to
solve the resulting equations anyway.

We assume here that there is a routine called circle_pts which gives us points which lie
near a circle of unknown radius and center. The one we use here is similar to that in §4, and
is defined in 1sq_data.txt.

> cpts:=circle_pts():
epsilon:=(pt,a,b,r) -> (pt[1]l-a)~2 + (pt[2]-b)~2 -r"2;

€= (pt7 a, b7 T) — (ptl - a)Z + (pt2 - b)2 - T2
> E:= (a,b,r,pts) -> sum(epsilon(pts[il,a,b,r)"2, i=1..nops(pts));

nops(pts)

E :=(a, b, 1, pts) — Z e(pts;, a, b, 7")2

i=1

> sol:= {solve({diff(E(a,b,r,cpts),a)=0,
diff(E(a,b,r,cpts) ,b)=0,
diff(E(a,b,r,cpts) ,r)=0},

{a,b,r}H)};

sol :=[{r=0., b=28.598845417 — 5.760818468 I, a = 10.74842676 — 3.044017219 I },
{r =0., a =10.74842676 + 3.044017219 1, b = 8.598845417 + 5.760818468 I },
{r =0., b =9.123213697, a = 8.304601815},
{r =0., a =10.50158731 + 4.256560324 I, b = 11.57538622 — 5.447431926 [},
{b=11.57538622 + 5.447431926 I, r = 0., a = 10.50158731 — 4.256560324 I },
{a = 8.224446708, r = —4.468796472, b = 8.538288341},
{a = 8.224446708, b = 8.538288341, r = 4.468796472}|

6. FITTING A CIRCLE 2:15

Here we find a number of critical points for the function F, but from physical considerations,
the only reasonable choice is the circle for which r > 0.

This is the seventh entry in the above list, so we could refer to it just by sol1[7]. However,
with a different set of data, it might be the second solution, or the fourth, etc. To ensure that
we always get the right one, no matter what the order is, we can use Maple’s select command
to pull out the one with » > 0. This looks more daunting than it really is: we just define a
function that returns true if that » > 0 for that solution, and false if not. Then select
returns only those elements for which the function is true. We need to use op, because we have
a list of sets, and we just want the one answer.

> goodsol:=op(select(s->if (subs(s,r)>0) then true else false fi,sol));

goodsol := {a = 8.224446708, b = 8.538288341, r = 4.468796472}

In order to see the fit, we plot the points and the circle. Note that we represent the circle
parametrically, and use subs to substitute the desired solution.
> display(
plot(cpts,style=point,scaling=constrained,axes=boxed),
plot (subs(goodsol, [at+r*cos(t) ,b+r*sin(t),t=0..2%Pi]))
);

4 6 8 10 12

The fact that there is only one interesting critical point is no accident, however. If we let
k = a®+b? —r?, then the resulting error function H(a, b, k) = E(a,b,/a? + b*> — k) is quadratic
in a, b, and k, and so we really only need to solve a linear system. It is easy to check that this
new functional H still satifies all the criteria we wanted (that is H(a,b, k) = 0 if and only if all
the data points lie on the circle C(a, b, k), H is non-negative, and it is smooth), so fitting a circle
becomes a linear problem after all. The reader should verify that, in fact, the unique minimum
of H corresponds exactly to the critical points the original function E for which r # 0.

The interested reader might want to consider a similar approach to fitting other conic

2:16 CHAPTER 2. IF THE CURVE FITS, WEAR IT

sections, such as an ellipse or a hyperbola, to given data. Do you expect to be able to make
the problem linear, as in the case of the circle?

7 Robust fitting

Let us return momentarily to the problem discussed in §3: given some data (1, 41), .., (Tn, Yn),
we found the best line that fits it. This was accomplished by measuring the square of the vertical
distance from each data point and the line y = ma+b, which led us to consider the error function

n

E(m,b) = Z(maﬁZ +b—y).

=1

The problem was solved by finding the values of m and b where E achieves its minimum.

However, the square of the vertical distance is only one of many reasonable ways of measuring
the distance from the data points to the line max + b. For example, it is perfectly reasonable to
consider instead the expression 1+ (mx; +b— ;)% If (z;, ;) is on the line, this value would be
equal to 1, and its logarithm would then be zero. Thus, the function

E(m,b) = Z In (1+ (ma; +b—y)*) ,

is also a reasonable way of measuring the distance from the data points to the line y = mx + b,
and its minimum would produce a best fit line in this other sense. Similarly, We may argue
that the function

E(m,b) = Z|maﬁZ +b—yl .
i=1

is another reasonable alternative, though this time E is not even differentiable in the region of
interest (if a data point (z;,y;) happens to be exactly on the line, mz; +b — y; = 0 and the
absolute value is not differentiable at 0).

There is a priori no particular reason to prefer one error function over another. And for each
choice of such we could end up with a problem whose solution exists and produces a line that
best fit the data. Then we could compute the value of the error function for the best fit line,
value that depends upon the choice of function made. A canonical way of choosing the best
error function could be that for which this number is the smallest. But finding such a function
is quite a difficult, if not impossible, problem to solve. If we limit our attention to linear
estimators, in a sense to be explained in the last section of this chapter, the solution obtained
in §3 is optimal. In here, we pursue further the problem of finding the best fit according to the
two error functions introduced above.

Notice that if ¢, = mx; + b — y;, data with large errors ¢; excert a huge influence on the
original error function of §3 (because we use Y €7). The two error functions mentioned above

7. ROBUST FITTING 2:17

grow linearly (or sub-linearly) with |¢;|, causing the tails to count much less heavily. We will

see this when comparing the different results.
In order to solve the problem now at hand, we first generate some “noisy” data. We load

the routines in 1sq_data.txt:
> read(‘lsq_data.txt®);
defined line_pts(), bad_line_pts(), quadratic_pts(), cubic_pts(), and circle_pts()

The data and its graphical visualization can then be obtained by:
> pts:=bad_line_pts():

> plot(pts,style=point,symbol=box) ;
150
100

r50

oaro o g

~10 5

You should notice that while most of the data lies fairly near a line, there is one point which
is extremely far away from the rest of the data.

In order to compare results, let us first find the line given by least squares. First, we define
a function €, which gives the signed vertical distance between a point pt and a line of slope m
and intercept b

> epsilon:= (pt,m,b) -> (m*pt[1]+b-pt[2]);

e := (pt, m, b) = mpt, +b— pt,

Now we compute the regular least squares fit.

> H:=(m,b,pts)->sum(epsilon(pts[i],m,b))"2,i=1. .nops(pts)):
sol:=solve({diff (H(m,b,pts) ,m)=0, diff(H(m,b,pts),b)=0},{m,b});

sol :== {m = —.9455490512, b = 8.528125863}

> display({plot(pts,style=point,symbol=box),plot(subs(sol,m*x+b),x=-10..10)},

view=-20..20);

2:18 CHAPTER 2. IF THE CURVE FITS, WEAR IT

10

—20-

In the above, we restricted our attention to the region —20 < y < 20, where the line and
the majority of the data lies. As you can see, the fit to the majority of the data is very poor,
because of the influence exerted by the anomalous data point.

Now, let’s try again, this time minimizing In(1+€?/2), which behaves like €* for small errors,
but grows very slowly for large ones.

> R:=(m,b,pts)->sum(ln(l+epsilon(pts[i] ,m,b) "2/2) ,i=1..nops(pts));

nops(pts)

R :=(m, b, pts) — Z 1+—5 (pts;, m, b)?)

Here’s what the functional we want to minimize looks like:

> plot3d(R(m,b,pts),m=-5..0,b=-20..0,style=patchcontour, axes=boxed);

200
160
1204

The equations we want to solve are not linear. In fact, they’re messy enough that Maple
needs some help to find the minimum. By examining the plot and zooming in on the minimum,
we can choose an appropriate region.

> plot3d(R(m,b,pts),m=-2..-1.5,b=3..5,view=38..50, axes=boxed);

7. ROBUST FITTING 2:19

-15 3 35 4p

Once we have an appropriate region, we can ask Maple to look for the solution numerically

using fsolve.
> rs:=fsolve({diff(R(m,b,pts),m)=0, diff(R(m,b,pts),b)=03}

{m,b},m=-2..-1.5, b=3..5);

—1.822071903, b = 3.789519722}

rs:={m =

And here we can compare the two lines found.

plot(pts,style=point):
1 := plot(subs(sol,m*x+b) ,x=-10..10):
s plot (subs(rs,m*x+b) ,x=-10..10,color=blue) :

plots[dlsplay](p 1,s,view=-20..20);
201

> P

20
Let us now try to minimize) |¢;|. Since this function is not even differentiable near ¢; = 0

we have to work harder to get less.
> A:=(m,b,pts)->sum(abs(epsilon(pts[i],m,b)),i=1. .nops(pts))

nops(pts)

A= (m, b, pts) & Y |e(pts;, m, b)|

i=1

2:20 CHAPTER 2. IF THE CURVE FITS, WEAR IT

Displaying the graph of this function gives us an idea about where its minimum lies:
> plot3d(A(m,b,pts),m=-5..0,b=-10..10,style=patchcontour, axes=boxed) ;

5 Oy

But coercing Maple into finding a numerical approximation to it is not so easy. There are
reliable and efficient ways to determine the location of the minimum to any precision (at least
given some hints), but they are inappropriate for the scope of this chapter, and will not be
considered here. Instead we may zero in on the minimum by looking at where the lowest point
is and repeatedly restricting the domain. After several iterations, we get the following.

> plot3d(A(m,b,pts) ,m=-1.0875..-1.0872,b=3.817..3.8178, axes=boxed);

270.515
270.5148
270.5146
270.5144
270.5142

270.514

-1.8075
-1.8074

m -1.8073 T8174 3.8178
-1.80725¢g17 38172 oy

This leads us to a choice of m = —1.80733, b = 3.8174 as our “best” line. This is almost
(but not quite) the same line found using our distance R(m,b).

8 A nod toward statistics

In the problem we have treated so far, there have been a distinction made between the z and
y coordinate of a data point (z;,y;): the x coordinate is thought as the predictor variable,
while the y coordinate is the predicted value. The distinction is significant. If, for example,
we think of z as a function of y, the best line that fits the data using the method of least
square is, in general, different than the corresponding line when thinking of y as a function of
x. Indeed, if we use the same data as in §3, the best line x = ny + ¢ that fits it is given by

8. A NOD TOWARD STATISTICS 2:21

x = 0.6677953348y —0.738807374. Solving in terms of y yields y = 1.497464789x +1.106338028;
this differs significantly from the line y = 1.431451613x + 1.271370968 found in §3.

In this case, we use as error the square of the horizontal distance, and it is somewhat
perturbing that this similarly reasonable approach leads to a best fit that differs from the one
obtained when employing vertical distances.

The situation can be made even worse if neither x nor y is a predictor variable. In this case,
we want to minimize the shortest distance to a line y = max + b rather than the vertical (or
horizontal) distance. The resulting equations will not be linear, nor can they be made linear.
However, Maple will be able to find the critical points with no trouble. There will always be
at least two (there may be a third with a huge slope and intercept)— one is the minimum,
and the other is a saddle point. It is worth thinking for a few minutes about the geometric
interpretation of the saddle point in terms of the problem at hand.

In practice, the perturbing fact that different but reasonable error functions lead to best fits
that are different is resolved by knowing what part of the data is the input and what part is
predicted from it. This happens often enough, though not always. We thus can make a good
choice for F and solve a minimization problem. That settled, we are still left with the problem
of demonstrating why our choice for £ is a good one.

It is rather easy to write down the solution to the problem in §3: if

1 & 1 &
x:ﬁi_zlxi, y:ﬁ;yi,

then
e
i=1 Vil J=1"

If y; are assumed to be the values of random variables Y; which depend linearly upon the
X,
Yi=mx;, +b+¢;,

with errors ¢; that are independent from each other, are zero on average and have some fixed
variance, then the value of m given above is the best estimator of the slope among all those
linear estimators that are unbiased. “Best” here is measured by calculating the deviation from
the mean, and this best estimator is the one that produces the smallest such deviation.

This conclusion follows by merely making assumptions about the inner products of the data
points (z1,...,2,) and (yi, ..., y,). Staticians often would like to answer questions such as the
degree of accuracy of the estimated value of m and b. For that one would have to assume more
about the probability distribution of the error variables Y;. A typical situation is to assume that
the &; above are normally distrubuted, with mean 0 and variance o2?. Under these assumptions,
the values of m and b given above are the so-called mazimum likelihood estimators for these

2:22 CHAPTER 2. IF THE CURVE FITS, WEAR IT

two parameters, and there is yet one such estimator for the variance o2. But, since we assumed
more, we can also say more. The estimators m and b are normally distributed and, for example,
the mean of 7 is m and its variance is 02/ ", (z; —)?. With this knowledge, one may embark
into determining the confidence we could have on our estimated value for the parameters. We
do not do so in here, but want to plant the idea in the interested reader, whom we refer to
books on the subject.

