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Chapter 1

Preliminaries about Maple

Maple is a comprehensive general purpose computer algebra system which can do symbolic and
numerical calculations and has facilities for 2- and 3-dimensional graphical output. Calculus
courses may be structured so that Maple can be used as a tool that will help you gain a complete
understanding of the material discussed. You will discover that the capability of Maple goes
well beyond the realm of calculus; it is a tool that is used more and more in education and
scientific research in mathematics and engineering.

This chapter is a brief introduction to the use of Maple in the environment that you will
discover at Stony Brook. It is not exhaustive and its sole purpose is to guide you through the
first steps needed to start using this tool. Once you become familiar with the basics of Maple
and can appreciate its advantages, we encourage you to experiment with it, not only to learn
mathematics in more detail but also to help you in other courses and your own research. More
advanced documentation is available on line, in the computer lab, and in the library.

Maple runs on many different types of computers and operating systems. For example, you
might use Maple from a Sun workstation running Solaris (a flavor of Unix) in the computer
lab, from a Windows computer in the library, and from a Macintosh at home. Maple behaves
similarly on all of them; we will usually point it out when we use something specific to one type
of computer.

1 Starting a Maple Session

How to start a Maple session varies somewhat in different enviroments. On the Windows
machines, you can usually either start Maple by selecting the option from the start menu, or
by finding the appropriate icon (it usually looks like a Maple leaf) and clicking the mouse on it.
In a Unix environment, there may be an icon or menu item for Maple; you can usually always
just issue the command xmaple & or maple -x & to start it.

After a brief pause, you should see a window that looks similar to that in Figure 1; this
is Maple’s graphical (or worksheet) interface, where you will type your commands and see the

1:1



1:2 CHAPTER 1. PRELIMINARIES ABOUT MAPLE

Figure 1: A newly-opened Maple worksheet.

results. We will go into more details of the worksheet interface in §3. As in the figure, you’re
session may have started with two windows open inside the main Maple window. The one
in front in Figure 1 is a help window; we’ll come back to this in §3.3. But for now, let’s
concentrate on a worksheet where we can enter some Maple commands. The top part of this
window should look something1 like this:

This window is a Maple worksheet, and is a place to enter your Maple commands. For now, click
on the button which maximizes the current worksheet; this is on right side of the worksheet’s
title bar, and looks like .2 Clicking the mouse on this should make the worksheet fill most of
the Maple window.

Most users typically use the Maple’s graphical, or worksheet, interface; this is what starts
you add the -x to the maple command in Unix. However, there is also a text-based interface,
which you might see if you just type maple, omitting the -x.

1This particular image was made on a computer running Unix. Under Microsoft Windows or on a Macintosh,
the symbols around at the edges will be slightly different, but with similar functions.

2Again, if you are running another type of computer, the button may look a little different. For example,
under MS-Windows, it looks similar to this: .
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|\^/| Maple V Release 5.1 (SUNY Stony Brook)

._|\| |/|_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights

\ MAPLE / reserved. Maple and Maple V are registered trademarks of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

>

This interface is useful when you want to run Maple in a non-graphic environment; for example,
over a dial-up connection. However, keep in mind that while all the usual Maple commands
work, this interface is much more limited— it is difficult to edit your commands or save your
work, and graphic commands such as plot are much more limited. If you get into this mode
by mistake, you can just type the Maple command quit; to exit.

2 Basic Maple

You can use Maple for numerical calculations, for symbolic manipulations, and for graphing
purposes. All Maple commands must be ended with a semicolon ; and the corresponding stroke

of the return key. To familiarize yourself with it, try to run the following examples and analyze
the results. The commands that you type in and the Maple results are shown here in a way
that is similar to what you see on the screen.

2.1 Maple for numeric calculations

Most of the time you will be using Maple as a calculator. You can also write programs in
Maple, but usually you will be using the tool expecting an immediate response. You type in
your statement at the Maple prompt > and Maple responds with an answer:

> 1/2+3;

7

2

The symbols for the basic operations are +, -, * and /. Exponentiation is denoted by ^:
> 77*(3^5+5^2)/(99-47);

5159

13

In the first example, the inverse of 2 is added to 3. In the second, we input
77(35 + 52)

99− 47 ,

and Maple computes its value before printing the output.
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You must always use the asterisk * for multiplication. Forgetting it in expressions like
sin(2*x) or 4*x is easy, and may result in a syntax error message. Even if you don’t get a
syntax error, Maple will not treat the expression as you expect.

Maple works primarily with whole numbers or fractions. However, you can force it to write
the decimal expansion of any number with evalf:

> evalf(100*Pi);

314.1592654

> b:=sqrt(2);

b :=
√
2

> evalf(b);

1.414213562

> evalf(b,47);

1.4142135623730950488016887242096980785696718754

Be careful with this example. The assignment of the variable b to
√
2 is done with := rather

than with =. This will be the case of any other assignment operation you do in Maple, as we
discuss below. The equals sign = is used to signify that two things are equal, not to set one to
the other.

Notice the difference in the following two examples:

> sum(1/(2*i),i=1..10);

7381

5040

> sum(1.0/(2*i),i=1..10);

1.464484127

In both cases, we compute
∑10

i=1(2i)
−1. However, in the second case, the presence of 1.0

indicates to Maple the terms in this computation are approximate, and gives you a decimal
expansion of the result.
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2.2 Maple for symbolic manipulations

We can ask Maple to give us a formula for the sum of the cube of the first n integers:
> sum(i^3,i=1..n);

1

4
(n+ 1)4 − 1

2
(n+ 1)3 +

1

4
(n+ 1)2

We can ask to factor the resulting polynomial in n:
> factor(%);

1

4
n2(n+ 1)2

In this example, Maple’s “ditto operator” % is used3 to refer to the result previously obtained.
Thus, in effect, the example above is equivalent to

> factor(1/4*(n + 1)^4 - 1/2*(n + 1)^3 + 1/4*(n + 1)^2);

1

4
n2(n+ 1)2

One can expand or factor conveniently:
> p:=(x+1)^4*(x-6)^3;

p := (x+ 1)4(x− 6)3

> expand(%);

x7 − 14x6 + 42x5 + 112x4 − 287x3 − 882x2 − 756x− 216

> factor(%);

(x+ 1)4(x− 6)3

We can use Maple to solve equations (if b still has the value
√
2 from the previous section, first

unassign it by executing the command b:=’b’):

3In Maple V release 4 and earlier, Maple used the double-quote " to refer to the result of the previous
command instead of %. If you encounter an older Maple program, you might have to change this, among some
other things.
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> quadeq:=a*x^2+b*x+c;

quadeq := ax2 + bx+ c

> solve(quadeq=0,x);

1

2

−
√
2 +

√
2− 4ac

a
,
1

2

−
√
2−

√
2− 4ac

a

Notice that solve provides both roots of the quadratic polynomial.

Maple also divides polynomials. Here the command you execute has a syntax which is a
little bit more complicated. Consider the following example:4

> p:=x^10-1;
q:=x-1;
divide(p,q,b);

p := x10 − 1
q := x− 1
true

We assign the polynomials x10 − 1 and x − 1 to the variables p and q, respectively, and
then ask Maple to divide p by q.5 Maple replies with the statement true to indicate that the
polynomial q = x− 1 divides the polynomial p = x10− 1 exactly, and places the quotient in the
third argument of the divide command. Thus, if you want to know the value of the quotient,
you must see what the variable b stands for now:

> b;

x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Of course, the answer produced by divide will be false if the polynomials do not divide
each other exactly. Then one can use the commands quo and rem to find the quotient and
remainder of the division:

> r:=x^2+2*x+3;

4In the worksheet interface, we can insert linebreaks by holding the shift key and the return key simultane-
ously. Maple does not execute what we type until we hit the return key unshifted.

5Of course, we could have done all of this in a single Maple command divide(x^10-1, x-1, b); if we had
no intention of using p or q again.
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r := x2 + 2x+ 3

> divide(p,r,c);

false

> quo(p,r,x);

x8 − 2x7 + x6 + 4x5 − 11x4 + 10x3 + 13x2 − 56x+ 73

> rem(p,r,x);

−220 + 22x

We would have obtained an error if we would have tried divide(p,r,b), trying to place
the quotient of the division in the variable b: it is no longer a variable since it has a value from
the previous example:

> divide(p,r,b);

Error, wrong number (or type) of parameters in function divide

The above command is equivalent to divide(p,r,x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1),
which makes no sense at all. If we insist on calling the result of the division b, it would have
been necessary to unassign the value of b first:

> b:=’b’;

b := b

We could also have done this within the command itself, using divide(p,r,’b’).6 Further
discussion on this is given in section 4.2.

We can use solve for systems of equations. For example:

> solve({1*x+(1/2)*y+(1/6)*z =1,
(1/2)*x+(1/6)*y+(1/24)*z =0,
(1/6)*x+(1/24)*y+(1/120)*z =1}, {x,y,z} );

6In both cases, it is very important to use the proper quotation marks; using " or ‘ means a very different
thing, and would not work. The quotation mark used here is the ‘single quote’ or ‘right quote’, and on most
keyboards is on the same key as the double quoute, near the enter key.
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{x = 39, y = −216, z = 420}

Maple also solves inequalities:

> solve(x^2-4*x-7>0,x);

RealRange(−∞, Open(2−
√
11)), RealRange(Open(2 +

√
11), ∞)

> solve(abs(1-x^2)<1/2,x);

RealRange

(

Open

(

−
√
6

2

)

,Open

(

−
√
2

2

))

, RealRange

(

Open

(√
2

2

)

,Open

(√
6

2

))

2.3 Graphing in Maple

Let us now use the graphics facilities of Maple. It is quite straightforward to draw the graph
of a simple expression. For example, to graph the function sin(x2) over the range −3 ≤ x ≤ 3,
we do the following.

> plot(sin(x^2), x=-3..3);

x 321-1-2-3

1

0.5

-0.5

-1

Notice that within the worksheet interface, clicking the right mouse button on the displayed
graph causes a menu to pop up that allows you to change some of its properties. Clicking the
left mouse button causes a box to appear around the graph and the buttons on the toolbar to
change. You can use the box to resize the graph, and the buttons to change attributes such as
the style of the axes and the aspect ration.

In section 9 we shall discuss in further detail the graphing features of Maple.
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3 The Maple worksheet

Maple’s graphical interface allows you to keep a collection of commands and their results in
one place, to save your work, and resume previous sessions. You can also add comments and
text to your worksheet, to make it more readable and to describe the process of solving the
problem. It also enables you to structure your worksheet into sections of related items.

3.1 Introducing the worksheet

As we have seen, you enter Maple commands at the > prompt, and the results appear in your
worksheet. If you go back and change a Maple command and re-execute it, the result in the
worksheet changes.

At the top of the screen is a menu bar (with entries like File, Edit, and so on): clicking on
each of these words gives you a menu which allows you to affect your session in various ways.
For example, clicking on the File menu and selecting Save will allow you to save your current
worksheet for later use; selecting Open from the same menu allows you to load an existing
worksheet.

Figure 2: The menu bar, button bar, and context bar.

Below the menu bar is a collection of buttons which are short-cuts for items found on the
various menus. Clicking on one of these is much quicker than searching for the command on
the proper menu. For example, the button that looks like a floppy disk ( ) saves the current
worksheet, and the magnifying glasses ( ) adjust the zoom factor (or magnification) of
the current worksheet. The stop sign interrupts a computation, which is very useful if you ask
Maple to do something that takes a very long time, such as to find the factors of 21000 − 1.

Below this is the “context bar”, which changes depending on what kind of item you currently
have selected. For example, as mentioned in §2.3, when graphics are selected there are buttons to
adjust the style of graphics (points or lines for 2-dimensional graphics, shading on 3-dimensional
graphics), axes style, and so on. When a text item or comment section is chosen, selections for
typeface, centering, and so on appear.

3.2 Worksheet basics: the front-end and the kernel

It is important to remember that the worksheet is only a record of a Maple session, not the
session itself. Since you have the ability to edit and reorder it, it can sometimes appear to
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contain inconsistent information. Here is a small example:

First, suppose we issue the following commands:

> one:= sin(x)^2 + cos(x)^2;

one := sin(x)2 + cos(x)2

> diff(one,x);

0

The command diff(one,x) asks Maple to compute the derivative of the expression called one

with respect to the variable x. The result is, of course, 0 because sin2 x+ cos2 x is a constant.

Now, we go back and change the + in the definition of one to a -, and execute the statement.
However, we do not execute the diff command. Our worksheet now looks like this:

> one:= sin(x)^2 - cos(x)^2;

one := sin(x)2 − cos(x)2

> diff(one,x);

0

This seems to contain an error (the derivative should be 4 sin(x) cos(x)). Obviously, this
is because we we didn’t execute all the statements. If you place your cursor on the line with
diff(one,x) and hit the return key, the worksheet will be correct again.

This may seem like a silly discussion, but this apparently obvious example is to make an
important point: Maple only “sees” your commands in the order you execute them, not in the
order you see them in the worksheet. Also, if you load a worksheet from a previous session (or
made by someone else), any assignments and results will not be accessible to the Maple session
until you execute those statements, even though the results appear on your screen.

To help you understand why this is, we point out that a Maple session typically consists
of two processes (or programs) which communicate with each other: the Maple kernel and the
“front-end”, or user interface. The front-end is the part that interacts with the user, accepting
your commands, showing the results of your computations, and so on. The kernel is the part
that does the actual computations. In certain situations (for example, when using a “parallel
Maple kernel”), it is possible to have more than one Maple kernel associated with the same
front-end.
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3.3 Online Maple help

Maple has an extensive and very useful online help system, containing information on all of
the commands, as well as a number of tutorials and example worksheets.7 Spending some time
exploring the help system is well worth the effort. There are a few ways to get into the system;
one obvious one is to select from the Help menu (on the right of the menu bar). But if you
know the specific item you want help on, you can also do this in a quicker way.

Suppose you want information on Maple’s factor command. Enter the Maple command
> ?factor

(here the semicolon is optional). Then Maple creates another window that very likely will
contain more information than you really need or care about. You can read all or part of the
information displayed in this window by moving the text down with the scroll bar to the right
of the window. You can also click in the help window, and use the arrow keys on your keyboard.

You should notice that at the end of the help window you will find a good set of examples
on the uses of the command you are inquiring about. This examples can be copied and pasted
in your worksheet and executed. In this way, you can see what the command really does.

Usually there is also a section labeled “See Also”, which points you to related commands.
Each of these words is a link to another help page. It works like a web browser: clicking the
underlined word takes you to the help page on that topic.8 You can use the back button ( )
to return to the previous help page.

Figure 3: Maple’s help index.

At the top of each help page is the help index (see Fig 3), which is a table of contents for
the entire help system, organized by topic. You can use this to browse for commands you might
not otherwise have known about.

Finally, on the Help menu are entries called “topic search” and “full text search”. The first
looks for help on a specific topic, and the latter searches the text of every page in the help
system for the word you ask. Both of these can be valuable resources when used properly.

7There is even help on the help system. Select Using Help from the Help menu, or give the command
?helpguide.

8If you prefer, holding the Control key while clicking on the link opens the page in a new help window,
allowing you to view both at the same time.
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3.4 Documenting and structuring your worksheet

Aside from the great advantage of making it easy to keep track of your commands and their
results, the worksheet has some features of a word processor, allowing you to insert comments
and text which describes your solution (or anything else you like). This can be very important,
especially if you intend to show your worksheet to someone else (or even look at it yourself
later).

To enter text into a worksheet, click on where you’d like it to go, and hit the text-mode
button (it looks like ). Note that this button will convert a Maple input region (that is, one
with a > prompt) to a text region— you’d probably prefer to insert your comments rather than
change your commands to comments. To do this, either click before the > prompt, or select
Paragraph...Before from the Insert menu.

In the text region, you can type whatever you like, using the context bar to adjust formatting
such as the typeface, centering, etc. You can even include mathematical expressions in your
text: click the “math input” button ( )9 and type the Maple expression for the math you
want. When you are done, use the text-mode button to return to entering text. You can also
paste the output from a previously executed Maple command into the text area.

The worksheet interface also allows you to group parts of your worksheet into sections.
These sections can contain paragraphs and Maple execution groups, and subsections. You can
recognize a section by a large square bracket to the left, with a box at the top of it. Clicking
on the box collapses the section, showing only the its title. Collapsing all sections allows you
to see the structure of your document in outline form. To expand a collapsed section, click on
the box next to the title.

For an extensive description of how to document and structure your worksheets, see the
“Documenting your Work” section in the online help. This can be invoked with ?documenting.

4 Assignments, Functions and Constants

Let us discuss the syntax of some basic Maple commands, as well as some functions and
constants that Maple knows.

4.1 Assignment statements

The assignment is the most basic and used of Maple statements. It allows you to give names to
expressions you want the computer to remember for later use. It has the colon-equals format
name := expression. The thing on the left side of := is a name, i.e. a sequence of letters
and digits that begins with a letter. Certain names must be avoided because Maple uses them
for special purposes (see section 4.4):

9Or select Math Input from the Insert menu.
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> a:=3; b:=5; c:=22/7;

a := 3

b := 5

c := 22/7

Now you can use a, b and c as though they are numbers. Thus, we have

> a+b;

8

> c*a;

66

7

> a-b^2;

−22

4.2 Variables and subsequent assignments: unassignments

If you type a variable name and a semicolon, Maple will tell you what the variable stands for:

> c;

22

7

> x;

x

If you specify y as an expression involving x and then assign a particular value to x, this
value will get substituted into y:

> y:=sqrt(x+3);
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y :=
√
x+ 3

> x:=sin(w);

x := sin(w)

> y;

√

sin(w) + 3

If x gets changed, then y will also change. Maple remembers the original definition of y:

> x:=cos(u);

x := cos u

> y;

√
cos u+ 3

Notice that Maple evaluates x before telling you what the variable y stands for now. To
undo this kind of thing, you can unassign variables. To do this for x execute:

> x:=’x’;
y;

x := x

√
x+ 3

We can also tell Maple to forget entirely all assignments made so far using the restart

command.

> restart;
x; y; z;
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x

y

z

Surrounding an expression in single quotes10 tells Maple to delay evaluation of it. This is
why x:=’x’ unassigns x— x is assigned to mean just x without any evaluation. Note that
stopping evaluation does not stop simplification:

> ’x + 2 + 5’;

x+ 7

4.3 Functions known to Maple. How to define your own functions

Maple has all the standard mathematical functions in its library. You can make use of them
by their appropriate name. We list some of these.

• Trig and inverse trig functions: sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan,
arccot, arcsec, arccsc.

• Exponential and logarithm: Maple uses exp(x) for ex and either log(x) or ln(x) for
the natural logarithm lnx. Logarithm in other bases are also available. For example,
log[10](x) is log10 x.

• Hyperbolic functions: sinh, cosh, etc.

• Square roots and absolute values: sqrt(x) and abs(x).

A much more complete list can be found by asking Maple for help on the initially known
functions; ?inifcns does this.

Of course, you will find yourself in a situation where you would like to define your own
functions. Suppose you are analyzing the expression

√
1 + x2, plugging several values into it

and calculating the result. Maple does not have a built-in function to do this, but you can
define one yourself:

10Be careful! Most keyboards have three different kinds of quotation marks, and they each mean something
different to Maple. The single quote (’) delays evaluation, the double quote (") indicates a string, and the
backquote (‘) indicates a name (similar to a string).
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> f:=x->sqrt(1+x^2);

f := x→
√
1 + x2

Carefully notice the syntax. f is the name of the function and is written to the right side
of :=. The function f sends the variable x to the expression

√
1 + x2; this is indicated by the

arrow. The arrow -> is made with the minus and greater-than keys.

After such an assignment, you can use the name f in the same way you use other names of
functions known to Maple, e.g. exp or sin:

> f(0); f(1); f(-1); f(3*x+1);

1

√
2

√
2

√
2 + 9x2 + 6x

We are so accustomed to the notation f(x) to refer to a function that we might accidentally
use it in Maple. Never try to define a function with an assignment like

> f(x):=sqrt(x-2);

f := x→
√
x− 2

It seemed like this worked, but in fact, the resulting f(x) does not work as expected. You
will not be able to substitute into it or do anything you normally do with functions.11

Maple uses parentheses ( ) to group expressions together in a convenient form as in

> 2*(x+4)^3;

2(x+ 4)3

or to delimit the arguments of a function. In mathematics, we sometimes cheat and write
sinx instead of sin (x). In Maple, this is not permissible: you must always write sin(x). Nested
parentheses are permitted:

11Maple uses this notation for a “remember table”— you can use it to set specific values for the function. For
example, if we first define f by f:=x->sin(x)/x, then asking for Maple for f(0) will give an error, since it is
not a permissible value for the function. However, we can define f(0) = 1 with the command f(0):=1; after
this, f(0) will be 1, while f(x) = sin(x)/x for all other values of x.
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> f(x);

√
1 + x2

> sin(sqrt(x+2)+ln(abs(x)));

sin(
√
x+ 2 + ln |x|)

4.4 Special constants and reserved names

Maple knows several constants. To find them out, execute the command

> constants;

false, γ,∞, true, Catalan, FAIL, π

The names of these constants are false, gamma, infinity, true, Catalan, FAIL and Pi,
respectively. Be careful! Maple is case sensitive. Therefore pi is not the same as Pi. For
example,

> cos(Pi/4);

√
2

2

> cos(pi/4);

cos

(

1

4
π

)

Maple also uses I to represent the complex number
√
−1. Earlier versions used E for exp(1);

this is no longer the case. If you’d like to add E as a constant, you can do the following:

> E:=exp(1);
protect(E);
constants := constants, E;

E := e

constants := false, γ,∞, true, Catalan, FAIL, π, e
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While protecting your new constant E will stop you from accidentally redefining it, adding
E to the list of known constants doesn’t really affect things very much.

There are many commands and special objects in Maple that have preassigned names. In
creating your own expressions and setting the name of your own variables, you cannot use any
of the following 30 keywords:

and by do done elif else end fi for from

if in intersect local minus mod not od option options

or proc quit read save stop then to union while

You can check this list for yourself using the help system by giving the command ?keywords.

Maple also starts with a large number of predefined functions and constants. Many of these
can be listed with inifcns and ininames. If you try to use one by mistake, you will receive
an error:

> gamma:=x^2+5;

Error, attempting to assign to name ‘gamma‘ which is protected

If you insist, you can use unprotect to allow you to assign to this name. But don’t do
this unless you know what you are doing; this changes the meaning of this name even when it
is used internally, and can have unexpected consequences.

5 The limit command

The limit command is used to compute limits. Its syntax is basically

> limit(f,x=a);

where f is a Maple algebraic expression which (in general) depends on the variable x and a is
the expression which x approaches. For example, to compute

lim
x→2

3x− 6
x2 − 4 ,

we execute the Maple command

> limit((3*x-6)/(x^2-4),x=2);

3

4

Maple can also deal with limits which do not exist, for example lim
x→0

1

x
:
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> limit(1/x,x=0);

undefined

In the following exercise, we define the slope of a straight line passing through the points
(x1, y1), (x2, y2), use this function to find the slope m(x) of the line passing through the points
(1, 1) and (x, x2), and finally compute the limit of m(x) as x→ 1:

> slope:=(x1,y1,x2,y2)->(y2-y1)/(x2-x1);
m:=x->slope(1,1,x,x^2);

slope := (x1, y1, x2, y2)→ y2− y1

x2− x1

m := x→ slope(1, 1, x, x2)

> limit(m(x),x=1);

2

Maple is sometimes unable to determine a limit or whether it exists. In such a case, it will
return nothing after you execute the limit command.

Maple computes two-sided limits. For example, if you specify the argument x=1 as in the
previous example, Maple assumes you mean that x approaches 1 from either the right or the
left through real values only (as opposed to complex ones). However, Maple can compute one
sided and complex limits also:

> limit(1/x,x=0,right);

∞

> limit(1/x,x=0,left);

−∞

> limit(x*log(x),x=0,complex);

0

You can also compute limits as x→∞ and limits of functions of more than one variable:
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> limit(arctan(x),x=infinity);

π

2

> limit(x/(x^2+y^2),{x=0,y=0});

undefined

A common error is to try to compute the limit of a function f(x) when x has been previously
given a value. If you find yourself in this situation, unassign the value of x executing the
command x:=’x’;. The previous example will fail if y still has the value assigned to it in
section 4.2.

6 The diff (and Diff) command

The diff command is used to compute derivatives of Maple expressions. Its syntax is basically

> diff(f,x);

where f is an algebraic expression and x is the variable with respect to which the derivative is
taken. For example, to compute

d

dx

3x− 6
x2 − 4 ,

we execute the Maple command

> diff((3*x-6)/(x^2-4),x);

3

x2 − 4 − 2
(3x− 6)x
(x2 − 4)2

You must specify the variable with respect to which you wish to take the derivative because,
almost all the time, there are constants and other parameters around:

> diff(exp(a*x),x);

aeax

Maple knows theoretical results about derivatives. For example, even if the functions g(x)
and h(x) are not defined, Maple will give you the derivative of their product in terms of the
functions and their derivatives:
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> diff(h(x)*g(x),x);

(

∂

∂x
h(x)

)

g(x) + h(x)

(

∂

∂x
g(x)

)

6.1 Higher order derivatives

To compute higher order derivatives, you can of course iterate the above command:

> diff(diff(3*sin(x),x),x);

−3 sin(x)

Such a command first calculates the derivative with respect to x of the expression 3*sin(x)

and then differentiates the result to obtain the second derivative. The same result can be
accomplished with either one of the following commands:

> diff(3*sin(x),x,x);

−3 sin(x)

> diff(3*sin(x),x$2);

−3 sin(x)

There is an obvious extension of this command when calculating more than two derivatives.
You can also calculate partial derivatives of higher order:

> diff(ln(x)*exp(-2*x),x$3);

2
e−2x

x3
+ 6

e−2x

x2
+ 12

e−2x

x
− 8 ln(x)e−2x

> diff(exp(x)*y^2*sin(z),x,y,z);

2exy cos(z)
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6.2 Implicit differentiation

Maple knows how to take derivative of both sides of an equation, and, as indicated above,
Maple can also take derivatives “theoretically” even if the definition of the functions involved
are not specified. However, you must always indicate explicitly the dependence of the functions
on their variables. So, if you are thinking of y as a function of x, you must write y(x) in your
equation rather than just y.

Here is a typical implicit differentiation problem. Consider the equation x2y − 3y3x = 0.
Find the slope of the graph of the curve defined by this equation at the point (3, 1):

> eq:=x^2*y(x)-3*y(x)^3*x = 0;
deq:=diff(eq,x);
solve(deq,diff(y(x),x));

eq := x2y(x)− 3y(x)3x = 0;

deq := 2xy(x) + x2

(

∂

∂x
y(x)

)

− 9y(x)2
(

∂

∂x
y(x)

)

− 3y(x)3 = 0

−2xy(x)− 3y(x)
3

x2 − 9y(x)2x

> subs(y(x)=1,x=3,%);

1

6

The first command defines the equation relating x and y, the second defines an equation
deq giving the relation between x, y(x) and the derivative of y with respect to x. Using solve,
we solve deq to find the derivative as a function of x and y(x), and in the result we substitute
x=3 and y=1 to obtain the desired slope (see section 8 to learn about the subs command).12

Maple actually has a built-in command to do implicit differentiation, implicitdiff. Thus,
we could have done this same problem more concisely using the single command

> subs({y=1,x=3}, implicitdiff(x^2y-3y^3x=0,y,x);

1

6

Occasionally, to make your worksheets easier to read, you may wish to have Maple display
a derivative in standard mathematical notation without evaluating it. For this purpose there

12Again, the major caveat with the Maple derivative command is to avoid calculating derivatives with respect
to a variable that has been previously given a value. In such an instance, unassign the value of the variable
first.
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is an inert capitalized form of the diff command: Diff. The two forms diff and Diff are
usually combined to produce meaningful sentences:

> Diff(exp(x)/(1-x),x);

∂

∂x

ex

1− x

> Diff(exp(x)/(1-x),x)=diff(exp(x)/(1-x),x);

∂

∂x

ex

1− x
=

ex

1− x
+

ex

(1− x)2

This command is particularly useful to produce easy to read worksheets that involve partial
derivatives:

> f:=x^3*exp(y)-sin(x*y);

f := x3ey − sin(xy)

> Diff(f,x,x,y)=diff(f,x,x,y);

∂3

∂y∂x2
x3ey − sin (xy) = 6xey + cos (xy)xy2 + 2 sin (xy)y

7 The int (and Int) command

7.1 Symbolic integrals

The int command is used to compute both definite and indefinite integrals of Maple expressions.
Its syntax is basically

> int(f,x);

where f is an algebraic expression and x is the integration variable. For example, to compute

∫

3x− 6
x2 − 4 dx ,

we execute the Maple command
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> int((3*x-6)/(x^2-4),x);

3 ln(x+ 2)

Notice that Maple does not provide the constant of integration. You will occasionally have to
take this into account and provide your own constant.

You must specify the variable of integration. In expressions involving other parameters,
Maple assumes that you want the integral of the expression as the variable you specify changes
and that all other parameters in the expression represent constants:

> int(exp(a*x),x);

eax

a

To compute a definite integral, the range over which the integration variable moves must
be specified:

> int(x^2*exp(x),x=0..2);

2e2 − 2

The int command in Maple has a particular behavior in certain situations:

• If Maple cannot compute the integral in closed form, it will return it unevaluated:
> int(ln(sin(sqrt(x^12-5*x^7+50*x+2))),x);

∫

ln(sin(
√
x12 − 5x7 + 50x+ 2)) dx

• Sometimes the integral cannot be evaluated in closed form in terms of elementary func-
tions, but the answer has a special name in mathematical circles due to its importance in
applications. For example,
> int(sin(2*x)/x,x);

Si(2x)

Here Si is the special name of one of these functions which appear frequently in mathe-
matical physics. To learn more about it, ask Maple for help on it with the command ?Si.
This will bring up a window with information about the function Si. If Maple responds



7. THE INT (AND INT) COMMAND 1:25

to an integral with one of these functions, it is quite likely that the integral cannot be
evaluated in terms of elementary functions.

• Sometimes, a result may be expressed in terms of the roots of a polynomial which does
not factor over the rationals. For example,
> int(1/(x^8 +1),x);

∑

R=RootOf(1+16777216 Z8)

R ln(x+ 8 R)

In this answer, the sum is taken over all roots R of the polynomial 1 + 16777216z8, and
the summand is R log (x+ 8R).

As with diff, there is an inert form Int of the integral command which can be used in
combination with int to produce easily readable worksheets:

> Int(ln(1+3*x), x=1..4);

∫ 4

1

ln (1 + 3x)dx

> Int(ln(1+3*x), x=1..4)=int(ln(1+3*x),x=1..4);

∫ 4

1

ln (1 + 3x)dx =
13

3
ln (13)− 3− 4

3
ln (4)

The inert form Int is also very useful in many situations when you wish to delay the
evaluation of an integral, as we shall see below.

7.2 Numerical integration

With the evalf command, you can force Maple to apply a numerical approximation technique
for definite integration:

> evalf(Int(sqrt(1+x^10),x=0..1));

1.040899075

Notice that the we are using the inert form of the integration command, Int. This prevents
Maple from attempting to evaluate the integral symbolically and then applying evalf to the
answer. In many cases, this can save a huge amount of time, because Maple will work very hard
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to try to compute the symbolic form of the integral. For example, approximating

∫ 1

0

esin(x) dx

with the command

> evalf(int(exp(sin(x))),x=0..1);

took more than 10 times the amount of time needed to execute

> evalf(Int(exp(sin(x))),x=0..1);

More complicated integrals can have even more dramatic differences.

7.3 Approximations through Riemann Sums

Maple can also compute expressions that approximate a definite integral using rectangles, trape-
zoids, etc. It can also do approximations using Simpson’s rule. The only difficulty is that these
commands are contained in a separate library called student and you must load this library
into computer memory before you can use it:

> with(student):

Once loaded, you can play with it. For example, if you want to use the left sum approxi-
mation to an integral, the height of each rectangle is determined by the value of the function
at the left side of each interval. You may specify the number of intervals you wish to use. If
you do not, Maple will use four intervals by default:

> leftsum(x^4*ln(x),x=1..4,10);

3

10

(

9
∑

i=0

(1 +
3

10
i)4 ln(1 +

3

10
i)

)

Maple can also draw pictures of the rectangles used to approximate the integral of a function
on a given interval:

> leftbox(1/x,x=1..2,10);

x 21.81.61.41.21

1

0.8

0.6

0.4

0.2

0
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The following is the result of using the Simpson’s rule for the function xsin(x2) on the
interval 1 ≤ x ≤ 5. Since the number of intervals is not specified, Maple assumes four equal
intervals by default:

> simpson(x*sin(x^2),x=1..5);

1

3
sin(1) +

5

3
sin(25) +

4

3

(

2
∑

i=1

2i sin(4i2)

)

+
2

3

(

1
∑

i=1

(1 + 2i) sin((1 + 2i2)2)

)

7.4 Multiple integrals

Maple does iterated integrals:
> int(int(x^2*y^3,x=0..y),y=2..3);

2059

21

This is literally an iterated integral: the integral of x2y3 with respect to x on the interval [0, y]
is nested inside the integral with respect to y on the interval [2, 3], in effect calculating

∫ 3

2

∫ y

0

x2y3dxdy .

8 The subs command

You have learned in the previous sections that if you assign a particular value to a variable,
Maple will remember it for the rest of the session until you unassign it. At times, you might like
to plug in some values into an expression without altering the variable (or variables) involved.
Maple has the subs command which reports the result of making such a substitution:

> y:=x+3;

y := x+ 3

> subs(x=2,y);

5

Notice that Maple reports the value obtained when plugging in x=2 into y without giving that
value to x or altering y in any way:
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> x;

x

> y;

x+ 3

You can make more than one substitution:
> z:=x+sin(2*h):

subs(x=3*u+1,h=4*Pi*q,z);

3u+ 1 + sin(8πq)

In this example, the first assignment is ended with a colon : to suppress the display. You
can do this whenever you want to make an assignment which you do not want to see displayed.
Then, plugging x = 3u+1 and h = 4πq into the expression for z, we obtain 3u+1+ sin (8πq).
Notice that the values of x and h that we plug in do not need to be enclosed in braces when
issuing the command.

You should be aware of a few things when using the subs command:

• You need not fear circular substitutions:
> z;

x+ sin(2h)

> subs(x=2*x,z);

2x+ sin(2h)

On the other hand, long chains of self-referential substitutions may produce results which
are hard to predict:
> subs(h=x,x=z,z);

x+ sin(2h) + sin(2x+ 2 sin(2h))

Simultaneous substitutions are made enclosing the values you plug in in braces. This is
in contrast with the left-to-right substitution above:
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> subs({h=x,x=z},z);

x+ sin(2h) + sin(2x)

• In certain situations, subs will not be able to find the expression you are substituting
for if it is complicated. In those cases, try to reword your substitution request so that
Maple understands it, or break the task into several manageable ones. In other cases, you
might consider using algsubs, which allows you to substitute one algebraic expression
for another.

• subs does what is called “syntactic substitution”; it substitutes one set of symbols for
another. If you are using it to evaluate an expression with certain values “plugged in”,
using eval might be more appropriate. Here is an example that should illustrate the
distinction:

> integral := int(f(t,a), t=a..x);

∫ x

a

f(t, a) dt

> eval(integral,{t=0,a=1});

∫ x

1

f(t, 1) dt

> subs({t=0,a=1},integral);

∫

f(0, 1) d0 = 1..x

The seemingly nonsensical answer using subs above is because Maple interpreted the
expression as meaning int(f(0,1),0=1..x) — what you get by replacing t by 0 and a

by 1 without trying to interpret the expression.

8.1 Why is subs useful?

Often it is better to use subs rather than to make assignments to the variables in an expression.
For example, if
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> y:=3*x^2+5*x+2;

y := 3x2 + 5x+ 2

and you want to compute the difference quotient (y(x+ h)− y(x))/h, then you should execute

> dq:=(subs(x=x+h,y)-y)/h;

dq :=
3(x+ h)2 + 5h− 3x2

h

because if we set

> x:=x+h;

Warning: Recursive definition of name

x := x+ h

any call to y will result in

> y;

Error, too many levels of recursion

In earlier versions of Maple, this action would have crashed your session.

On the other hand,

> x:=4;

x := 4

> y;

70

is alright, but now y is a number and we cannot plug any other values of x into it. Using subs
is a better way to do the plugging in, because we need not unassign y.

9 Plotting with Maple

Let us now use the graphics facilities of Maple:
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> plot(x^2, x=-10..10);
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Maple displays the graph of the function x2 from x = −10 to x = 10 as requested. In the
worksheet interface, clicking the right mouse button on the graph pops up a menu with various
options which allow you to manipulate your graph, and/or change its appearance in a suitable
way. Clicking the left button “selects” the graphic, drawing a black box with “handles” around
it. You can drag the mouse button on these to resize the plot. Also, the coordinates of the
point where you clicked appear in the upper left of the worksheet. Selecting a graphic also
changes the context bar: shortcuts for manipulating the axes, aspect ratio, and plotting style
appear as buttons along the top.

The basic syntax of the plot command is
> plot(f,range);

where f is the expression to be plotted and range is the range of the parameter(s) for which
you would like to see the plot of f. In the example above, we indicated the range of x by
x=-10..10. Maple automatically chooses a scale on the vertical axis. There are many options
to the plot command; while we will mention a few of them, the on-line help system has all the
details.

Try both of the two similar plot commands below:
> plot(x^2-x, x=-1..2, y=-1..2);

plot(x^2-x, x=-1..2, -1..2);

In both cases, the plot is displayed for values of y between −1 and 2, but in the first, the
variable y is explicitly named in the command, and the vertical axis gets a label. Whenever
you are plotting an expression, the variable in the domain of the function must be specified.

9.1 Plotting several functions (or curves) on the same axes

We can plot more than one function (or curve) on the same coordinate system. Consider the
following example, recalling the slope function of the line passing through the points (x1, y1),
(x2, y2), used to define the slope m(x) of the line passing through (1, 1) and (x, x

2):
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> slope:=(x1,y1,x2,y2)->(y2-y1)/(x2-x1);
m:=x->slope(1,1,x,x^2);

slope := (x1, y1, x2, y2)→ y2− y1

x2− x1

m := x→ slope(1, 1, x, x2)

We now define the equation of the lines passing through (1, 1) and (x, x2) for x = 2, 3, 4, 5
and plot the four lines together with the function x^2.

> line1:=m(2)*(x-1)+1;
line2:=m(3)*(x-1)+1;
line3:=m(4)*(x-1)+1;
line4:=m(5)*(x-1)+1;
plot({x^2,line1,line2,line3,line4},x=-3..6);

line1 := 3x− 2

line2 := 4x− 3
line3 := 5x− 4
line4 := 6x− 5

x 642-2

30

20

10

-10

-20

Observe that the expressions to be plotted are enclosed in braces { }. Besides specifying the
range on which x varies as done above, you can also specify and label the y range proceeding
exactly in the same manner as when plotting a single function.13

13We could have done this all in a single plot command, either explicitly typing each of the lines, or using
seq to generate them: plot({x^2, seq( m(i)*(x-1)+1, i=2..5)}, x=-3..6);
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9.2 Fancier plotting

The plot command is very powerful, and you should look for details about it using the online
help facility; the command ?plot will bring this up. There are also several related pages, and
some instructive example worksheets that are well worth looking at.

To make you aware of some of its features, we will discuss a few of them here:

• It is possible to have Maple plot points. This can be done in two ways depending upon
how the points are generated. If you have a list of specific points, you can assign them to
a name and then plot them as follows:

> points:=[[1,2],[1.5,1],[2,-1],[2.5,0.5],[3,1],[3.5,0.6],[4,0.2]]:
plot(points,style=POINT);

If style=POINT is replaced by style=LINE, the dots will be connected by segments of
lines. In the worksheet interface, you can switch from one style to the other by first
clicking the left mouse button on the graph, and then hitting the relevant button on the
buttonbar.

On the other hand, if the points result from evaluating an expression at several values of
x, you can use plot in its usual form, but specifying style=POINT:

> plot(x^2,x=-2..2,style=POINT);

Approximately 50 points will be plotted this way. You may notice that they will not
usually be equally spaced, but concentrated in areas where the graph curves more. You
can insist that more points be plotted by using the numpoints option:

> plot(x^2,x=-2..2,style=POINT,numpoints=150);

• Several more specialized plotting functions are contained in a separate library called
plots. For basic plotting, there are two commands from this library that are especially
useful. They are textplot and display. To load these commands into the computer
memory, execute the statement

> with(plots,textplot,display);

The display command is useful to combine different kinds of plots into one picture. You
can merge standard plots of expressions, plots of points, plots of text (This is the utility
of textplot: to label things), and animations. In the next example, we combine the
point plot of the variable points defined above with a plot of sin(3*x). We first define
them as different plots and then display them together. Note that except for the third
command, we end with a colon (:) in order to suppress the Maple output.
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> plot1:=plot([points],style=POINT):
plot2:=plot(sin(3*x),x=0..4):
display({plot1,plot2},view=[0..4,-1..2]);
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The view option controls the horizontal and vertical ranges to be displayed.

You can attach labels to your plots by combining textplot with display. The basic
syntax of textplot is to use it with an argument of the form [a,b,’name’] which places
the word name inside the quotes on the plot so that it is centered at the point (a, b). For
example:
> y:=(1+x^2)*exp(-x^2/2): d:=diff(y,x):

F:=plot({y,d},x=-3..3):
G:=textplot({[1,1,’function’],[0.75,0.45,’derivative’]}):
display({F,G});

function

derivative

x 321-1-2-3

1

0.5

-0.5

We end with a word about plotting functions (as opposed to expressions), and a situation
in which it is a good idea to do so. Sometimes you will have a relationship that you want to
plot in the form of a function rather than an expression:

> f:=x->x^3*exp(-x):

In this situation, you can plot f(x) as explained above. Alternatively, you may use:
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> plot(f, 0..3);

The two ways of plotting a function should not be confused. Neither of the following two
statements will work correctly:

> plot(f(x), 0..3);

Plotting error, empty plot

> plot(f, x=0..3);

As you see, the first gives an error; the second gives a plot with nothing plotted on it.

If you have a function defined using an if-then clause, you must use the function plotting
command:

> f:=x-> if x<3 then x+1 else -x^2+13 fi:
plot(f(x),x=0..5);

Error, (in f) cannot evaluate boolean

The error resulted because Maple attempts to understand the expression f(x) before it has
a value for x. One way around this14 is to use the command

> plot(f, 0..5);
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You can see from the graph that the function f is probably continuous but not differentiable
at x=3.

10 Exercises

1. Evaluate π
√

2 to 30 decimal places.

2. Input the following as a Maple function:

f(x) =

√
x(−116x3 + 8x4 + 558x2 − 891x)
2x5 − 29x4 + 140x3 − 225x2

.

14We could also delay evaluation of f(x) using quotes, with plot(’f(x)’, x=0..5);. Alternatively, we could
define f using piecewise, as f:=x-> piecewise(x<3, x+1, -x^2+13);.
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a) Write this in a simpler form (that is, factor and reduce it).

b) Draw the graph of the function for x between 0 and 1). Adjust the vertical range so
that some detail can be seen.

c) Compute the area of the part of the curve that lies above the x-axis and between
x = 0 and x = 5 (that is, integrate the function over the appropriate range of x
values). Give your answer both in actual form and as a decimal approximation to
about 10 places.

d) What is the value of the integral if you remove the factor of
√
x from the numerator?

e) Use the derivative of f(x) to determine for what real value x the function has a local
maximum. Use an approximation to about 8 decimal places.

3. Use the commands seq and ithprime to generate a list of the first 20 primes. Compute
the sum of these 20 primes, and give its integer factors.

4. Find the solutions of the system of equations {x2 − y2 = 4, x− 2y = 2}.

5. Draw a graph showing both cos x and its fifth Taylor polynomial (that is, 1− 1
2!
x2+ 1

4!
x4)

for x between −4 and 4. How many terms do you seem to need to get good agreement in
this range.

Hint: use a variation of the command convert(taylor(cos(x),x,5),polynom) to make
this work.

Think of a suitable way to demonstrate that the approximation you have taken is good.



Chapter 2

If the Curve Fits, Wear It

It is not uncommon in science and mathematics to have a collection of data points

(x1, y1), (x2, y2), . . . , (xn, yn)

for which we believe there is a functional relationship between the xi and the yi. Often, we
want to get some idea of what might be happening at points other than those for which we
have data. That is, we want to find some f so that f(xi) = yi for each of our points. Of course,
in order to do this, we will need to have some knowledge (or make some guesses) about the
function f , or sometimes about how precisely the points are known. In this chapter, we’ll look
at several different approaches to this problem of fitting a curve through (or near) some given
data.

1 Interpolation

First, we will look at the situation where we the data points are assumed to be known exactly
(or at least to good enough precision that we ignore any errors), and we want to find a curve
of some type is chosen that passes through each of the data points. This practice is called
interpolation. In the latter part of this chapter (beginning with §2), we will relax the restriction
that the curve pass exactly through the points.

Of course, there are serious restrictions involved in interpolation. Since a line is determined
by two points, if we have more points, we must either use a higher degree polynomial, or use
several line segments. If we have n data points we wish to interpolate, either we can fit a
polynomial of degree n− 1 or find n− 1 line segments which “connect the dots”. We’ll address
both of these in this section, as well as a method which is a cross between the two approaches.

1.1 Polynomial Interpolation

Given n data points (x1, y1), (x2, y2), . . . , (xn, yn), there is a unique polynomial of degree n− 1
passing through them. Finding this polynomial is just a matter of solving the n linear equations

2:1
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for the coefficients. For example, suppose we have 4 data points (x1, y1), (x2, y2), (x3, y3), and
(x4, y4). There is exactly one degree 3 polynomial p(x) = ax3 + bx2 + cx + d which passes
through all four points. Plugging in our data yields the equations

ax3
1 + bx2

1 + cx1 + d = y1

ax3
2 + bx2

2 + cx2 + d = y2

ax3
3 + bx2

3 + cx3 + d = y3

ax3
4 + bx2

4 + cx4 + d = y4

These are easily solved for the coefficients a, b, c, and d.

Maple 71 has a built-in command called PolynomialInterpolation to do this automatically
for us, as part of the CurveFitting package. We’ll do a brief example.

> data:=[[1,3],[2,4],[4,9],[5,11]]:

with(CurveFitting):
cubfit:=PolynomialInterpolation(data,x);

cubfit := −1
6
x3 +

5

3
x2 − 17

6
x+

13

3

> plots[display](
plot(data,style=point,color=black,symbol=BOX),
plot(cubfit,x=0..6,thickness=2));
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That seems to have worked pretty well. However, we should remark that polynomials are
somewhat inflexible: minor variations in the data can have drastic effects on the behavior
between the points. To emphasize this, we’ll generate 10 points along the line y = 2x+1, with
one more point in the middle that is a bit above the line.

> data2:=[seq([i,2*i+1],i=0..4),[9/2,11],seq([i,2*i+1],i=5..9)];

1earlier versions of Maple have a similar command called interp with slightly different syntax.
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data2 := [[0, 1], [1, 3], [2, 5], [3, 7], [4, 9], [
9

2
, 11], [5, 11], [6, 13], [7, 15], [8, 17], [9, 19]]

> plots[display](
plot(data2,style=point,color=black,symbol=BOX),
plot(PolynomialInterpolation(data2,x),x=0..9,thickness=2));
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This doesn’t look much like a straight line, does it? Even though there is only one data
point which is 1 unit above the line y = 2x + 1, at x = 1/2 the polynomial is about 50 units
above this line.

1.2 Connect-the-Dots and Splines

As we said at the start of this section, another choice is not to use a single function, but to
use several segments which connect the dots. The result would be a piecewise-affine function
consisting of several line segments defined on a number of intervals. In the example using data2
from the previous section, this function would be

f(x) =











2x+ 1 if x ≤ 4
4x− 7 if 4 < x ≤ 9

2

11 if 9
2
< x ≤ 6

2x+ 1 if 6 < x

Although writing a maple procedure to figure this out for us would not be hard, such a
piecewise affine curve is a version of something called a spline, which we will discuss more soon.
This type of connect-the-dots curve is a linear (or degree 1) spline, and Maple can find it using
the Spline command out of the CurveFitting2 package.

> lspline:=Spline(data2,x,degree=1):

2versions prior to Maple 7 have a similar command called spline which takes slightly different arguments.
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> plots[display](
plot(data2,style=point,color=black,symbol=BOX),
plot(lspline,x=0..9,thickness=2));
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If we leave off the degree=1, Maple gives us a cubic spline instead:
> plots[display](

plot(data2,style=point,color=black,symbol=BOX),
plot(Spline(data2,x),x=0..9,thickness=2));
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Notice how the cubic spline fits the points about as well as the “connect-the-dots” piecewise
affine curve, but has no corners. What is this curve that Maple is showing us?

To make a spline, instead of connecting each pair of points by a straight segment, we put in a
polynomial of degree d. We must ensure that the polynomial passes through the two endpoints
of each segment, but this still leaves us an additional d− 1 conditions per polynomial segment.
The entire curve can be made smoother by choosing each polynomial segment so that the first
d − 1 derivatives at one endpoint agree with the derivatives of the previous segment. Since
there is no segment before the first or after the last, this leaves d − 1 more conditions still to
specify. For a “natural spline”, the high order derivatives at the endpoints are set to zero:

p(d−1)(x1) = p(d−2)(x1) = . . . = p( d−1
2

)(x1) = 0

and
p(d−1)(xn) = p(d−2)(xn) = . . . = p( d−1

2
)(xn) = 0
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(if d− 1 is odd, we have one fewer zero derivative at xn than at x1). Thus, for a cubic spline,
the second derivatives vanish at eachpoint, and the polynomial segments have the same value,
slope, and concavity at each interior point.

You might think that using higher degree polynomials in between would give a better
appearance, but the same issues that arose in earlier begin to show up. Note that if we have n
data points, fitting a spline of degree n− 1 is exactly the same as the interpolating polynomial
of degree n− 1. Cubic splines are the most widely used, because they look quite smooth to the
eye, but have enough freedom that they don’t have to wiggle too much in order to pass through
each data point. Many computer drawing programs have the ability to fit cubic splines through
a set of points.

2 When the data is approximate

Now we relax the restriction that the function we are searching for must pass exactly through
each of the data points. This is the typical situation in science, where we make a measurement
or do an experiment to gather our y values from the input x values.

More specifically, let’s assume that y = fc1,...,ck(x1, . . . , xm) is a real-valued function of
(x1, . . . , xm) which depends upon k parameters c1, . . . , ck. These parameters are unknown to
us. However, suppose that we can perform repeated experiments that for given values of
(x1, . . . , xm) allows us to measure output values for y. How can we estimate the parameters
c1, . . . , ck that best correspond with this information?

Let us assume that the experiment measuring the value y = fc(x) for specific input values
x = (x1, . . . , xm) is repeated n times. We will then obtain a system of equations

fc1,...,ck(x11, x12, · · · , x1m) = y1

fc1,...,ck(x21, x22, · · · , x2m) = y2
...

fc1,...,ck(xn1, xn2, · · · , xnm) = yn

where xı and yı are the measurements of x and y in the ı
th experiment. These experimental

results gives us information about the unknown coefficients cı.
Since we may perform the experiments as many times as we wish, we may end up with more

relations of the type above than unknowns (that is, n is larger than k). The larger the n, the
more information we have collected about the coefficients. However, even if the experiments are
carried out with great care, they unavoidably will contain some error. The question remains:
how may we estimate judiciously the coefficients c1, . . . , ck using the collected information about
y = fc(x)? What is the best fit?

A very common method to respond to this question is known as the method of least-squares.
The idea is simple: per realization of the experiment, we measure the fitting error by the distance
from the real number fc(x1, x2, · · · , xm) and the observed value of y. The best fit for the distance
though will also lead to a best fit for the square of the distance. To avoid absolute values, we
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change our viewpoint slightly and measure the fitting error by (fc1,...,ck(x1, x2, . . . , xm) − y)2.
The error function that considers all the information obtained from the n experiments is then

E(c1, . . . , ck) =
n
∑

i=1

((fc1,...,ck(xi1, xi2, · · · , xim)− yi)
2 ,

where (xi1, xi2, · · · , xim) and yi are the ith input for x and value of the measurement for y.
This turns out to be a function of c = (c1, . . . , ck). Mathematically, our best fit problem is

now reduced to finding the value of c which produces a minimum for this error function E. The
details of how this can be done depends intrinsically upon the assumed form of the function f ,
and its relation to the parameters c1, . . . , ck.

We should remark that in some cases, we might want to use E(c1, . . . , ck)/n, the mean-
squared error. This will not change the answer we get (because the minimum occurs at the
same value of c), but does allow us to compare sets of data with different numbers of data
points.

3 Fitting a line to data

Suppose that we are in the situation described above, with m = 1, and that the function f is a
polynomial of degree 1. Hence, the number of parameters is two, and for convenience we write

f(x) = mx+ b ,

in order to interpret the parameters m and b as the slope and y-intersect of the graph of f . We
have data points (x1, y1), . . . , (xn, yn). Our problem is to find the values of m and b will best
fit this data. Or to put it simply and geometrically, what is the straight line that best fit the
information contained in the data (x1, y1), . . . , (xn, yn)?.

The contribution to the error function coming from the ith piece of data, (xi, yi), is given
by (mxi + b− yi)

2, and therefore, the total error is

E(m, b) =
n
∑

i=1

(mxi + b− yi)
2 .

The problem then becomes that of searching for the values of m and b where the error E(m, b)
achieves a minimum. Let us solve this problem using Maple.

First, let us type in some data to try to fit our line to:

> pts := [ [0,0.25], [1/2,2], [1,4], [5,8], [6,10] ]:
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> plot(pts, style=point, axes=boxed);
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In order to solve the problem at hand, we could use Maple’s built-in regression package to
find the answer, but that would not help much in explaining what is going on. However, let us
do this anyway.

We can use the LeastSquares command from the CurveFitting package3

> CurveFitting[LeastSquares](pts,x);

1.271370968 + 1.431451613x

This says that the best values of m and b are m = 1.431451613 and b = 1.271370968, respec-
tively. Now let’s go through the steps ourselves, to better understand the process.

First, we define the error function according to the data points to fit that we have. Notice
again that this function is the square of the distance from the line to the data:

> E := (m,b,pts)-> sum( ((m*pts[i][1]+b)-pts[i][2] )^2, i=1..5);

E := (m, b, pts)→
5
∑

i=1

(m pts i1 + b− pts i2)
2

For example, had we guessed that the line y = 2x + 1 is the answer to our problem, we
could compute the distance:

3As we noted before, the CurveFitting package was introduced in Maple 7. Earlier versions of Maple (as
well as Maple 7) can accomplish the same thing using the fit command from the stats package, as follows.
with(stats):

fit[leastsquare[[x,y]]]([[ pts[i][1] $i=1..5], [ pts[i][2] $i=1..5]]);

As you can see, the syntax is a little different.
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> E(2,1,pts);

19.5625

However, decreasing m and increasing b produces a smaller value of E, so that guess cannot
be the best fit:

> E(1.5,1.2,pts);

3.125000000

We want to minimize the error function. Since minima of differentiable functions occur at
critical points, we begin by solving for the values of (m, b) which annihilate the two partial
derivatives. Notice that Maple happily computes partial derivatives:

> diff( E(m,b,pts), m);

249

2
m+ 25b− 210

We may then ask Maple to solve the system of equations obtained by equating the two
partial derivatives by

> solve( { diff( E(m,b,pts), m)=0, diff( E(m,b,pts), b)=0 }, {m,b});

{m = 1.431451613, b = 1.271370968}

Maple thus finds only one solution, and not surprisingly, it coincides with the solution found
using the built-in version.

If we now want to use this values of m and b without retyping it, one way to do that is to
use the command assign(%) to let b and m be given these constant values.4

> assign(%);

Maple executes this assignment silently, without reporting the assignment. However, now
both m and b have the assigned values:

> m;

1.431451613

4We are using Maple’s ditto operator % to refer to the result of the previous command. In versions of Maple
prior to release 5 of Maple V, the double quote " was used for this operator instead.
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> E(m,b,pts);

2.929334677

The value of E(m, b, pts) calculated above, is the value of E when (m, b) is the critical point
found earlier.

We may visualize how good our fit is, using plot to display the data points and the fit line
on the same graph. We load the plots package, so that we can use display:

> with(plots):
display({plot(m*x+b, x=-1..6.5, axes=boxed),

plot(pts, style=point)}):
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Notice that at this point, m and b have constant values previously assigned to them, the
values producing the minimum of E up to 9 decimal places. Let us try to verify that our
solution is indeed correct, via an argument which is independent of the one described above.

Geometrically, the error function E is the square of the Euclidean distance between m~x+~b
and the vector ~y, where ~x = (x1, x2, . . . , xn), ~b = (b, b, . . . , b) and ~y = (y1, . . . , yn). Clearly then,

the best fit is achieved when the coefficients m and b are chosen so that m~x+~b is the orthogonal
projection of the vector ~y onto the subspace of R

n spanned by ~x and (1, 1, . . . , 1). That is to

say, the best fit occurs when the vectors ~y − (m~x + ~b) and m~x +~b are perpendicular to each
other. Let us verify this:

> sum( (pts[i][2]-m*pts[i][1]-b)*(m*pts[i][1]+b),i=1..5);

−.16 · 10−7

The resulting inner product is not quite zero, but the first non-zero digit of its decimal expansion
occurs in the eighth decimal place. This is because the calculations were only done with finite
precision, and the discrepancy above is attributable to round-off errors..
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As a final remark, we observe that if you now execute the command diff( E(m,b,pts),m ),
you will obtain an error. This is due to the fact that m and b are constants at this point, and
not independent variables. If you would like to continue making use of the function E(m, b, pts)
for general m and b, you will have to unassign the values of m and b first:

> m := ’m’:
b := ’b’:

4 Fitting a cubic to data

Let us now try to fit a cubic polynomial to some data. We do so directly, without using Maple’s
built-in fitting package.

We randomly generate a set of 21 data points to be fitted to a cubic using a Maple program.
(Don’t worry about how this program works just now. We’ll get into those details later).

> Seed:=readlib(randomize)():
with(stats):
myrand := (a,b) -> evalf(a+(b-a)*(rand()/10^12)):
points_wanted := 21:

> cubic_pts := proc()
local fuzz, a, b, c, d,s,x,i;
a:= myrand(-3,3);
b:= myrand(-3,3);
c:= myrand(-3,3);
d:= myrand(-10,10);
if (myrand(-10,10) > 0) then s:=1 else s:=-1 fi;
fuzz := [ random[normald[0,0.5]](points_wanted)];
x := [ random[uniform[-3,3]](points_wanted)];
RETURN([seq([x[i],s*(a-x[i])*(b-x[i])*(c-x[i])+d+fuzz[i]],

i=1..points_wanted)]);
end:

Now we can put the data to be fitted into a list, and visualize the result with plot:

> data:=cubic_pts():
plot(data, style=point, axes=boxed);
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Now we have a set of 21 data points which are to be fitted to a cubic polynomial. A
polynomial function of degree n is determined by n+ 1 coefficients. So we define

> cub := (x,a,b,c,d)->a*x^3+b*x^2+c*x+d;

cub := (x, a, b, c, d)→ a x3 + b x2 + c x+ d

and then define the error function:

> E:=(a,b,c,d,data)->sum((cub(data[i][1],a,b,c,d)-data[i][2])^2,i=1..nops(data));

E := (a, b, c, d, data)→
nops(data)
∑

i=1

(cub(data i1, a, b, c, d)− data i2)
2

We have four parameters to determine, the coefficients of the function cub. We find its
values by

> assign(solve({diff(E(a,b,c,d,data),a)=0,
diff(E(a,b,c,d,data),b)=0,
diff(E(a,b,c,d,data),c)=0,
diff(E(a,b,c,d,data),d)=0},
{a,b,c,d}));

Of course, we do not see the answer, but the resulting values have already being assigned to
the coefficients a, b, c, d:

> cub(x,a,b,c,d);

−1.006141915x3 + .7505869176x2 + 2.487673553x+ 3.430571969

Finally, let’s make a picture of the result, showing both the data and the fitted curve:
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> with(plots):
cplot := plot(cub(x,a,b,c,d), x=-4..4, axes=boxed):
pplot := plot(data, style=point):
display({cplot,pplot});
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For comparison, let us find the answer using Maple’s built-in statistical package:
> with(CurveFitting):

LeastSquares(data,x,curve=A*x^3+B*x^2+C*x+D);

−1.006141912x3 + .7505869193x2 + 2.487673537x+ 3.430571965

For this particular version of least square fitting, we may once again interpret the error
function E geometrically as the square of the Euclidean distance between a~x3 + b~x2 + c~x1 + ~d
and the vector ~y, where ~xj = (x

j
1, x

j
2, . . . , x

j
n),

~d = d(1, 1, . . . , d) and ~y = (y1, . . . , yn). The best

fit is thus achieved when the coefficients a, b, c and d are chosen so that a~x3 + b~x2 + c~x1 + ~d
is the orthogonal projection of the vector ~y onto the subspace of R

n spanned by ~x3, ~x2, ~x1 and
(1, 1, . . . , 1). That is to say, the best fit occurs when the vectors ~y − (a~x3 + b~x2 + c~x1 + ~d) and

a~x3 + b~x2 + c~x1 + ~d are perpendicular. You should verify that this is the case for the solution
given above.

In both cases, you should consider why there is only one critical point for the error function,
and why it is of necessity a global minimum.

5 Fitting other types of funtions

In the previous constructions, we dealt with functions that depended linearly upon the param-
eters to be fitted. We found them by solving a linear system of equations, a relatively easy
task.

However, as explained at the beginning of this chapter, the same scheme works equally
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well for any function. In the general case, though, the resulting system that we must solve
to find the best fit could depend non-linearly on the parameters, and the mere existence of
solutions to such systems is not a trivial problem to settle. Take for instance, a function such
as y =

∑n
i=1 sin(mix). Assuming measurements (x1, y1), . . . , (xk, yk), we may take as our error

the function

E(m1, . . . ,mn) =
k
∑

j=1

(yj −
n
∑

i=1

sin (mixj))
2 .

Its partial derivatives are quite easy to calculate, but it is far from clear if there are values
of m1, . . . ,mn where they all vanish simultaneously. For a particular set of values, we may
ask Maple to solve the resulting system and get absolutely nothing. This either indicates an
inability of Maple to handle such a system, or worse yet, the fact that such a system has no
solution at all. Even when the latter happens, Maple itself might not be able to tell us so.

Sometimes, even if the function does not depend linearly on the coefficients, it can trans-
formed to one which does. For example, if our data points {(xi, yi)} were believed to approxi-
mate an exponential function of the form y = aekx, then setting

E(a, k) =
m
∑

i=1

(yi − aekxi)2 .

would require us to solve the system

m
∑

i=1

(yi − aekxi)ekxi = 0
m
∑

i=1

(yi − aekxi)axie
kxi = 0 .

While this isn’t impossible, it is much more straightforward to make a change of variables.
Assuming the yi are all positive (which is reasonable since we believe the data is exponential),

we can let zi = ln yi. Then we are trying to fit a function z = ln
(

aekx
)

, which reduces to the
line z = ln a+ kx. This is familiar territory, and we can just proceed as before.

6 Fitting a circle

In a slightly different vein, suppose that the data points {(xi, yi)} lie near a circle of unknown
center and radius. Note that if we did know the center, this problem would be very simple: the
desired radius would be the average distance from the points to the center. If you don’t think
very hard, you might suspect that the desired center would be very near the center of mass of
the points {(xi, yi)}, but this will only be the case if the points are evenly distributed around
the circle.

Instead, we can come up with a function that measures the error between an arbitrary circle
and our data points.
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Recall that the general equation of a circle centered at (a, b) with a radius of r is

(x− a)2 + (y − b)2 = r2.

Unlike the previous cases, there is no independent variable. (Note that we could try to fit
yi ' b±

√

r2 − (xi − a)2, but not only would the resulting equations be messy, this would bias
things very badly; do you see why?). Nevertheless, we press on.

One reasonable measure of the distance between the points and a circle is the “area differ-
ence”, that is

E(a, b, r) =
∑

i

(

(xi − a)2 + (yi − b)2 − r2
)2
.

One difficulty with this is that E is not quadratic in a, b, and r. However, Maple is able to
solve the resulting equations anyway.

We assume here that there is a routine called circle_pts which gives us points which lie
near a circle of unknown radius and center. The one we use here is similar to that in §4, and
is defined in lsq_data.txt.

> cpts:=circle_pts():
epsilon:=(pt,a,b,r) -> (pt[1]-a)^2 + (pt[2]-b)^2 -r^2;

ε := (pt , a, b, r)→ (pt1 − a)2 + (pt2 − b)2 − r2

> E:= (a,b,r,pts) -> sum( epsilon(pts[i],a,b,r)^2, i=1..nops(pts));

E := (a, b, r, pts)→
nops(pts)
∑

i=1

ε(pts i, a, b, r)
2

> sol:= {solve({diff(E(a,b,r,cpts),a)=0,
diff(E(a,b,r,cpts),b)=0,
diff(E(a,b,r,cpts),r)=0},

{a,b,r})};

sol := [ {r = 0., b = 8.598845417− 5.760818468 I, a = 10.74842676− 3.044017219 I},
{r = 0., a = 10.74842676 + 3.044017219 I, b = 8.598845417 + 5.760818468 I},
{r = 0., b = 9.123213697, a = 8.304601815},
{r = 0., a = 10.50158731 + 4.256560324 I, b = 11.57538622− 5.447431926 I},
{b = 11.57538622 + 5.447431926 I, r = 0., a = 10.50158731− 4.256560324 I},
{a = 8.224446708, r = −4.468796472, b = 8.538288341},
{a = 8.224446708, b = 8.538288341, r = 4.468796472}]
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Here we find a number of critical points for the function E, but from physical considerations,
the only reasonable choice is the circle for which r > 0.

This is the seventh entry in the above list, so we could refer to it just by sol[7]. However,
with a different set of data, it might be the second solution, or the fourth, etc. To ensure that
we always get the right one, no matter what the order is, we can use Maple’s select command
to pull out the one with r > 0. This looks more daunting than it really is: we just define a
function that returns true if that r > 0 for that solution, and false if not. Then select

returns only those elements for which the function is true. We need to use op, because we have
a list of sets, and we just want the one answer.

> goodsol:=op(select(s->if (subs(s,r)>0) then true else false fi,sol));

goodsol := {a = 8.224446708, b = 8.538288341, r = 4.468796472}

In order to see the fit, we plot the points and the circle. Note that we represent the circle
parametrically, and use subs to substitute the desired solution.

> display(
plot(cpts,style=point,scaling=constrained,axes=boxed),
plot(subs(goodsol,[a+r*cos(t),b+r*sin(t),t=0..2*Pi]))

);
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The fact that there is only one interesting critical point is no accident, however. If we let
k = a2+b2−r2, then the resulting error function H(a, b, k) = E(a, b,

√
a2 + b2 − k) is quadratic

in a, b, and k, and so we really only need to solve a linear system. It is easy to check that this
new functional H still satifies all the criteria we wanted (that is H(a, b, k) = 0 if and only if all
the data points lie on the circle C(a, b, k), H is non-negative, and it is smooth), so fitting a circle
becomes a linear problem after all. The reader should verify that, in fact, the unique minimum
of H corresponds exactly to the critical points the original function E for which r 6= 0.

The interested reader might want to consider a similar approach to fitting other conic
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sections, such as an ellipse or a hyperbola, to given data. Do you expect to be able to make
the problem linear, as in the case of the circle?

7 Robust fitting

Let us return momentarily to the problem discussed in §3: given some data (x1, y1), . . . , (xn, yn),
we found the best line that fits it. This was accomplished by measuring the square of the vertical
distance from each data point and the line y = mx+b, which led us to consider the error function

E(m, b) =
n
∑

i=1

(mxi + b− yi)
2 .

The problem was solved by finding the values of m and b where E achieves its minimum.
However, the square of the vertical distance is only one of many reasonable ways of measuring

the distance from the data points to the line mx+ b. For example, it is perfectly reasonable to
consider instead the expression 1+ (mxi+ b− yi)

2. If (xi, yi) is on the line, this value would be
equal to 1, and its logarithm would then be zero. Thus, the function

E(m, b) =
n
∑

i=1

ln
(

1 + (mxi + b− yi)
2
)

,

is also a reasonable way of measuring the distance from the data points to the line y = mx+ b,
and its minimum would produce a best fit line in this other sense. Similarly, We may argue
that the function

E(m, b) =
n
∑

i=1

|mxi + b− yi| .

is another reasonable alternative, though this time E is not even differentiable in the region of
interest (if a data point (xi, yi) happens to be exactly on the line, mxi + b − yi = 0 and the
absolute value is not differentiable at 0).

There is a priori no particular reason to prefer one error function over another. And for each
choice of such we could end up with a problem whose solution exists and produces a line that
best fit the data. Then we could compute the value of the error function for the best fit line,
value that depends upon the choice of function made. A canonical way of choosing the best
error function could be that for which this number is the smallest. But finding such a function
is quite a difficult, if not impossible, problem to solve. If we limit our attention to linear

estimators, in a sense to be explained in the last section of this chapter, the solution obtained
in §3 is optimal. In here, we pursue further the problem of finding the best fit according to the
two error functions introduced above.

Notice that if εi = mxi + b − yi, data with large errors εi excert a huge influence on the
original error function of §3 (because we use ∑ ε2i ). The two error functions mentioned above
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grow linearly (or sub-linearly) with |εi|, causing the tails to count much less heavily. We will
see this when comparing the different results.

In order to solve the problem now at hand, we first generate some “noisy” data. We load
the routines in lsq_data.txt:

> read(‘lsq_data.txt‘);

defined line_pts(), bad_line_pts(), quadratic_pts(), cubic_pts(), and circle_pts()

The data and its graphical visualization can then be obtained by:

> pts:=bad_line_pts():

> plot(pts,style=point,symbol=box);
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You should notice that while most of the data lies fairly near a line, there is one point which
is extremely far away from the rest of the data.

In order to compare results, let us first find the line given by least squares. First, we define
a function ε, which gives the signed vertical distance between a point pt and a line of slope m
and intercept b

> epsilon:= (pt,m,b) -> (m*pt[1]+b-pt[2]);

ε := (pt , m, b)→ m pt1 + b− pt2

Now we compute the regular least squares fit.

> H:=(m,b,pts)->sum(epsilon(pts[i],m,b))^2,i=1..nops(pts)):
sol:=solve({diff(H(m,b,pts),m)=0, diff(H(m,b,pts),b)=0},{m,b});

sol := {m = −.9455490512, b = 8.528125863}

> display({plot(pts,style=point,symbol=box),plot(subs(sol,m*x+b),x=-10..10)},
view=-20..20);
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In the above, we restricted our attention to the region −20 < y < 20, where the line and
the majority of the data lies. As you can see, the fit to the majority of the data is very poor,
because of the influence exerted by the anomalous data point.

Now, let’s try again, this time minimizing ln(1+ε2i /2), which behaves like ε
2 for small errors,

but grows very slowly for large ones.

> R:=(m,b,pts)->sum(ln(1+epsilon(pts[i],m,b)^2/2),i=1..nops(pts));

R := (m, b, pts)→
nops(pts)
∑

i=1

ln(1 +
1

2
ε(pts i, m, b)

2)

Here’s what the functional we want to minimize looks like:

> plot3d(R(m,b,pts),m=-5..0,b=-20..0,style=patchcontour, axes=boxed);

–5
–4

–3
–2

–1
0

m

–10 –5 0 5 10

b

80

120

160

200

The equations we want to solve are not linear. In fact, they’re messy enough that Maple
needs some help to find the minimum. By examining the plot and zooming in on the minimum,
we can choose an appropriate region.

> plot3d(R(m,b,pts),m=-2..-1.5,b=3..5,view=38..50, axes=boxed);
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Once we have an appropriate region, we can ask Maple to look for the solution numerically
using fsolve.

> rs:=fsolve( {diff(R(m,b,pts),m)=0, diff(R(m,b,pts),b)=0},
{m,b},m=-2..-1.5, b=3..5);

rs := {m = −1.822071903, b = 3.789519722}

And here we can compare the two lines found.
> p := plot(pts,style=point):

l := plot(subs(sol,m*x+b),x=-10..10):
s := plot(subs(rs,m*x+b),x=-10..10,color=blue):
plots[display](p,l,s,view=-20..20);
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Let us now try to minimize
∑ |εi|. Since this function is not even differentiable near εi = 0,

we have to work harder to get less.
> A:=(m,b,pts)->sum(abs(epsilon(pts[i],m,b)),i=1..nops(pts));

A := (m, b, pts)→
nops(pts)
∑

i=1

|ε(pts i, m, b)|
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Displaying the graph of this function gives us an idea about where its minimum lies:
> plot3d(A(m,b,pts),m=-5..0,b=-10..10,style=patchcontour, axes=boxed);
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But coercing Maple into finding a numerical approximation to it is not so easy. There are
reliable and efficient ways to determine the location of the minimum to any precision (at least
given some hints), but they are inappropriate for the scope of this chapter, and will not be
considered here. Instead we may zero in on the minimum by looking at where the lowest point
is and repeatedly restricting the domain. After several iterations, we get the following.

> plot3d(A(m,b,pts),m=-1.0875..-1.0872,b=3.817..3.8178, axes=boxed);
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This leads us to a choice of m = −1.80733, b = 3.8174 as our “best” line. This is almost
(but not quite) the same line found using our distance R(m, b).

8 A nod toward statistics

In the problem we have treated so far, there have been a distinction made between the x and
y coordinate of a data point (xi, yi): the x coordinate is thought as the predictor variable,
while the y coordinate is the predicted value. The distinction is significant. If, for example,
we think of x as a function of y, the best line that fits the data using the method of least
square is, in general, different than the corresponding line when thinking of y as a function of
x. Indeed, if we use the same data as in §3, the best line x = ny + c that fits it is given by
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x = 0.6677953348y−0.738807374. Solving in terms of y yields y = 1.497464789x+1.106338028;
this differs significantly from the line y = 1.431451613x+ 1.271370968 found in §3.

In this case, we use as error the square of the horizontal distance, and it is somewhat
perturbing that this similarly reasonable approach leads to a best fit that differs from the one
obtained when employing vertical distances.

The situation can be made even worse if neither x nor y is a predictor variable. In this case,
we want to minimize the shortest distance to a line y = mx + b rather than the vertical (or
horizontal) distance. The resulting equations will not be linear, nor can they be made linear.
However, Maple will be able to find the critical points with no trouble. There will always be
at least two (there may be a third with a huge slope and intercept)– one is the minimum,
and the other is a saddle point. It is worth thinking for a few minutes about the geometric
interpretation of the saddle point in terms of the problem at hand.

In practice, the perturbing fact that different but reasonable error functions lead to best fits
that are different is resolved by knowing what part of the data is the input and what part is
predicted from it. This happens often enough, though not always. We thus can make a good
choice for E and solve a minimization problem. That settled, we are still left with the problem
of demonstrating why our choice for E is a good one.

It is rather easy to write down the solution to the problem in §3: if

x̄ =
1

n

n
∑

i=1

xi , ȳ =
1

n

n
∑

i=1

yi ,

then

m̂ =
n
∑n

i=1 xiyi −
(

∑n
j=1 xj

)(

∑n
j=1 yj

)

n
∑n

i=1 xixi +
(

∑n
j=1 xj

)2 =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
, b̂ = ȳ −mx̄ .

If yi are assumed to be the values of random variables Yi which depend linearly upon the
xi,

Yi = mxi + b+ εi ,

with errors εi that are independent from each other, are zero on average and have some fixed
variance, then the value of m given above is the best estimator of the slope among all those
linear estimators that are unbiased. “Best” here is measured by calculating the deviation from
the mean, and this best estimator is the one that produces the smallest such deviation.

This conclusion follows by merely making assumptions about the inner products of the data
points (x1, . . . , xn) and (y1, . . . , yn). Staticians often would like to answer questions such as the
degree of accuracy of the estimated value of m and b. For that one would have to assume more
about the probability distribution of the error variables Yi. A typical situation is to assume that
the εi above are normally distrubuted, with mean 0 and variance σ

2. Under these assumptions,
the values of m and b given above are the so-called maximum likelihood estimators for these
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two parameters, and there is yet one such estimator for the variance σ2. But, since we assumed
more, we can also say more. The estimators m̂ and b̂ are normally distributed and, for example,
the mean of m̂ ism and its variance is σ2/

∑n
i=1(xi−x̄)2. With this knowledge, one may embark

into determining the confidence we could have on our estimated value for the parameters. We
do not do so in here, but want to plant the idea in the interested reader, whom we refer to
books on the subject.



Chapter 3

The Art of Phugoid

In this chapter, we will explore some aspects of mathematical model of glider flight. This model
is called Lanchester’s phugoid theory1, developed by Frederick Lanchester [Lan] at beginning
of the twentieth century. While this model has its drawbacks, it still is used today to explain
oscillations and stalls in airplane flight.

Since this model, like many models, is a set of differential equations, we will need some
results which are typically covered in a course on differential equations. We will cover the
relevant material briefly here, but readers needing a more in-depth treatment are encouraged
to look in a text on ordinary differential equations, such as [BDH], [HW], or [EP]. Of these,
the approach in [BDH] is perhaps closest to the one presented here.

1 The Phugoid model

The Phugoid model is a system of two nonlinear differential equations in a frame of reference
relative to the plane. Let v(t) be the speed the plane is moving forward at time t, and θ(t) be
the angle the nose makes with the horizontal. As is common, we will suppress the functional
notation and just write v when we mean v(t), but it is important to remember that v and θ
are functions of time.

1Folklore has it that this name was chosen by Lanchester because he wanted a classically-based name for
his new theory of oscillations occuring during flight. Since the Greek root phug (φνγη, pronounced “fyoog”) as
well as the Latin root fug- both correspond to the English word “flight”, he decided on the name “phugoid”.
Unfortunately, in both Greek and Latin, this means “flight” as in “run away” instead of what birds and airplanes
do— the same root gives rise to the words “fugitive” and “centrifuge”. The Latin for flight in appropriate sense
is volatus; the Greek word is potê (πoτη).

3:1
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If we apply Newton’s second law of motion (force = mass × acceleration) and examine the
major forces acting on the plane, we see easily the force acting in the forward direction of the
plane is

m
dv

dt
= −mg sin θ − drag.

This matches with our intuition: When θ is negative, the nose is pointing down and the
plane will accelerate due to gravity. When θ > 0, the plane must fight against gravity.

In the normal direction, we have centripetal force, which is often expressed as mv2/r, where
r is the instantaneous radius of curvature. After noticing that that dθ

dt
= v/r, this can be

expressed as v dθ
dt
, giving

mv
dθ

dt
= −mg cos θ + lift.

Experiments show that both drag and lift are proportional to v2, and we can choose our
units to absorb most of the constants. Thus, the equations simplify to the system

dv

dt
= − sin θ −Rv2 dθ

dt
=
v2 − cos θ

v

which is what we will use henceforth. Note that we must always have v > 0.
It is also common to use the notation v̇ for dv

dt
and θ̇ for dθ

dt
. We will use these notations

interchangeably.

2 What do solutions look like?

Now that we have some equations in hand, our first goal is to understand what the solutions
look like. Note that the equations are nonlinear, and we cannot hope to find explicit formulae
for the solutions— they don’t exist except in very special cases.

Let’s deal with the easiest case first: pretend that drag doesn’t exist and set R = 0. Does
this help?

The equations become

dv

dt
= − sin θ dθ

dt
=
v2 − cos θ

v
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Now, let’s see what we can say about the solutions to this equation. First, notice that there
must be many solutions: Any choice of initial conditions θ(0) = θ0, v(0) = v0 gives rise to a
different solution. (Informally, if the glider starts with a different initial angle and/or velocity,
it will fly along a different path. If we say it this way, it seems so obvious we shouldn’t need to
say it at all.) Can we find any solutions at all?

There is one very easy solution to find. Notice that if we can find a choice of θ and v so that
dv
dt
= 0 = dθ

dt
, then since their derivatives are zero, v(t) and θ(t) must be constant functions.

But solving this is simple:

0 = − sin θ 0 =
v2 − cos θ

v

is easily seen to be true when θ = 0 and v = 1. In fact, θ can be any multiple of 2π. So we
have found the special solution

v(t) ≡ 1 θ(t) ≡ 0.

This is a glider which always flies level, with a constant velocity of 1.

What about other solutions? Now we must work harder. There is no hope to find a
general analytic expression for v(t) and θ(t), but that does not mean all is lost. We can get
an idea of how other solutions behave by thinking about what it means to have a solution
ϕ(t) = [θ(t), v(t)].

First, notice that such a solution ϕ can be thought of as a parametric curve in the (θ, v)-
plane which passes through the point ϕ(0) = [θ0, v0]. At any point along this parametric curve,
we can calculate its derivative:

ϕ′(t) =

[

d

dt
θ(t),

d

dt
v(t)

]

=
[

θ̇(t), v̇(t)
]

.

But we started out with expressions for θ̇ and v̇: our original differential equation. Because
our differential equations only involve t implicitly via θ and v (the system is autonomous), we
need only know the values of θ and v to know the tangent vector to any solution curve passing
through that point.

We can get an idea of how the solutions behave by making a picture of the vector field
corresponding to this: At each value for the pair (θ, v), we draw the vector 〈θ̇, v̇〉, which only
depends on (θ, v).

To get maple to do this, we can use the fieldplot command. Because the arrows in the
fieldplot show not only direction but also relative magnitude, we shouldn’t get too close to
the v = 0 axis or they will overwhelm the smaller arrows for which occur for larger v.

> plots[fieldplot]( [ (v^2 - cos(theta))/v, -sin(theta) ],
theta=-Pi..Pi, v=0.2..3, arrows=slim);
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We can certainly see that near the constant solution {θ = 0, v = 1}, nearby solutions rotate
around it in a clockwise manner. This “rotation” in the θ−v coordinates corresponds to a flight
path which wobbles: the nose angle alternately increases and decreases, as does the velocity.
For v large, it seems that the solutions move from left to right— θ constantly increases, which
means that the glider is always increasing its nose angle. This means it is doing loops.

We can also use the DEplot command from Maple’s DEtools package to produce a direction
field. The direction field is obtained from the vector field by rescaling all nonzero vectors to
be of unit length. Sometimes discarding the extra information makes it easier to see what is
happening. In addition, DEplot has other very useful options, and will be one of our primary
tools throughout this chapter.

For convenience, we will name our system of differential equations as phug, so that we
needn’t keep retyping them.

> phug := [ diff(theta(t),t) = (v(t)^2 - cos(theta(t)))/v(t),
diff(v(t),t) = -sin(theta(t)) - R*v(t)^2 ];

R:=0;

phug := [
∂

∂t
θ(t) =

v(t)2 − cos(θ(t))
v(t)

,
∂

∂t
v(t) = −sin(θ(t))]

R := 0

> with(DEtools):
DEplot( phug, [theta(t), v(t)], t=0..1, theta=-Pi..Pi, v=0.01..3);
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We can also ask maple to plot a number of solutions corresponding to several initial con-
ditions. Rather than typing in 11 initial conditions, we can use seq to generate them. We
tell maple that the solution curves should be black, because otherwise it uses a sickly yel-
low. If we had wanted each solution curve to be a different color, we could use something like
linecolor=[seq(COLOR(HUE,i/10),i=0..10)].

> DEplot( phug, [theta(t), v(t)], t=0..5,
[seq([theta(0)=0, v(0)=1+0.2*i], i=0..10)],
theta=-Pi..3*Pi, v=0.01..3, linecolor=black );
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The above figure confirms our earlier impressions about the “wobbling” and “looping” so-
lutions. We’ll see how to get Maple to demonstrate this more explicitly in section 5, where we
will plot the path of the glider through space (i.e., in x-y coordinates).

Just to see how things differ if we make R nonzero, let’s change R and get Maple to show
us what happens. We need to adjust the stepsize to get a reasonable accuracy; what precisely
this does is described in the next section.
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> R:=0.1;
DEplot( phug, [theta(t), v(t)], t=0..5,

[seq([theta(0)=0, v(0)=1+0.2*i], i=0..10)],
theta=-Pi..3*Pi, v=0.01..3, linecolor=black, stepsize=0.1 );

R := .1
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> R:=3;
DEplot( phug, [theta(t), v(t)], t=0..5,

[seq([theta(0)=0, v(0)=1+0.2*i], i=0..10)],
theta=-Pi..3*Pi, v=0.01..3, linecolor=black,stepsize=0.1 );

R := 3;
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The behavior of the glider appears to be dramatically affected by the drag parameter R.
One of our main goals in this chapter will be to classify the types of solutions that are possible
as a function of the drag parameter R.

3 Existence of Solutions

We’ve been acting as though just by specifying an initial condition, there must be a solution,
and it must be unique (that is, the only one corresponding to that initial condition). And, in
fact, this is typically true for any “nice” differential equation. But which differential equations
are “nice” enough?

We won’t prove the theorem here, but we will state it. The reader is encouraged to look up
the proof in any differential equations text, such as [BDH] or [HW].

Theorem 3.1 Consider the differential equation

d~x

dt
= ~F (~x, t).

If ~F is continuous on an open set in containing (~x0, t0), then there is a solution ~x(t) which is

defined on some interval (t0 − ε, t0 + ε) which satisfies the initial value problem

d~x

dt
= ~F (~x, t) ~x(t0) = ~x0.

Furthermore, if ~F has continuous partial derivatives, this solution is unique.

In fact, the hypothesis can be weakened a little bit and still preserve the uniqueness. As
long as ~F is at least Lipshitz in ~x, the solution will be unique. A function ~F if called Lipschitz
if there is some K so that

|~F (~x1, t)− ~F (~x2, t)| < K|~x1 − ~x2|
for all t, ~x1, and ~x2. This condition says, roughly, that ~F doesn’t spread out too quickly. All
functions with continuous partials are automatically Lipshitz.

This means that for us, as long as we stay away from the place where our differential equation
isn’t defined (i.e. ensure that v > 0), we can be assured that there is a solution through every
point, and that solution is unique. Notice that since our equations are autonomous (the right-
hand side has no explict dependence on t), uniqueness of solutions means that solutions cannot
cross in the (θ, v)-plane.

4 Numerical Methods

What does Maple do when you ask it to display a solution of a differential equation with
DEplot? Obviously, it cannot solve the equations analytically, since solutions don’t always
exist in closed form. Instead, it approximates them numerically.
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4.1 Euler’s method

To get an idea of how this can be done, take a look
again at the direction field for the glider. By looking
at how the arrows point, you can almost guess how
the solution must turn. From a given initial condi-
tion, move in the direction of the arrow to the next
position. At that new point, step in the direction of
the vector at that point, and so on. This is the idea
behind the simplest numerical integration scheme,
called Euler’s method.
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More precisely, given a differential equation and an initial condition

d~x

dt
= ~F (~x, t) ϕ(t0) = ~x0,

the goal is to construct a sequence of points ~x0, ~x1, ~x2, . . . , ~xn which approximate the solution ϕ
at times t0, t1, t2, . . . , tn. We take our initial point to be the initial condition, and choose some
small number h > 0 called the stepsize. Then we set

~xi+1 = ~xi + h~F (~xi, ti) ti+1 = ti + h

for 0 ≤ i ≤ n − 1. This very simple scheme works best for small values of h; the error in the
approximation for a fixed time interval is proportional to h. This means that to improve the
accuracy of a numerical solution by a factor of 10, we need to do about 10 times more work.

Maple doesn’t typically use Euler’s method because the errors accumulate too quickly. To
see this, we reproduce one of the earlier figures from §2 using Euler’s method.

> DEplot( phug, [theta(t), v(t)], t=0..5,
[seq([theta(0)=0, v(0)=1+0.2*i], i=0..10)],
theta=-Pi..3*Pi, v=0.01..3, linecolor=black, method=classical[foreuler]);

0

0.5

1

1.5

2

2.5

3

v

–2 2 4 6 8 10
theta

While the errors in the above figures are considerable, using a much smaller stepsize (say,
stepsize=0.01) will essentially reproduce the earlier figure, with a lot more computation.
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4.2 Numerical Solutions, Numerical Integration, and Runge-Kutta

To get some ideas about improving on Euler’s method, let’s first notice that Euler’s method
corresponds exactly to the left-hand Riemann sum when computing a numerical approximation
to an integral. You may recall from calculus that the left-hand sum converges to the value of
the integral, but you must take a large number of subdivisions to get any accuracy.

A more efficient method is the trapezoid rule, which is the average of the left-hand and
right-hand sum. There is a numerical scheme for integrating ODEs which corresponds to this,
known variously as the improved Euler method or the Heun formula. In the trapezoid rule, we
compute the function at the left and right endpoints of the function and average the result; the
analog of this would require us to average the value of the vector field at our current point and
at the next point. Perhaps you see the circularity implicit in that reasoning: to know the next
point, we would need to solve the differential equation. So, instead we fudge a bit: we get our
approximation of the next point by using Euler’s method. More specifically, using the notation
of §4.1, given an approximation ~xi at time ti, we find the next one using the scheme below.

ti+1 = ti + h
~k` = ~F (~xi, ti) slope at the left side of the interval
~kr = ~F (~xi + h~k`, ti+1) slope at the right side of the interval

~xi+1 = xi + h(~k` + ~kr)/2

To do the improved Euler method, we need to evaluate the vector field twice as often as the
regular Euler method, but there is a big gain in accuracy. The error of the approximation for
a fixed time interval is proportional to h2. Thus, if we decrease h by a factor of 10, we should
expect to reduce the error 100-fold. You can get Maple to use the improved Euler method by
specifying method=classical[heunform] as an argument to DEplot and related commands.

You might remember from your calculus course that Simpson’s rule can get very accurate
numerical approximations for integrals with a very few number of points. This is because
Simpson’s rule is a fourth-order method: the error in the approximation is proportional to h4.
For Simpson’s rule, we evaluate the function at the right endpoint, the left endpoint, and the
middle, and then take a weighted average of those values.

The analog of Simpson’s rule for differential equations is called the Runge-Kutta method2,
developed by the German mathematicians C. Runge and W. Kutta at the end of the nineteenth

2In fact, there is a whole family of such methods, of various orders. But generally, if someone says “Runge-
Kutta” without specifying the order, they mean this fourth-order Runge-Kutta.
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century. It takes a linear combination of four slopes, as below:

ti+1 = ti + h
~k` = ~F (~xi, ti) slope at the left side of the interval
~km = ~F (~xi +

h
2
~k`, ti +

h
2
) slope at the middle of the interval

~kc = ~F (~xi +
h
2
~km, ti +

h
2
) corrected slope at the middle of the interval

~kr = ~F (~xi + h~kc, ti+1) slope at the right side of the interval

~xi+1 = xi + h(~k` + 2~km + 2~kc + ~kr)/6

When the slope depends only on t and not on ~x, then ~km and ~kc are the same, and the formula
reduces exactly to that of Simpson’s rule.

Runge-Kutta is probably the most commonly used method of numerical integration, be-
cause of its generally high accuracy. Like Simpson’s rule, it is a fourth-order method, so
the error is proportional to h4. Maple has several numerical methods for ODEs built in to
it; see the help page on dsolve[numeric] for more information about them; the ones we
have described are “classical” methods, and are described (along with others) on Maple’s
help page for dsolve[classical]. Unless asked to do otherwise, Maple’s DEplot command
uses the fourth-order Runge-Kutta method described above (Maple’s name for this method
is classical[rk4]), although the numeric option of dsolve defaults to a variation called
fourth-fifth order Runge-Kutta-Fehlberg, which Maple refers to as rkf45.

5 Seeing the flight path

In §2, we exhibited a number of solutions to the phugoid model with various initial conditions
and values for the drag, as plots of the parametric curves [θ(t), v(t)]. From these, we could
deduce an approximate path of the glider through space via reasoning like “θ(t) is monotonically
increasing, so the glider must be doing loop-the-loops”. We will now discuss how to solve for
the position [x(t), y(t)] directly.

First, notice that if we know the value of v and θ at some time t, we also have dx
dt
and dy

dt
at

that t, since
dx

dt
= v cos θ and

dy

dt
= v sin θ.

So, one way to find x(t) and y(t) would be to solve the original ODE (numerically) for θ(t) and
v(t), obtain a new differential equation, and then solve that numerically for x(t) and y(t).

Aside from the fact that there is an easier way, there is a serious practical problem with
this approach. When we get a numerical solution [θ(t), v(t)], this is a collection of points
(θ0, v0, t0), (θ1, v1, t1), . . . , (θn, vn, tn) along a curve. This means we only know the vector field
for (x, y) at those points. It is highly unlikely that these will be the points we need to use
Runge-Kutta. We could use these to approximate our (x, y)-solution using Euler’s method,
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although even then we would have to program it ourselves rather than use Maple’s built-in
method.

If you think for just a moment, you should realize that there is no reason we must find θ(t)
and v(t) before attempting to find x(t) and y(t). Instead, we can augment the original system,
adding in the new equations for ẋ and ẏ. Then, we can use numerical methods to solve for
[θ(t), v(t), x(t), y(t)] all in one step. The methods we discussed in §4.2 apply equally well to
vector fields in any number of variables.

Consequently, we rewrite our phugoid system as

dθ

dt
=
v2 − cos θ

v

dv

dt
= − sin θ −Rv2 dx

dt
= v cos θ

dy

dt
= v sin θ.

Using this system, we need to specify our initial conditions as (θ0, v0, x0, y0), and each solution
is a curve in R

4 parameterized by time. We can take a projection of this curve to get our
solutions in θ-v or x-y coordinates.

Asking Maple to solve this new system is almost the same as before, but we must specify
the additional variables and use the scene option to DEplot to tell Maple which projection we
want to see. Note that we reset R to ensure that it appears in the equations as an arbitrary
constant, rather than with any previously assigned value.

> R:=‘R‘:
xphug :=[ diff(theta(t),t) = (v(t)^2 - cos(theta(t)))/v(t),

diff(v(t),t) = -sin(theta(t)) - R*v(t)^2 ,
diff(x(t),t) = v(t)*cos(theta(t)),
diff(y(t),t) = v(t)*sin(theta(t))];

xphug := [ ∂
∂t
θ(t) =

v(t)2 − cos(θ(t))
v(t)

, ∂
∂t
v(t) = −sin(θ(t))−R v(t)2,

∂
∂t
x(t) = v(t) cos(θ(t)), ∂

∂t
y(t) = v(t) sin(θ(t))]

Now we ask Maple to plot two solution curves in both θ, v coordinates and x, y. One is
started with an initial angle of θ = 0 and velocity v = 1.5 at a height y(0) = 1; the other starts
with θ = 0, v = 2.5, and initial height y = 2. We also use display with an array to show the
two scenes side by side.

> R:=0;
plots[display](array([
DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[theta,v]),

DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[x,y]),

])));
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R := 0;
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If we change the value of R to 0.2 and repeat the command, we can see how things change
when there is friction. Notice how spiraling towards the fixed point in the θ-v coordinates
corresponds to a plane which is diving with an oscillatory motion.

> R:=0.2;
plots[display](array([
DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[theta,v]),

DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[x,y]),

])));

R := 0.2;
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Finally, we redo the pictures with a large amount of friction (R = 3). Note how the glider
acts more like a rock than a glider, and there is no oscillation at all.

> R:=3;
plots[display](array([
DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[theta,v]),

DEplot(xphug, [theta,v,x,y], t=0..15,
[[theta(0)=0,v(0)=1.5,x(0)=0,y(0)=1],[theta(0)=0,v(0)=2.5,x(0)=0,y(0)=2]],
theta=-Pi..5*Pi/2, v=0.1..3, x=-1..10, y=0..4,
linecolor=black, stepsize=0.1, scene=[x,y]),

])));

R := 3;
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6 Fixed Point Analysis

So far, the cases we’ve looked at seem to have a number of common features. Each has has
a solution with θ(t) and v(t) constant; there are solutions which immediately tend toward the
constant solution (or oscillate around it), and solutions which do some number of loops first (for
R = 3, we didn’t demonstrate this– if the inital angle is 0, a solution needs an initial velocity
larger than 86.3 before it will do a loop). How do the possible solutions depend on the value of
R? For example, the behavior of solutions for R = 0.1 and R = 0.2 are quite similar, but are
dramatically different from R = 0 and R = 3.

One way we can get a better handle on exactly how the behavior of the solutions depends
on R is to examine what happens to solutions near the constant solution. If we look in the θ-v
plane, this solution corresponds to a single point, which is often referred to as a “fixed point”.
We explicitly found the fixed point {θ(t) = 0, v(t) = 1} solution for R = 0 in §2 by noticing
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that whenever θ̇ = 0 and v̇ = 0, we must have a constant solution (and vice-versa). Using
solve, we can get maple to tell us the where the fixed point is for arbitrary values of R. We
use convert to insist that maple represent the result as a radical, instead of using the RootOf
notation.

> R:=’R’:
FixPoint:=convert(

solve({(v^2-cos(theta))/v=0,-sin(theta)-R*v^2=0}, {theta,v}),
radical);

FixPoint := {v = ( 1

R2 + 1
)(1/4), θ = arctan(−R

√

1

R2 + 1
,

√

1

R2 + 1
)}

So, we see that there is a fixed point for all values of R (since 1 + R2 is always positive,
the radical always takes real values). For R > 0, θ(t) at this fixed solution is negative, so this
corresponds to a diving solution. As R increases, the angle of the dive becomes steeper and
steeper.

What can we say about behaviour of solutions near this fixed solution?
In order to answer this, notice that we can apply Taylor’s theorem to the right-hand side of

our system of differential equations. That is, think of our differential equation as being in the
vector form

d ~X

dt
= ~F ( ~X),

where (in our case) ~X is [θ(t), v(t)], and ~F (X) = [(v2 − cos(θ))/v, − sin(θ) − Rv2]. Taylor’s

theorem says that for ~X near ~X0,

~F ( ~X) = ~F ( ~X0) +D~F ( ~X0)( ~X − ~X0) + higher order terms,

where D~F ( ~X0) is the Jacobian of ~F evaluated at ~X0. Since ~X0 is a fixed point, ~F ( ~X0) is the
zero vector. Hence, we can get a good idea of what is happening close to the fixed point by
studying the linear system of differential equations given by the derivative at the fixed point.

First, we give a brief refresher about linear 2×2 systems of equations. The reader is refered
to the texts in the references for more comprehensive treatment of this topic.

6.1 Linear Systems of ODEs

Linear differential equations (with constant coefficients) are the simplest ones to solve and
understand. Such equations have the form dX

dt
= AX, where A is an n× n matrix and X is an

n-vector. We’ll be content with n = 2.
First, notice that X = 0 is always a fixed point for this system, and it is the only one.

Secondly, if X1(t) and X2(t) are solutions to the system, then so is X1(t)+X2(t). This property
is called superposition and will be very useful.
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Let’s look at the simplest case for the 2× 2 system: A =
(

a 0
0 d

)

, that is,

ẋ = ax
ẏ = dy

If we have an initial condition with y(0) = 0, then y(t) = 0. This means that the problem
reduces to the one-dimensional case, and x(t) = x(0)eat. If a > 0, the solution moves away
from the origin along the x-axis as t increases; if a < 0, the solution moves toward the origin.
If the initial condition is on the y-axis, the sign of d controls whether the solution moves away
(d > 0) or towards (d < 0) the origin. Because of the superposition property mentioned before,
an initial condition with x(0) 6= 0 and y(0) 6= 0 gives rise to a solution which is a combination
of these two behaviours.

a=+4     d=+2   (source)
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a=–4     d=+2   (saddle)
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a=+4     d=–2   (saddle)
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a=–4     d=–2   (sink)
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–1
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1

2

y

–2 –1 0 1 2x

A large number of linear systems behave very similarly to the cases above, except the
straight-line solutions may not lie exactly along the coordinate axes.
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Suppose there is a solution of Ẋ = AX which lies along a straight line, that is, along some
vector ~v. Because the system is linear, this means the tangent vectors to this solution must
be of the form λX for some number λ. Such a number λ is called an eigenvalue, and the
corresponding vector ~v is the corresponding eigenvector. Note that in the case above, we had
eigenvalues a and d with eigenvectors [1, 0] and [0, 1].

To find the eigenvalues, we need to solve

AX = λX, or equivalently, (A− λI)X = 0.

This can only happen if X is the zero vector, or the determinant of A−λI is zero. In the latter
case, we must have

(a− λ)(d− λ)− bc = 0,

That is,
λ2 − (a+ d)λ+ (ad− bc) = 0.

Using the quadratic formula, we see that the eigenvalues must be

λ =
(a+ d)±

√

(a+ d)2 − 4(ad− bc)

2
.

The quantity a+ d is called the trace of A (more generally, the trace of a matrix is the sum of
diagonal entries), and ad − bc is the determinant of A. The eigenvalues of a 2 × 2 matrix can
be expressed in terms of the trace and the determinant3 as

TrA±
√

(TrA)2 − 4 detA
2

.

We’ll use this form again in a little while.

For linear systems, the eigenvalues determine the ultimate fate of solutions to the ODE.
From the above, it should be clear that there are always two eigenvalues for a 2 × 2 matrix
(although sometimes there might be a double eigenvalue, when (TrA)2 − 4 detA = 0). Let’s
call them λ1 and λ2.

We’ve already seen prototypical examples where the eigenvalues are real, nonzero, and
distinct. But what if the eigenvalues are complex conjugate (which happens when (TrA)2 <
4 detA)? In this case, there is no straight line solution in the reals. Instead, solutions turn
around the origin. If the real part of the eigenvalues is positive, solutions spiral away from the
origin, and if it is negative, they spiral towards it. If the eigenvalues are purely imaginary, the
solutions neither move in nor out; rather, they circle around the origin.

We can summarize this in the table below. We are skipping over dealing with the degenerate
cases, when λ1 = λ2 and when one of the eigenvalues is zero.

3It is true for all matrices that the trace is the sum of the eigenvalues, and the determinant is their product.
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λ1 > λ2 > 0
source

λi complex, Reλ > 0
spiral source

λ1 < λ2 < 0
sink

λi complex, Reλ < 0
spiral sink

λ1 < 0 < λ2

saddle
λi complex, Reλ = 0
center

Finally, we remark that there is a convenient way to organize this information into a single
diagram. Since the eigenvalues of A can be written as

TrA±
√

(TrA)2 − 4 detA
2

,

we can consider the matrix A as being a point in the Trace-Determinant plane. Then the
curve where (TrA)2 = 4 detA is a parabola. If A is above this parabola, it has complex
eigenvalues. Furthermore, if the determinant is negative, we must have a saddle because4
√

(TrA)2 − 4 detA > TrA, which means there is one positive and one negative eigenvalue.
Finally, if the determinant is positive, the eigenvalues (or their real part, if they are complex)
is the same sign as the trace of A. We summarize this in the diagram below.

Tr

Det

saddle

source

spiral source
center

spiral sink

sink

4Since the determinant is the product of the eigenvalues, the only way it can be negative is if they are of
opposite signs.
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6.2 Fixed Points for the Glider

We now return to our nonlinear system, and look at the linearization near the fixed point. As
we saw earlier in this section, for every value of R the Phugoid model

dθ

dt
=
v2 − cos θ

v

dv

dt
= − sin θ −Rv2

has a fixed point at

θ = − arctan
(

R

√

1

1 +R2

)

v = 4

√

1

1 +R2
.

We now calculate the Jacobian matrix, using Maple.
> with(linalg):

R:=’R’:
J:=jacobian( [(v^2-cos(theta))/v, -sin(theta)-R*v^2], [theta, v]);

J :=





sin(θ)

v
2− v2 − cos(θ)

v2

−cos(θ) −2Rv





Once we know the trace and determinant of the Jacobian matrix at the fixed point, we
can use that information to determine how its type (sink, source, saddle, etc.) depends on
R. Rather than solve for the eigenvalues directly, we will compute the trace and determinant,
which have a simpler form in this case.

First, let’s find the fixed point again, issuing the same command we did earlier. Then, we’ll
substitute that into the result of trace and det to calculate the trace and determinant at the
fixed point.

> FixPoint:=convert(
solve({(v^2-cos(theta))/v=0,-sin(theta)-R*v^2=0}, {theta,v}),
radical);

FixPoint := {θ = arctan(−R
√

1

R2 + 1
,

√

1

R2 + 1
), v = (

1

R2 + 1
)(1/4)}

> trfix := simplify(subs(FixPoint, trace(J)));
detfix:= simplify(subs(FixPoint, det(J)));

trfix :=
−3R

(R2 + 1)1/4

detfix := 2
√
R2 + 1
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So, we see that for all real values of R, the determinant is positive (meaning saddles are
impossible). Furthermore, for R > 0, the trace is negative, so the fixed point is always a sink.
(When R = 0, the trace is zero, which means it is possible for this fixed point to be a center.5)
From the plots we made earlier, we expect that for small values of R, we will have a spiral sink,
but it will probably not spiral for sufficiently large values of R. We can check this by solving
for the point where Tr(J)2 = 4det(J), which happens when R = 2

√
2.

> solve( (trfix)^2 = 4*detfix, R);

2
√
2, −2

√
2

7 Qualitative Classification of Solutions

This analysis of the previous section allows us to completely classify what happens in the
Phugoid model for all R ∈ [0,∞). In all cases, the fixed point in (θ, v) coordinates corresponds
to the solution

θ(t) = − arctan
(

R

√

1

1 +R2

)

v(t) = 4

√

1

1 +R2
x(t) =

t

(1 +R2)
3
4

y(t) =
−R t

(1 +R2)
3
4

R = 0: In this case, there is no drag. The fixed point at θ = 0, v = 1 corresponds to a glider
flying level with a constant speed (labeled A in the figures below). The fixed point is a
center in θ, v coordinates: nearby solutions are closed curves and correspond to a glider
with an oscillatory path, alternately diving and climbing (labeled B). For initial conditions
further away from the fixed point, v(t) oscillates, but θ(t) constantly increases (see D).
Such solutions correspond to a glider endlessly looping, and a pilot with a severe case of
nausea. Between these two is a solution which cannot be continued beyond a certain time
(C), because v(t) becomes zero and our equations are no longer defined. This corresponds
to a glider which stalls.
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5We didn’t address this point. If the trace is nonzero, it is impossible to have a center. But if the trace
is zero, then the higher-order terms in the Taylor series play a role, and anything is possible. In fact, it can
be shown that the fixed point for R = 0 is indeed a center. One way to do this is to show that the quantity
E(θ, v) = v3 − 3v cos θ must be constant for any solution when R = 0. Thus, the solutions are the level sets of
E, which has a local minimum at θ = 0, v = 1. Around a local minimum, the level sets are simple closed curves,
so the fixed point is indeed a center.
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0 < R < 2
√
2: Here the fixed point (A) corresponds to a glider which dives with a constant

velocity and not too steep an angle (the steepest angle is slightly less than π/4 below
horizontal). The fixed point is a spiral sink: nearby initial conditions spiral into it (B).
Such a spirals corresponds to a glider for which the angle and velocity constantly oscillate,
but these oscillations get smaller and smaller as time passes, limiting on the same angle
and velocity as the fixed point. Solutions with initial conditions further away (D) from the
fixed point do some number of loops before settling into a pattern of oscillations which
limit on the diving solution. Between the solutions which do k loops and those which do
k + 1 loops lies a solution which stalls out after k loops (C) — at some time the solution
gets to θ = 2kπ + π/2 (i.e. going straight up) and velocity v = 0.
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R ≥ 2
√
2: The fixed point is a sink corresponding to a steeply diving solution.6 Causing the

glider to loop becomes increasingly difficult as R increases. For example when R = 3, if
the initial angle θ is zero, an initial velocity of larger than 86.3 is required to get the glider
to do one loop. If the initial angle differs from that of the fixed point, the glider fairly
quickly turns towards that angle. No oscillation occurs; the angle can pass the limiting
angle at most once.
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We have shown that for R < 2
√
2, the fixed point is a spiral sink: nearby solutions oscillate

toward it. We should, however, point out that while the oscillations are always present mathe-
matically, they can be very hard to discern. To emphasize this, we will compare a solution in
the θ, v-plane for R = 2 (a spiral sink) and R = 3 (a sink with two real eigenvalues).

6For R = 2
√
2, the linearization corresponds to a degenerate case with a double eigenvalue, rather than a

regular sink. However, what we say here still applies.
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The two plots look rather similar. However, if we look closely at the solutions near the
fixed point (we can use zoom to do this without recomputing the picture), we see a significant
difference.
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For R = 2, there is a “hook” at the end, but for R = 3, the solution goes straight in to
the fixed point. Further magnifications show the same pattern, as you may want to verify for
yourself. The spiral for R = 2 is always present, but very tight and hard to detect. Similarly,
the oscillations in the x, y-plane when R is just slightly less than 2

√
2 are nearly indiscernable,

but present.

8 Dealing with the Singularity

The phugoid equations

θ̇ =
v2 − cos θ

v
v̇ = − sin θ −Rv2

run into trouble when v = 0, because θ̇ becomes infinite as v → 0. Since there are very few
solutions for which v is ever zero, you might be tempted to ignore this issue, as we have done
so far. But in fact, since we are solving the system numerically (rather than exactly), we run
into problems even when v is merely small. So far, we have taken care to avoid such situations.
But now let’s throw caution to the wind, and see what happens.

> R:=0.3:
DEplot([diff(theta(t),t)=(v(t)^2 - cos(theta(t)))/v(t),

diff(v(t),t) = -sin(theta(t)) - R*v(t)^2],
[theta,v], t=0..10,
[seq([theta(0)=0,v(0)=2+i/10],i=0..10)],
theta=-1.5..3, v=-0.05..3, title="R=0.3",linecolor=black,stepsize=0.1);
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R=0.3
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Something looks very wrong with the solution which starts at θ = 0, v = 2.5. Notice how
the solution makes a sharp turn, heading in a completely different direction from the vector
field. Why is this happening?

Just to verify that it isn’t a fluke, let’s examine several solutions with initial conditions
θ(0) = 0 and 2.4 < v(0) < 2.6, looking in the problem area. We’ll use obsrange=false to
tell Maple we want it to continue computing the solutions, even when they go outside of the
viewport.

> DEplot( [diff(theta(t),t) = (v(t)^2 - cos(theta(t)))/v(t),
diff(v(t),t) = -sin(theta(t)) - R*v(t)^2 ],

[theta,v], t=0..10,
[seq([theta(0)=0,v(0)=2.4+.02*i],i=0..10)],
theta=1..2, v=-0.05..0.5, obsrange=false,
title="R=0.3",linecolor=black,stepsize=0.1);
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Even worse! Not only does the solution for v(0) = 2.5 go the wrong way, the one with
v(0) = 2.52 also turns the wrong way, crossing over another solution. Since our equations are
autonomous, this is never supposed to happen.

We can remedy this by decreasing the stepsize significantly. Decreasing the stepsize by a
factor of 10 (to 0.01) in the above example gives solutions which do the right thing. But a
significant price in computation must be paid, and this doesn’t really solve the problem. There
are other initial conditions nearby which lead to the same trouble.
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In order to decide how to fix the problem, we must first understand what is going wrong.
The first problem we noticed happened for a solution with θ(ti) ≈ 1.44, v(ti) ≈ 0.09, using
a stepsize h = 0.1. Since Maple is using a Runge-Kutta method as described in §4.2, let’s
calculate what is happening.

Recall that in Runge-Kutta, we evaluate the vector field at four points, and average them
together to get the next point. We denoted these vectors as ~k`, ~kc, ~km, and ~kr. Since we have
to calculate the vector field at four points, we’ll write a little function to do this for us, and use
the fact that Maple lets us do aritmetic on lists as though they are actual vectors; that is, we
can add them and multiply by scalars.7

> h:=0.1:
VF:=p->[(p[2]^2 - cos(p[1]))/p[2], -sin(p[1])-R*p[2]^2]:

p:=[1.44, 0.9];
k[l]:=VF(p);
k[c]:=VF(p+h/2*k[l]);
k[m]:=VF(p+h/2*k[c]);
k[r]:=VF(p+h*k[m]);
step:=h/6*(k[l] + 2*k[c] + 2*k[m] + k[r]);

p := [1.44, 0.09]
kl := [−1.359152319,−.9938883482]
kc := [−4.858468860,−.9808007323]
km := [−8.872157510,−.9314790880]
kr := [270.3559960,−.5250618133]

step := [4.025593182,−.08905849670]

The problem here is the vector ~kr, which has a huge θ̇ component, and points in a different
direction from the others. This happens because kr is the value of the vector field calculated
at θ ≈ 1.35, v ≈ −0.00315. Not only is the value of v very small here (giving a huge θ̇
component), it is outside the range of allowed values, and the vector field points the wrong way.
Similar problems will occur for any solution which comes too close to the v = 0 axis with v(t)
decreasing.

Now the question is how to avoid this? One not very satisfying answer is just to use a very
small step size. But the problem with this idea is that we then must do a huge amount of
computation, even when the vector field is behaving nicely.

A better solution is to use an adaptive stepsize: when the vector field is “nice”, we can use
a large step, and when the vector field is being troublesome, we use a small step. Maple has
such methods built in to it, such as the Runge-Kutta-Fehlberg method, which we can use by
appending method=rkf45 to the list of options to DEplot.

Sometimes, it is not always possible to change the numerical method. In the case of the
phugoid, we can accomplish the same goal (in fact, gain something extra) by adjusting the

7This ability is not present in releases prior to Maple 6, making this computation a little more cumbersome.
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length of the vectors that make up the vector field.

If we think of our solution curves as being parametric curves with tangent vectors which
coincide with the vector field, then changing the lengths of the vectors (but not their direction)
will not change the solution curves, only the parameterization. That is, we can rescale time so
that the vectors no longer blow up as solutions approach the v = 0 line.

Multiplying each vector by v(t) cancels out the problems in θ̇, and gives a system which has
the same solution curves as long as v > 0. Thus, we get the new system

θ̇ = v2 − cos θ v̇ = −v sin θ −Rv3 ẋ = v2 cos θ ẏ = v2 sin θ

This new system of equations is defined and continuous for all values of v and θ.

Furthermore, if we want to keep track of the original time variable t, we can add a new
variable T . In the original, non-rescaled equations, the time could be described as T (t) = t, or
equivalently, Ṫ = 1. After rescaling the vector field by the factor of v, this gives Ṫ = v.

> R:=’R’;
vphug:= [ diff(theta(t),t) = v(t)^2 - cos(theta(t)),

diff(v(t), t) = -v(t)*sin(theta(t)) - R*v(t)^3,
diff(x(t), t) = v(t)^2 *cos(theta(t)),
diff(y(t), t) = v(t)^2 *sin(theta(t)),
diff(T(t), t) = v(t) ]:

R:=0.3:

DEplot(vphug, [theta, v, x, y, T], t=0..20,
[seq([theta(0)=0, v(0)=2+i/10, x(0)=0, y(0)=5, T(0)=0],i=0..10),

[theta(0)=0, v(0)=2.51, x(0)=0, y(0)=5, T(0)=0],
[theta(0)=0, v(0)=2.52, x(0)=0, y(0)=5, T(0)=0],

seq([theta(0)=0, v(0)=2.51+i/1000, x(0)=0, y(0)=5, T(0)=0],i=2..5) ],
theta=-1.5..3, v=-0.05..3, x=0..10, y=0..5, T=0..20,
obsrange=false, linecolor=black, scene=[theta,v], stepsize=0.1);
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> zoom(%, 1.3..1.8, 0..0.2);
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As you can see, using the desingularized equations solves the problems for small values of
v.

In addition, we can see additional structure not apparent in the original equations. There
are new fixed points at v = 0, θ = ±π/2. These fixed points are saddles, as we can see by
looking at the Jacobian. In the desingularized equations, the Jacobian is

(

sin θ 2v

−v cos θ − sin θ − 3Rv2

)

so the linearization at (π
2
, 0) is

(

1 0
0 −1

)

, and at (−π
2
, 0) we have

(

−1 0
0 1

)

. These fixed

points correspond to the solutions which stall out, and as we surmised earlier, they divide up
the qualitative behaviors. The eigenvectors for both of them are parallel to the θ and v axes,
which says that solutions tending to a stall (or leaving one) do so by flying nearly straight up
(resp. down) with an angle of π/2 (resp. −π/2). Solutions with very small velocity and an
angle slightly less than π/2 flip over rapidly to an angle slightly more than −π/2 and then
begin to increase their velocity.

While it is possible to deduce this behavior from the original equations, it is much more
obvious one the singularity is filled in. Similar techniques are used in other branches of math-
ematics (blowing up a singularity in algebraic geometry, construction of a collision manifold in
celestial mechanics) with great success.
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1 Introduction to Cryptography

If some information is meant to be kept private, the best means is to keep it well hidden. This
is not, of course, always possible. One way around this is to hide the information or message in
plain sight, that is, encode it in some way so that even if it is seen, it will be unreadable. The
study of such encoding processes is called Cryptography1. The name “Cryptography” comes
from the Greek words kryptos (κρνπτoσ), meaning “hidden” or secret, and graphia (γραφια),
meaning writing.

Since ancient times, cryptography has been a part of military and governmental commu-
nications. More recently it has become part of nearly everyone’s life because of the Internet,
electronic banking, and so on.

The usual jargon is as follows: the message you want to hide is called the plaintext, and
the act of encoding it is called encryption or enciphering. The encoded plaintext is called the
crypttext or the ciphertext, and the act of decoding it is called decryption or deciphering (or
“cracking the code”, if the decoder wasn’t the intended reader). Usually, an encryption system
(also called a cipher) has an auxiliary piece of information called the key needed for the encoding

1Cryptography is related to, but distinct from, steganography, which is the process of hiding the fact that a
message exists at all. Using “invisible ink” is steganography, as is hiding messages within other messages. For
example, looking at the second letter of each word in the message below (which was actually sent by a German
spy during World War I [Kahn, p. 521]),

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit. Blockade
issue affects pretext for embargo on byproducts, ejecting suets and vegetable oils.

one finds a rather different message, namely

Pershing sails from NY June I.

Steganography is often used to augment cryptography, and is also related to “digital watermarking”. We will
not be considering steganography here.

4:1
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and decoding process. Mathematically, we can represent the encryption process as

fkey(P) = C,

where P is the plaintext and C is the ciphertext. To decrypt the message, one applies f−1 to
the ciphertext. Note that to be able to decipher a message without ambiguity, f−1 must be a
well-defined function (although f needn’t be! It is perfectly all right to have the same message
encode to two different ciphertexts, as long as we can get the original when deciphering.)

2 Simple Ciphers

2.1 Simple substitution

One of the most common (and very easy to crack) ciphers is substitution. One sometimes sees
these in a newspaper somewhere near the crossword puzzle. This scheme is also the one used
in Poe’s story “The Gold Bug”, and the Sherlock Holmes “Mystery of the Dancing Men”. The
idea is straightforward: choose a rearrangement of the letters of the alphabet, and replace each
letter in the plaintext by its corresponding one.

Such substitutions are very simple to implement in Maple. We will use the CharacterMap
function from the StringTools package2 which does exactly what we want. First, we define
two “alphabets”– one for our plain text, and one for our encrypted text. The second is a
permutation of the first.

> with(StringTools):
Alphabet :="abcdefghijklmnopqrstuvwxyz":
Cryptabet:="THEQUICKBROWNFXJMPSVLAZYDG":

Now we define a pair of functions3 to encrypt and decrypt our text.

> Scramble := msg -> CharacterMap(Alphabet, Cryptabet, msg):
Unscramble:= code -> CharacterMap(Cryptabet,Alphabet, code):

> Scramble("please do not read this");

“JWUTSU QX FXV PUTQ VKBS”

2The StringTools package was introduced in Maple 7, and the string data type was introduced in Maple V
release 5. Everything we do in this chapter can easily be implemented without using StringTools– in fact, the
original version of this chapter was written for Maple Vr4 using names rather than strings. Since Maple 6 is
still in widespread use (Spring 2002), we’ll try to include alternatives to using this package when practical.

3In Maple Vr5 and Maple 6, we could define CharacterMap as
CharacterMap := (old,new,txt)->cat(seq(new[SearchText(txt[i],old)],i=1..length(txt)));

This will only work if all characters in the txt correspond to ones in old, so a space would have to be added to
both Alphabet and Cryptabet to get this example to work.
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> Unscramble(%);

“please do not read this”

Note that our message contains a spaces which are preserved in the encryption process,
because the CharacterMap function only modifies those characters which are found in the first
string. If a character isn’t found, it is left alone. Thus, if we try to scramble a message containing
punctuation or upper-case letters, they aren’t modified by Scramble. Since our Cryptabet is
all upper-case, a message which began with mixed case will be distorted.

> Scramble("He said I need direction; I head for the door.");
Unscramble(%);

“HU STBQ I FUUQ QBPUEVBXF; I KUTQ IXP VKU QXXP.”

“be said f need direction; f head for the door.”

It is traditional in pen-and-paper cryptography to use a 26-letter alphabet (that is, to remove
spaces and punctuation and ignore any distinction between upper and lower case letters). If
you wish to do this, it could be done4 using LowerCase (which translates all letters to lower
case), and a combination of Select and IsLower to remove anything that isn’t a letter.

> Select(IsLower,LowerCase("I don’t mind suggestions. Don’t give me any more."));

“idontmindsuggestionsdontgivemeanymore”

> Scramble(%);
Unscramble(%);

“BXFVCNBFQSLCCUSVBXFSQXFVCBAUNUTFDNXPU”

“idontmindsuggestionsdontgivemeanymore”

In general we won’t adhere to this convention in this chapter. Rather, we will treat spaces
and punctuation like any other character. This is not a common approach, but one we happen
to like.

There are two big drawbacks to such a substitution cipher. One primary problem is that
the key for enciphering and deciphering is the permutation: you need to remember an ordering
of the entire alphabet.

4How to accomplish this without StringTools is left to the seriously motivated reader.
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A second problem, shared with all such monoalphabetic substitutions (i.e., those that sub-
stitute one letter for another), is that they aren’t that hard to break. If you have a long enough
message, you can use the fact that certain letters occur much more frequently than others to
help tease out the original text. In English text the letter “e” is the occurs most frequently,
followed by “t”, “a”, “n”, “i”, and so on. Spaces occur about twice as often as the letter “e”,
assuming they are encrypted, rather than just omitted. Once you guess a few letters, common
words like “the” and “and” fall into place, giving more clues.

We will examine some polyalphabetic substitution ciphers in §5.

2.2 The Caesar cipher, and the ASCII encoding

A variation on the arbitrary permutation discussed above is the “Caesar cipher”, named after
Julius Caesar, who supposedly invented it himself. This is also what was done by a “Captain
Midnight Secret Decoder Ring”, popular in the 1930s and 40s. Here we convert our alphabet to
numeric equivalents (with, say A=0, B=1, and so on), add an offset to each numeric equivalent
(legend has it that Caesar used an offset of 3), then re-encode the numbers as letters. We do
the addition modulo the length of the alphabet; that is, when we shift a Y by 3, we get B,
since 24 + 3 = 27, and 27 ≡ 1 (mod 26). However, we won’t always restrict ourselves to a 26
letter alphabet— we may want punctuation, numbers, and to preserve upper- and lower-case
distinctions.5

While we could easily implement the Caesar cipher without converting our text to numbers,
doing so makes it easier to understand and sets us up for more complicated ciphers we will need
later.

Treating characters as numbers

Computers already have a built-in numeric representation of the alphabet— the ASCII encod-
ing.6 At their lowest level, digital computers operate only on numeric quantities— they just
manipulate ones and zeros. The smallest piece of information is the state of a switch: it is off
(0) or it is on (1). This is called a bit, which is short for binary digit. A group of 8 bits is called
a byte, and is a single “character” of information.7 A byte can have 28 = 256 different states:

00000000, 00000001, 00000010, 00000011, . . . , 11111111

5For example, the title of this chapter (fsqFsHn sGGousG) is actually the result of using a Caesar cipher on
its original title. A 53-character alphabet consisting of all the upper-case letters, a space, and all the lower-case
letters was used, so the space in the middle may not correspond to a space in the original. The three Gs that
occur should be a good hint to decoding it.

6In fact, while most computers these days use ASCII, it is not the only such arrangement. IBM mainframes,
for example, primarily use another encoding called EBCDIC. But this makes no real difference to our discussion.

7The next larger unit in a computer is a word. However, different makes of computers have different sizes
of words. Most computers today have 4 byte words (32 bits), but word sizes of 2 bytes (16 bits) and 8 bytes
(64 bits) are not uncommon. 8-bit bytes are now essentially universal although in the early days of computing,
there were computers which used other sizes, such as 6 bit bytes.
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which are generally interpreted either as representing the integers 0 through 255, or the highest
bit is often taken to represent the sign, in which case we can represent integers between −128
and 127. (We get an “extra” negative number because we don’t need −0, so the byte 10000000
can mean −128 instead.) For notational convenience, bytes are often written in hexadecimal
(that is, in base 16), grouping the bits into two blocks of 4 bits (sometimes called a nybble, half
a byte), and using the characters A–F for the integers 10–15. Thus, the byte 01011111 would be
written as 5F in hexadecimal, since 0101 means 22+20 = 5, and 1111 is 23+22+21+20 = 15.

So how does a computer represent characters? There is an agreed upon standard encoding
of characters, punctuation, and control codes into the first 127 integers. This is called ASCII,8

an acronym for American Standard Code for Information Interchange. Extended ASCII encodes
more characters into the range 128–255 (this is where you would find characters for å and ±,
for example), although the characters found in this range vary a bit. Not all programs can deal
successfully with characters in the extended range9

Maple has a built-in routine to allow us to convert characters to and from their ASCII
equivalents. If it is called with a list of numbers, it returns a string of characters, and if called
with a character string, out comes a list of numbers. For example,

> convert("How do I work this?",bytes);

[72, 111, 119, 32, 100, 111, 32, 73, 32, 119, 111, 114, 107, 32, 116, 104, 105, 115, 63]

> convert([72, 117, 104, 63],bytes);

“Huh?”

We can use this to make a list of the ASCII codes. Maple prints a tu when the ASCII code is not
a printable character. We make the table for characters up through 127 because the meanings in
extended ASCII differ depending on what character set you use. Feel free to make your own table
of all 255 characters. (In the interests of making a nicely formatted table, we have used a some-

8ASCII is not the only such standard, although it is currently the most commonly used. Prior to the
widespread use of personal computers in the 1980s, EBCDIC (Extended Binary Coding for Data Interchange
and Communication) tended to be in more common use, because it was what IBM mainframes used. There are
many other such assignments.

9In the late 1980s and early 1990s, there was a big push to make programs “8-bit clean”, that is, to be
able to handle these “unusual” characters properly. There are a number of distinct assignments of characters
to the upper 128 positions. One common one is Latin-1 (ISO 8859-1), which contains the characters used in
the majority of western European languages. Other assignments include characters for Scandinavian languages,
Arabic, Cyrillic, Greek, Hebrew, Thai, and so on. Since the late 1990s, a multi-byte character encoding called
Unicode (ISO 10646) has been in use; this universal character set allows computers to handle alphabets (such as
Chinese) that need more than 255 characters. While use of Unicode is becoming more widespread, single byte
character sets like ASCII will likely predominate for quite a long while.
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what complicated command. The much simpler seq([i,convert([i],bytes)],i=0..127);
would have produced the same information, just not as neatly.)

> matrix([ [_,seq(i, i=0..9)],
seq([10*j, seq(convert([i+10*j],bytes), i=0..9)], j=0..12)]);

















































0 1 2 3 4 5 6 7 8 9
0 “” “tu” “tu” “tu” “tu” “tu” “tu” “\a” “\b” “\t”
10 “\n” “\v” “\f” “\r” “tu” “tu” “tu” “tu” “tu” “tu”
20 “tu” “tu” “tu” “tu” “tu” “tu” “tu” “\e” “tu” “tu”
30 “tu” “tu” “ ” “!” “\“ ” “#” “$” “%” “&” “ ’ ”
40 “(” “)” “*” “+” “,” “-” “.” “/” “0” “1”
50 “2” “3” “4” “5” “6” “7” “8” “9” “:” “;”
60 “<” “=” “>” “?” “@” “A” “B” “C” “D” “E”
70 “F” “G” “H” “I” “J” “K” “L” “M” “N” “O”
80 “P” “Q” “R” “S” “T” “U” “V” “W” “X” “Y”
90 “Z” “[” “\\” “]” “ˆ” “ ” “ ‘ ” “a” “b” “c”
100 “d” “e” “f” “g” “h” “i” “j” “k” “l” “m”
110 “n” “o” “p” “q” “r” “s” “t” “u” “v” “w”
120 “x” “y” “z” “{” “|” “}” “∼” “tu” “tu” “tu”

















































Note that some of the characters (such as ASCII code 10) print as a backslash and a letter,
like \n. These are codes for special control characters: \n indicates a newline, \t is a tab, and
so on. Since Maple indicates a string by printing it inside double quotes, it indicates the double
quote10 character (ASCII 34) using \”, and the backslash character (ASCII 92) with a pair
of backslashes. While it doesn’t print out in Maple, ASCII 127 is the control sequence DEL
(sometimes printed as ˆ?). This sometimes is interpreted as “delete the previous character”; if
your output device interprets it that way, characters can seem to mysteriously vanish.

Another special character is ASCII code 0: note that it prints as nothing, not even a
blank space (ASCII 32 is the space character). This is the null character, and is typically used
internally to indicate the end of a string. If a null occurs in the middle of a string, usually
what comes after it won’t print out unless you take special steps. To see this for yourself, try
a command like convert([73,116,39,115,0,103,111,110,101,33],bytes). You’ll see that
the characters following the 0 don’t print out.

The StringTools package also contains Char which gives the character corresponding to a
decimal number, and Ord which gives the number corresponding to a character. We’ll generally
use convert, although it makes little difference.

10The ASCII code does not have distinct codes for the open-quote (“) and close-quote (”) characters used in
typesetting. Neither do most computer keyboards. However, the apostrophe (’) and grave accent or backquote (‘)
characters have distinct ASCII codes (39 and 96, respectively).
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Render unto Caesar

Now we are nearly ready to write a version of the Caesar cipher. The basic idea is that for each
character of the plaintext, we convert it a numerical representation, add a pre-specified offset
modulo 127, then convert back to characters. Unlike the Scramble function we wrote in §2.1,
we needn’t declare an alphabet explicitly because we will use the ASCII codes. However, in
addition to the Maple command convert( ,bytes), we will use another new command, map.

The map command allows us to apply a function to every element of a vector or list in one
call. For example, to compute the square root of each of the first 10 integers, we could do

> map(sqrt,[1,2,3,4,5,6,7,8,9,10]);

[1,
√
2,
√
3, 2,

√
5,
√
6,
√
7, 2

√
2, 3,

√
10]

If the function we wish to apply takes two variables, we can give the second one as a third
argument to map. For example, the command

> map(modp,[1,2,3,4,5,6,7,8,9,10],3);

[1, 2, 0, 1, 2, 0, 1, 2, 0, 1]

computes n mod 3 as n ranges over the list [1, 2, . . . , 10]. (Recall that n mod p is the remainder
after dividing n by p.)

We finally are ready. See if you can understand it before reading the explanation below.
Remember to read from the middle outward. Note that we are defining the function we are
mapping directly as the first argument.

> Caesar:= (plain, shift) ->
convert(map(x -> (x+shift-1) mod 127 + 1,

convert(plain,bytes)),
bytes):

Let’s give it a try:

> Caesar("Et tu, Brute?",3);

“Hw#wx/#EuxwhB”

If you don’t see what is going on in Caesar, try to think of it as a composition of several
functions, each of which you DO understand. That is, Caesar works as follows

• First, we convert the input string (called plain) into a list of numbers, using the call
convert(plain,bytes). Note that this is done on the third line, the innermost function.
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• Next, we apply the function x ->(x+shift-1) mod 127 + 1 to each of numbers in the
resulting list using map. This call to map has two arguments: the definition of the shift,
and what to apply it to (the innermost function convert(plain,bytes)).

• Finally, we convert the list back to characters again. This is the outermost function: it
begins on the second line (immediately after the -> and ends with the final parenthesis.

Viewing it as a composition, we have

Caesar := convert−1 ◦ map ◦ convert.

Note that we didn’t really compute (x + shift) mod 127; instead we subtracted one from
the sum, computed mod 127, then added 1 again. Why? Consider what would happen if, for
example, our character was “k” (ASCII code 107) and we shifted by 20. Then (107+20) mod 127
gives 0, which is the code for the null byte, indicating the end of a string. This would be a
problem. So instead, we add 1 afterward to ensure that our answer is in the range 1, . . . , 127.
And just to avoid confusing ourselves, we subtract the 1 first, so that shifting by 0 doesn’t
change anything.

Aside from the fact that this function is a bit confusing to read and offers essentially no
cryptographic security, what else is wrong with it? Consider the following example:

> Caesar("Who put the benzedrine in Mrs. Murphy’s Ovaltine?", 86);

“.?FvGLKvK?<v9<EQ<;I@E<v@Ev$IJtuv$LIG?P}Jv&M8CK@E< tu”

In addition to the fact that the result looks funny, if we were to try to decipher this from
printed output, we would have a little (but not much) trouble, because the characters “.”
and “?”, after encoding, print out as tu.11 This happens because the numeric values of these
characters, after shifting by 86, are 5 and 22, respectively. Neither of those corresponds to a
printing character, so we can’t tell them apart. Of course, if we had no intention of dealing
with our encoded message in printed form, this would be no problem. The actual character
values are different, they just print out the same.

How can we get around this? We can restrict ourselves to printing characters using a
variation of the idea in Scramble of §2.1, that is, giving an explicit Alphabet that we will deal
in.

Before doing this, however, it will be helpful to discuss the proc command, which allows us
to construct functions that consist of more than one Maple command.

11Of course, it is easy to make examples where significant parts of the message all come out as tu. One such
is the same message with a shift of 50.
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3 Defining functions with proc; Local and global vari-

ables

We already know how to define functions in Maple. However, all of the functions we have
defined so far have consisted of a single Maple expression (no matter how complicated it might
be). For example,

> sqr := x -> sqrt(x);

sqr := sqrt

> sqr(25);

5

However, Maple has a more versatile way of defining functions using the proc command.
The function sqr2 below behaves exactly the same as sqr defined above. (When using proc,
the function begins with the keyword proc, followed by any parameters in parenthesis, then
one or more Maple statements, and finally the keyword end. The result of the function is the
result of the last Maple command executed.

> sqr2 := proc(x)
sqrt(x);

end;

sqr2 := proc(x) sqrt(x) end

> sqr2(25);

5

> sqr2(-25);

5 I

Unlike the functions defined by ->, however, we can use several statements when using proc:
> sqr3 := proc(x)

if (x >= 0) then
sqrt(x);

else
print("The square root of ",x,"is not a real number");

fi;
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end;

sqr3 := proc(x)

if 0 ≤ x then sqrt(x) else print(”The square root of ”, x, ”is not a real number”)fi

end

> sqr3(-25);

The square root of , −25, is not a real number

> sqr3(25);

5

Here is another variation on the same idea: we compute a variable y = x2. If y > 25, the
result is 25, otherwise it is y. 12

> mesa:= proc(x)
y := x^2;
if ( y>25) then

25;
else

y;
fi;

end;

Warning, ‘y‘ is implicitly declared local

mesa := proc(x) local y; y := x2 ; if 25 < y then 25 else y fiend

What does that warning mean? It means that Maple has assumed that the variable y used
in mesa is local to that procedure. That is, it is different from a variable y that may be used
outside the context of the procedure. Let’s check that. First, we set y to 35, invoke mesa(19)
(which sets its copy of y to 361), then check what the value of y is.

> y:=35;

y := 35

12Note that this could also be done using piecewise.



3. DEFINING FUNCTIONS WITH PROC; LOCAL AND GLOBAL VARIABLES 4:11

> mesa(19);

25

> y;

35

It is still 35. Now, let’s add a line saying that y has a global definition— the y within the
procedure is the same as the y outside.

> mesa2:= proc(x)
global y;

y := x^2;
if ( y>25) then

25;
else

y;
fi;

end;

mesa2 := proc(x)global y; y := x2 ; if 25 < y then 25 else y fiend

> y;

35

> mesa2(19);

25

> y;

361

This time, of course, y was indeed changed by invoking mesa2.

The opposite of global is, not surprisingly, local. In order to stop Maple from giving
warnings about variables being implicitly declared local, we can add a the statement local

y; just after the proc statement. Using such statements is called declaring the scope of the
variables. This is a good habit to get into, because it lessens the chance of accidentally using a
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global variable or of misspelling the name of a variable. Some computer languages require that
you declare all variables you use.

Another good habit to get into is to indicate what type of arguments the function will
accept. This is optional in Maple, and not always desirable (you may not always know what
they will be). This is done by specifying the type after two colons in the argument list. For
example,

> ith:=proc(l::list, i::posint)
return(l[i]);

end:

is a function that insists its first argument be a list, and the second must be a positive integer.
If you call it with something else, you will get an error message.

> ith("Henry",8);

Error, invalid input: ith expects its 1st argument, l, to be of type list, but
received Henry

4 Caesar cipher redux

Now that we know about proc, let’s implement the Caesar cipher again, this time with an
alphabet of our choosing.

First, we define a global variable Alphabet that lists all the characters we intend to encode.
We would like to be able to distinguish all characters which print out, as well as blanks (that is,
those which you have keys for on your keyboard). To avoid typing in the full list of characters
we want13, we generate a list of all the integers less than 256 and convert it to a character
string with convert(,bytes). Then we use Select and IsPrintable to pick out the usual
printable characters. Finally, since we would like to have a space and a newline as characters
in our alphabet, we add them to the resulting string with cat.

> Alphabet := cat("\n\t", Select(IsPrintable,convert([seq(i,i=1..255)],bytes)));

“\n\t !\”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWX\

YZ[\\]ˆ ‘abcdefghijklmnopqrstuvwxyz{|}∼”

We will use this particular alphabet regularly in the next few sections.

Next, we define two functions which perform the analogue of convert(,bytes), but with
our special alphabet. ListToString will take a list of integers and replace it with the character
from that position in Alphabet, and StringToList does the reverse process. For each character
in the input string, StringToList uses SearchText to find its position in Alphabet. We need

13For versions prior to Maple 7, just type in the desired alphabet directly
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to subtract one from this position because we would like our characters to be numbered from
0 rather than 1. Thus, in the Alphabet above, \t is character 0, and the numeric code for ∼ is
96. Alphabet is declared as a global variable.

> StringToList := proc(text::string)
local i;
global Alphabet;
[seq(SearchText(text[i],Alphabet)-1, i=1..length(text))];

end:

> ListToString := proc(numlist::list(nonnegint))
local i;
global Alphabet;
cat(seq(Alphabet[numlist[i]+1], i=1..nops(numlist)));

end:

Now the Caesar cipher is written in terms of these functions. Note that since 0 corresponds
to a printable character, we don’t have to add and subtract 1 as before.

> Caesar2:= proc(plaintext::string, shift::integer)
local textnum,codenum,i,p;
global Alphabet;

p := length(Alphabet);
textnum := StringToList(plaintext);
codenum := [seq( modp(textnum[i]+shift, p), i=1..length(plaintext)) ];
ListToString(codenum);

end:

It works as follows.

• We are given a plaintext message, and a shift amount. The temporary variables that we
will use during the conversion process are declared as local, and the Alphabet is declared
as global.

• The number of characters in the alphabet is saved as p.

• The plaintext is converted to a list of numbers called textnum.

• Each number in textnum is shifted, and the result is taken mod p. Note that since
StringToList yields result in {0, 1, . . . , p − 1}, we don’t have to monkey around to get
the result into the proper range like we did in the first Caesar (§2.2, p. 4:7). Also note
that we use modp(a,p) to compute a mod p, instead of writing a mod p as before. Either
way works fine.

• Finally, the result is converted back to characters with ListToString.

Let’s try it out.
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> Caesar2("Veni, Vidi, Vici",3);

“Yhql/#Ylgl/#Ylfl”

To decode, we can just use the negative of the shift amount.
> Caesar2(%,-3);

“Veni, Vidi, Vici”

> text:="I have heard the mermaids singing, each to each.
I do not think that they will sing to me.";

text := “I have heard the mermaids singing, each to each.\nI do not think \
that they will sing to me.”

In this sample, we have used a text which contains a newline character. Maple represents
this as \n inside a text string. Since we will treat the newline as a regular character, it too will
encode to something. If you look carefully at the output below, you can probably pick it out.

> Caesar2(text,64);

“(’G@UD’GD@QC’SGD’LDQL@HCR’RHMFHMFl’D@BG’SN’D@BGnˆ\
(’CN’MNS’SGHMJ’SG@S’SGDX’VHKK’RHMF’SN’LDn”

> Caesar2(%,-64);

“I have heard the mermaids singing, each to each. \nI do not think that they \
will sing to me.”

If we would like to see the decrypted text with the newlines expanded, we need to use
printf.

> printf(%);

I have heard the mermaids singing, each to each.
I do not think that they will sing to me.

One thing that we should check is what happens if our message should contain a character
that is not in our alphabet. Rather than changing our text, we’ll dramatically shorten the
alphabet.

> Alphabet:="abcdefghijklmnop_";

Alphabet := “abcdefghijklmnop ”

Now let us go then, you and I, and re-encode the test message using the new alphabet, but
with a shift of zero. Ordinarily, a shift by 0 would not change the text at all. But with the
shortened alphabet, something happens to the characters that aren’t mentioned.
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> Caesar2(text,0);

“ ha e hea d he me maid inging each o each do no hink ha he ill ing o me ”

Can you explain why this happens?

5 Improved Caesar-like ciphers

Certainly the Caesar cipher offers no cryptographic security at all: if you know the alphabet
the message was encoded in, you need only guess one character to crack the code. Even if you
don’t know the alphabet, guessing the correspondence is not very hard with a little patience.

In this section, we will discuss a few approaches to improving the security, while retaining
the basic idea of character shifting.

5.1 The Vignère cipher

One way to make a Caesar cipher a bit harder to break is to use different shifts at different
positions in the message. For example, we could shift the first character by 25, the second by 14,
the third by 17, and the fourth by 10. Then we repeat the pattern, shifting the fifth character
by 25, the sixth by 14, and so on, until we run out of characters in the plaintext. Such a scheme
is called a Vignère cipher14, which was first used around 1600, and was popularly believed to
be unbreakable.15 This cipher is called a polyalphabetic substitution cipher, because several
different substitutions are made depending on the position of the character within the text.

In our first example, the key consists of the four shifts [25, 14, 17, 10], which are the numerical
equivalents of the string “ZORK” in a 26-letter alphabet consisting of the letters A–Z. It is
common practice to think of our key as plaintext letters, rather than their numerical equivalents,
but either will do. We can encode the string “CRYPTOGRAPH” as

C R Y P T O G R A P H
+25 +14 +17 +10 +25 +14 +17 +10 +25 +14 +17

B F P Z S C X B Z D Y

Note that in the above, the letter “R” in the plaintext encodes to both “F” and “B” in
the crypttext, depending on its position. Similarly, the two “Z”s in the crypttext come from
different plain characters.

14This cipher takes its name after Blaise de Vignère, although it is actually a corruption of the one he
introduced in 1585. Vignère’s original cipher changed the shift amount each letter based on the result of the
last encoding, and never repeated. This scheme is much harder to break. However, one reason for its lack of
popularity was probably due to the fact that a single error renders the rest of the message undecipherable. More
details van be found in [Kahn].

15In fact, as late as 1917, this cipher was described as “impossible of translation” in a respected journal
(Scientific American), even though the means to break it had been well known among cryptographers for at
least 50 years.
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Now we implement this in Maple. This is very similar to the Caesar cipher, just with the
extra complication of multiple shifts, and letting our key be a string.

First, we set our Alphabet to the usual one. We also use the conversion functions from §4.
> Alphabet := cat("\n\t", Select(IsPrintable,convert([seq(i,i=1..255)],bytes))):

> Vignere:= proc(plaintext::string, key::string)
local textnum,codenum,i,p,offsets,keylen;
global Alphabet;

p := length(Alphabet);
offsets := StringToList(key);
keylen := length(key);
textnum := StringToList(plaintext);
codenum := [seq( modp(textnum[i] + offsets[modp(i-1,keylen)+1], p),

i=1..length(plaintext)) ];
ListToString(codenum);

end:

To try it out, we’ll the same text as in the previous section. Notice how much harder it is
to pick out the word boundaries in the resulting ciphertext.

> coded:=Vignere(text,"Prufrock");

coded := “{tˆHiUeT6ThKtdLQR‘[Y‘QMPDtiPaWMZ8\twLTSLmEbwLTSL \
{Rr?hW eZ@gw[[YRWRgˆHgqXT6lwˆ\\\\PmD\\dNtdSm>X$”

We can make the decoding function from the original (let’s call it unVignere) by changing
exactly one + sign to a −.16 We omit the change here so perhaps you will figure it out for
yourself. But we will test it, to show you that it does work.

> printf(unVignere(coded,"Prufrock"));

I have heard the mermaids singing, each to each.
I do not think that they will sing to me.

Even though this scheme looks quite daunting, it is not so very hard to crack if you use a
computer or have a very large supply of perseverance. If we know that the key is of a certain
length, say 4, and our plaintext is sufficiently long, then we can perform frequency analysis on
every fourth letter. Even if we don’t know the key length, it is not too hard to write a computer
program to try all the lengths less than, say, 10, and pick the one that looks best.

5.2 One-time pads

Note that the longer the key is in the Vignère cipher, the harder it is to break. If the key
were as longer than the text, then it might seem at first that analyzing the frequency of letters
in the encrypted text would be of no help, since each letter would be shifted by a different

16Note that we could also use the Vignere routine, but with the inverse of the key. For example, in the
preceding example, the inverse of “Prufrock” is “M+(7+.:2”: the numeric code of P plus the numeric code of
M is 97 (the length of the alphabet), similarly for r and +, u and (, and so on.
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amount. This is almost true. If the key is an passage of text in English, then the shifts will
occur with a predictable frequency. Of course, the problem gets very difficult, but cryptanalysts
are persistent people.

But what if there were no predictability within the key, having the shifts come at random?
The result (a Vignère cipher with an infinitely long, completely random key) is an cryptosystem
that cannot be broken. Since the shifts are random, if you manage to decipher part of the
message, this gives you no clue about the rest. Furthermore, any plaintext of a given length
can encrypt to any ciphertext (with a different key, of course). For example, the ciphertext
“=5nwhn KDNO?uWTBC-XA” might have come from the phrase “Let’s have dinner.” (with
the key “pOyntmbbXYtrjSTGe1”), or it might be the encryption of “Attack at midnight” with
the key “{@y4#!Jbz>&moSYEoL”. Since any message could encrypt to any other, there is no
way to break such a code unless you know the key.

But that is the problem: the key is infinitely long. Infinitely long, truly random sequences
of numbers tend to be somewhat unwieldy. And to decode the message, you must know what
random sequence the message was encoded with.

Such a system is called a one-time pad, and was used regularly by spies and military person-
nel. Agents were furnished with codebooks containing pages and pages of random characters.
Then the key to the encryption is given by the page on which to begin. It is, of course, impor-
tant that each page be used only once (hence the name “one-time pad”), because otherwise if a
codebreaker were able to intercept a message and (via some other covert means) its correspond-
ing translation, that could be used to decipher messages encoded with the same page. This
sort of setup makes sense if an agent in the field is communicating with central command (but
not with each other). Each agent could be given his own codebook (so that if he is captured,
the whole system is not compromised), and he uses one page per message. Central command
has on file the books for each agent.

A variation on this theme is the Augustus cipher,17 where instead of a random sequence of
shifts, a phrase or passage from a text which is as long as the plaintext is used. The trouble
with this is that, because of the regularities in the key, a statistical analysis of the crypttext
allows one to break the cipher.

Another issue is that to be truly unbreakable, the random sequence must be truly random,
with no correlation among the characters. This is harder than it sounds— real randomness is
hard to come by. If the random sequence has some predictability, the resulting stream can be
attacked. A number of attacks on cryptosystems have been made not by breaking the encryption
scheme directly, but because the underlying random-number generator was predictable.

We can easily modify our Vignere program to be a one-time pad system, using Maple’s
random number generator to make our one-time pad.18 You might think that generating a

17Sometimes a Caesar cipher with a shift of +1 is also called an “Augustus Cipher”, even though these are
very different ciphers.

18Technically speaking, this is not a one-time pad, but a one-time stream. The distinction is subtle, and we
will ignore it here.
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random sequence of numbers would be inherently unreproducible, so the message would be
indecipherable unless we record the stream of random numbers. However, computers can not
usually generate a truly random sequence. Instead, they generate a pseudo-random sequence
s1, s2, s3, . . . where the pattern of the numbers si is supposed to be unpredictable, no matter
how many of the values of the sequence you already know. However, to start the sequence off,
the pseudo-random number generator requires a seed— whenever it is started with the same
seed, the same sequence results. We can use this to our advantage, taking the seed to be our
key.19 Note that in order to decode the message by knowing the key (the seed), the recipient
must use the same pseudo-random number generator.

Maple’s random number generator gives different results when called in different ways. If
called as rand(), it gives a pseudo-random, non-negative 12 digit integer. When called as
rand(p), it gives a procedure that can be called later to generate a random integer between 0
and p; it is this second version that we will use. The seed for Maple’s random number generators
is the global variable seed.20

> OneTimePad := proc(plaintext::string, keynum::posint)
local textnum,codenum,i,p,randnum;
global Alphabet,_seed;

p := length(Alphabet);
randnum := rand(p);
_seed := keynum;
textnum := StringToList(plaintext);
codenum := [seq((textnum[i] + randnum()) mod p, i=1..length(plaintext))];
ListToString(codenum);

end:

In this implementation, it is assumed that the key is a positive integer (it can be as large
as you like). It would be easy to change it to use a string of characters, however, by converting
the string to a number first. One way to do that is discussed in the next section.

In most descriptions of one-time pad systems, one takes the exclusive-or (XOR) of the ran-
dom number and the integer of the plaintext, rather than adding them as we have done.
This does not significantly change the algorithm if the random sequence is truly random,
since adding a random number is the same as XOR’ing a different random number. How-
ever, the XOR approach has the advantage that the enciphering transformation is its own
inverse. That is, if we produce the crypttext using crypt:=OneTimePadXOR(plain,key), then
OneTimePadXOR(crypt,key) will give the decryption with the same key. This is not the case

19Pseudo-random number generators appropriate for cryptography are rare. Most implementations (including
Maple’s) are good enough for everyday use, but not enough to be cryptographically secure. By analyzing the
output of a typical random number generator, a good cryptanalyst can usually determine the pattern. For
example, Maple’s rand function (and that of most computer languages, such as C, Fortran, and Java) gives the
result of a affine sequence of numbers, reduced to some modular base. That is, xi = axi−1+b and si = xi modn
for some fixed choices of a, b, and n. In this setting, the seed is x0. We shall ignore the problem that this
sequence is guessable, but if you want real security, you cannot.

20We can choose a “random” seed (based on the computer’s clock) using the function randomize().
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for the version given above; to make a decryption procedure, we would need to modify the
above by changing the + to a −.

5.3 Multi-character alphabets

We can also improve security a bit by treating larger chunks of text as the characters of our
message. For example, if we start with the usual 26-letter alphabet A–Z, we can turn it into
a 676-letter alphabet by treating pairs of letters as a unit (such pairs are called digraphs), or
a 263-letter alphabet by using trigraphs, or triples of letters. This makes frequency analysis
much harder, and is quite easy to combine with the other crytptosystems already discussed.
We will use 99-graphs on a 256-letter alphabet (the ASCII code) when we implement the RSA
cryptosystem in §11.2. While frequency analysis is still possible (charts of digraph frequencies
are readily available, trigraphs less so), the analysis is much more complex.

To convert the digraph “HI” to an integer (using a length 262 alphabet of digraphs), one
simple way is to just treat it as a base-26 number. That is, “HI” becomes 7 × 26 + 8 = 190,
assuming the correspondence of H=7, I=8. To convert back, we look at the quotient and
remainder when dividing by 26. For example, 300 = 26× 11 + 14, yielding “LO”.

Either we can do this arithmetic ourselves directly, or we can use the convert(,base)

command. This command takes a list of numbers in one base and converts it to another. One
slightly confusing fact is that in this conversion, the least significant figure comes first in the
list,21 instead of the usual method of writing numbers with the most significant digit first.

For example, 128 = 1 × 102 + 2 × 101 + 8 × 100 would be written as [8,2,1]. To convert
this to base 16, we would note that 128 = 8× 161 + 0× 160, so in base 16, it is written as 80.

Doing this calculation in Maple, we have

> convert([8,2,1], base, 10, 16);

[0, 8]

Below is one way to implement the conversion of text to numeric values for k-graphs. We
assume our usual functions StringToList and ListToString are defined (see §4), as well as
the global Alphabet. The routine below converts text into a list of integers, treating each
block of k letters as a unit. A block of k characters c1c2c3 . . . ck is assigned the numeric value
∑k−1

i=0 xip
k, where xi is the numeric equivalent of ci+1 assigned by StringToList.

21Such a representation is called little-endian, as opposed to a big-endian one. Some computers represent
numbers internally in big-endian format (Sun SPARC, Power Macintosh), and others use a little-endian repre-
sentation (those using Intel processors, which is what MS-Windows and most versions of Linux run on). This
name comes from Gulliver’s Travels, where in the land of Blefuscu there is war between the big-endians (who
eat their eggs big end first), and the little-endians (who eat eggs starting from the little end).
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> StringToKgraph := proc(text::string, k::posint)
local p;
global Alphabet;
p:= length(Alphabet);
convert(StringToList(text), base, p, p^k);

end:

> KgraphToString := proc(numlist::list(nonnegint), k::posint)
local p;
global Alphabet;
p:=length(Alphabet);
ListToString( convert(numlist, base, p^k, p));

end:

In the examples below, we are using our usual 97-character alphabet. Of course, this will
work on any alphabet, although the specific numbers will differ.

> StringToKgraph("two by two",2);

[8719, 275, 8895, 8344, 7946]

In our alphabet, “t” is character number 86 and “w” is number 89, so the digraph “tw”
encodes as 86+89×97 = 8719 (remember we are using a little-endian representation). Similarly,
“o ” gives 2 × 97 + 81, and so on. Notice that the two occurrences of “two” give different
numbers, because one begins on an even character and the other starts on an odd one. The
first corresponds to the digraphs “tw” and “o ”, while the second is “ t” and “wo”.

We can also encode with 4-graphs, if we like.

> StringToKgraph("two by two",4);

One advantage (for us) of Maple’s use of the little-endian order is that we needn’t worry whether
the length of our text is divisible by k. In the above example, the last 4-graph is “wo”, which
is encoded as though it had two more characters on the end with numeric code of 0. The
disadvantage of this is that if our text ends with the character with code 0 (in our standard
97-character alphabet, this is a newline), that character will be lost.

Another way to treat multiple characters together is to think of them as vectors. For
example, the digraph “by” might correspond to the vector [68, 91]. We will treat this approach
in §8.

6 Reading and Writing from a file

While none of the methods we have covered yet are secure enough to foil a good cryptanalyst,
the OneTimePad procedure of §5.2 is good enough for household use (unless you live with
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cryptanalysts!) Should we want to really use it, however, we would find it extremely tedious to
type in our message each time, and then copy the encrypted text from the worksheet.

Fortunately, Maple is able to read and write data from a file, using readline and writeline.
These read (or write) a single line of data from a specified file.22. When reading from a file,
readline returns either a line of data, or 0 when the end of the file is reached.

Although it is not strictly necessary, it is a good idea to explicitly open the file before dealing
with it, and close it when you are done. In addition to being good practice (like explicitly
declaring variables), it also allows you to specify certain options, like whether you intend to
read or write to the file. In fact, I recommend using fopen, which also allows you to specify
whether the file should be treated as text or binary.23 Below is a small example of a procedure
which encrypts a file one line at a time using a procedure EncryptLine. We have never given
such a procedure, but it should be clear how to modify it to use your favorite encryption routine
instead.

> Cryptfile := proc(plainfilename,cryptfilename,key)
local line, cline, file, cryptf;

file :=fopen(plainfilename,READ,TEXT);
cryptf:=fopen(cryptfilename,WRITE,TEXT);

line :=readline(file);
while (line <> 0) do

writeline(cryptf,EncryptLine(line,key));
line :=readline(file);

od;
close(file);
close(cryptf);

end:

7 Affine enciphering

We have just examined a trivial encryption scheme, the Caesar cipher, which can be described
as applying x 7→ x+ b (mod p) to each of the characters x in a message. As we have seen, this
provides no security at all (a message encoded in this way can be cracked in a short while by
a third grader), but minor modifications such as those in §5 can greatly improve the security.

We now return to trivialities, but make it one step harder. Instead of encoding each character
by just adding a constant, we can multiply by a constant as well. That is, we can use x 7→

22If you are treating a newline as a character, you will need to deal with the file on a byte-by-byte basis, using
readbytes and writebytes

23On several operating systems, including MS-Windows and MacOS (but not Unix or Linux), files may be
treated as containing text or binary data. When dealing with a text file, some control characters (such as the
end-of-line marker) are translated to a format more suitable for use. When opening the file, we can tell Maple
whether it should be dealt with as text or binary. If you neglect to specify which, you may find your file has one
very long line if you open it in a text editor. Under Unix, text and binary files are the same, so no translation
is necessary, but there is no harm in specifying the file type.
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ax+ b (mod p) to encode each character. This not only helps a tiny bit (to crack it, you need to
find out two characters instead of just one, and the encoded message looks a little more “mixed
up”, since letters adjacent in the alphabet no longer encode to adjacent letters), it helps us set
up a little more conceptual machinery.

7.1 When do affine encodings fail?

You might be wondering if this will work at all. Certainly when we were just shifting the letters
by a fixed amount, there was no chance that the enciphering transformation f could fail to be
invertible. Does the same hold true if we multiply the numeric codes for the letters? That is,
do different letters always encode to different letters?

The answer is, unfortunately, not always. For example, suppose we use a 27 character
alphabet (A-Z and blank). Then if we encode using the transformation x 7→ 6x + 2 (mod 27),
both “A”(0) and “J”(9) encode to the character “C”(2). What went wrong? Recall that when
we work modulo 27, any numbers that differ by a multiple of 27 are equivalent. Since 27 has
nontrivial factors, several characters will collide whenever the multiplicand (6) shares a common
divisor with 27. This will never happen if gcd(a, p) = 1.

Let’s make that precise:

Proposition 7.1 Let a, b, x, and y be integers in the set {0, 1, . . . , p− 1}, with gcd(a, p) = 1.
Then

ax+ b ≡ ay + b (mod p) ⇐⇒ x ≡ y (mod p)

Proof. Suppose ax+ b ≡ ay + b (mod p). We want to show that x ≡ y (mod p). Certainly we
have ax ≡ ay (mod p), so there must be integers k and m so that kp+ ax = mp+ ay. But we
can then rewrite this as

a(x− y) = (k −m)p

that is, a(x− y) is a multiple of p. If a and p share no common divisors, then x− y must be a
multiple of p, so x ≡ y (mod p).

If x ≡ y (mod p), then certainly ax+ b ≡ ay + b (mod p). tu

Thus, by the above, we can see that the affine encoding scheme will be just fine if the
multiplicand a is relatively prime to the length of our alphabet (p). Henceforth, we will always
take an alphabet whose length is a prime number, so we need not worry about this issue. An
alphabet of length 97 works quite well, because 97 is prime and large enough so that we can
include all the usual printable ASCII characters (see §2.2, especially the table on page 4:6). If
you plan to use the full ASCII or extended ASCII character set (including the null character),
then you will need to make sure you choose a to be an odd number (since the length of the
alphabet will be either 128 or 256, both or which are powers of 2).
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7.2 Implementing and using an affine encoding

Implementing this scheme is a trivial modification to the Caesar2 procedure we wrote in §4.
We only need add another parameter a, and change the encoding calculation. We also renamed
shift as b to correspond to our discussion here.

In light of the Prop. 7.1, we will also add some error checking to ensure that a and the
length of the alphabet are relatively prime. Recall that if they are not, the encryption will
produce a message that cannot be decrypted. We use the error command24 if this is the case.
While we typically use an alphabet of prime length, we may not always do so.

> AffineCode:= proc(plaintext::string, a::integer, b::integer)
local textnum,codenum,i,p;
global Alphabet;

p := length(Alphabet);
if (gcd(a,p)>1) then

error("The %-1 parameter %2 must be prime to the length of Alphabet %3",
2,a,p);

fi;
textnum := StringToList(plaintext);
codenum := [seq( modp(a*textnum[i]+b, p), i=1..length(plaintext)) ];
ListToString(codenum);

end:

> mess:=AffineCode("A fine mess, Stanley!",10,5);

mess := “ˆ7Lj;B71BmmN7Pw{;’BHA”

What about decoding a message encoded by an affine cipher? If we know the original a
and b, we could either write AffineDecode, which calculates modp( (textnum[i]-b)/a, p)

instead, or, we could use AffineCode(1/a, -b/a), which is really the same thing. We’ll take
the latter approach.

If you think about it for a second, you may wonder whether 1/a mod p makes any sense at
all. It does, but only if we interpret division in the right way. We should not divide by a in the
“ordinary way” and then reduce modulo p, but instead interpret it to mean the solution x to the
equation ax ≡ 1 (mod p). That is, 1/amod p is the multiplicative inverse of a in {0, 1, . . . , p−1}.
Such an element exists exactly when a and p are relatively prime, as a consequence of Prop. 7.1.
Since Maple knows about division modulo p, it allows us to use this notation, which is quite
convenient.

> 1/6 mod 97;

81

In our definition of AffineCode we insisted that a and b be integers. This means that using
a call like AffineCode(mess,1/10,-5/10) will give an error, since 1/10 is not an integer.

24Versions prior to Maple 6 need to use ERROR instead, which has slightly different behavior.
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We can fix that by changing the definition of AffineCode to be proc(plaintext::string,

a::rational, b::rational) or we can explicitly calculate these modular expressions before
passing them to AffineCode.

> AffineDecode:= proc(ciphertext::string, a::integer, b::integer)
local A, B, p;
global Alphabet;
p := length(Alphabet);
A := 1/a mod p;
B := -b/a mod p;
AffineCode(ciphertext, A, B);

end:

> AffineDecode(mess,10,5);

“A fine mess, Stanley!”

7.3 Breaking an affine cipher

Suppose we have a message that was encrypted with an affine cipher, and we also know the
Alphabet in use. Suppose also that we know (or manage to guess) the encoding of two letters.
How do we then decipher the message? It is quite straightforward: since the message was
enciphered with x 7→ y = (ax + b)mod p, and we have two examples of x and y, we need only
solve a pair of linear equations mod p. This is quite straightforward to do by hand, but Maple
will also do it for us.

For example, suppose we receive the message

nrIbQyxEbkrI bwr EUbJaPybL abpyJJy UbUlrrxU

which we know is encoded in the 53 letter alphabet consisting of the letters A–Z, a blank, then
a–z. Suppose we also guess that the letter “b” (28) is the encoding for a space (26), and that
“U” (20) is an encoded “s” (45) . We can figure out the encoding transformation by solving
the pair of equations

26a+ b ≡ 28 (mod 53) 45a+ b ≡ 20 (mod 53).

We have Maple do this for us using msolve.

> msolve({a*26 + b = 28, a*45 +b = 20},53);

{b = 25, a = 47}
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Thus, we see that the message was encoded by x 7→ 47x + 25 (mod 53), and can be decrypted
using a = 1/47 (mod 53) and b = −25/47 (mod 53). Of course, it would have been more efficient
to solve for the deciphering transformation directly.

> msolve({A*28 + B = 26, A*20 +B = 45},53);

{A = 44, B = 13}

> Alphabet:="ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz":
AffineCode("nrIbQyxEbkrI bwr EUbJaPybL abpyJJy UbUlrrxU", 44, 13);

“You bend your words like Uri Gellers spoons”

8 Enciphering matrices

8.1 Treating text as vectors

We can let our enciphering transformation f operate on larger blocks of text than just a single
character at a time. However, instead of treating a multi-byte string as a “super-character”, as
in §5.3, we could think of it as a vector of characters. Thus, if we were using, say, 2-vectors,
then the name “Dougal” would become the three vectors [68, 111], [117, 103] and [97, 108]
(assuming we are using the ASCII codes). If the length of the text we were converting was not
divisible by 2, we would have to extend it by adding a character to the end. Typically, this
would be a space, or perhaps a null character (ASCII 0). Thus the name “Ian” occurring at
the end of a message would become “Ian ”, and might encode as the pair of vectors [73, 97]
and [110, 32].

Below is an implementation of this conversion, StringToVects, which takes as input the text
to convert to n-vectors and the length of the vectors, n. It uses the StringToList procedure
from §4, as well as the usual Maple commands.

> StringToVects:= proc(text::string,n::posint)
local i,j,textnums,vectors;
textnums := StringToList(cat(text, seq(" ", i=1..modp(n-length(text),n))));
[seq([seq(textnums[(j-1)*n + i], i=1..n)],

j=1..nops(textnums)/n)];
end:

The first thing it does is extend the length of the text to a multiple of n, if needed. This relies
on the observation that k+ ((n− k) modn) is a multiple of n, and on the fact that Maple will
do the right thing with a command like seq(i,i=1..0), that is, produce nothing whatsoever.
Then the text, extended by the correct number of blanks, is converted to a list of numbers.

We now parcel up the list of numbers textnums into chunks of size n. This is done by noting
that the characters in the j-th vector will come from positions n(j−1)+1 through n(j−1)+n,
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so the inner seq gives us the j-th vector, as the outer one ranges over all the vectors. If you
don’t see how this works right off, just take a moment to write out an explicit example for
yourself.

Strictly speaking, the result is a list of lists, rather than a list of vectors. Maple is happy to
accept a list in contexts where a vector is wanted.

Converting back from a list of n-vectors to a character string is easy, because we already
have ListToString to convert a list of numbers to a character string for us. All that is needed
is remove the inner structure from each of our vectors, leaving only the sequence of numbers.
We can use map and op to do this for us.

> map(op,[[36, 79], [85, 71], [65, 76]]);

[36, 79, 85, 71, 65, 76]

One small problem is that for Maple, there is a difference between a vector and a list of
numbers— a vector has a little more structure. While we can use the two almost interchangeably
(in the same way that we can think of a point in R

n as an n-vector, or of as an n-vector as a
point), some functions such as op that deal with the internal structure will give different results.

> l := [vector([36,79]), vector([85, 71]), vector([65, 76])]:
map(op,l);

[1..2, [1 = 36, 2 = 79], 1..2, [1 = 85, 2 = 71], 1..2, [1 = 65, 2 = 76]]

In order to be sure that our function will work with both vectors and lists, we need to
convert the vectors to lists first. This is easily done with the Swiss army knife convert. The
unusual-looking type declaration in the function says that we will be happy to accept a list of
lists, a list of vectors, or a list of Vectors,25 provided their elements are integers.

> VectsToString:=
proc(vects::list({list(integer), vector(integer), Vector(integer)}))

local l;
l:=map(convert, vects, list);
ListToString(map(op, l)):

end:

8.2 Affine encoding with matrices

Now that we know how to think of character strings as vectors, we can manipulate them. Our
enciphering transformation is just a permutation of the n-vectors.

For example, the Vignère cipher (§5.1) can be interpreted as the applying the map v 7→
v + b mod p, where v and b are vectors the length of the key.

25Maple has two different linear algebra packages, linalg and the newer LinearAlgebra introduced in
Maple 6. The vector type is from the former, Vector from the latter.
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We can do a more general trick using the affine transformation

v 7→ Av + b mod p

where A is an n× n matrix, and b and v are n-vectors. As before, we need certain restrictions
on the matrix A. In particular, we need it to be an invertible matrix (so that we can decipher
the encoding). This is guaranteed by requiring that the determinant of A be nonzero and share
no common factors with p. As before, choosing an alphabet of prime length makes our lives
much easier. The linear version of this encoding, v 7→ Av, is sometimes called a Hill cipher after
Lester Hill, who studied such cryptosystems in the late 1920s and early 1930s [Hil1], [Hil2].

In Maple, one does matrix arithmetic pretty much as you would expect, except that we
need to use &* to indicate matrix multiplication. This is because matrix multiplication is not
commutative, while * is. Using &* tells Maple not to attempt the multiplication right away,
and so it doesn’t carry out the operations until you execute evalm. When the evalm function
is executed, it does the matrix multiplication properly. Thus, to compute Av + b, we would
write evalm(A &* v + b). Because we want to reduce everything modulo p, we map modp onto
the matrix. Since we might want to specify an element as the inverse of another, we allow our
matrix and vector to contain rationals. As before, we accept several types of inputs.

> with(linalg):
AffineMatEncode :=
proc(text::string,

A::{matrix(rational),Matrix(rational),list(list(rational))},
B::{vector(rational),Vector(rational),list(rational)})

local vtext,vcrypt,i,n,p;
global Alphabet;

p:=length(Alphabet);
n:=nops(convert(B,list)); # look at B to get the size

if ( gcd(linalg[det](A),p)>1) then
error("Determinant of %1 is not prime to the length of Alphabet %2",

A,p);
fi;

vtext := StringToVects(text, n);
vcrypt:= [seq( map(modp,

evalm( A &* vtext[i] + B),
p),

i=1..nops(vtext))];
VectsToString(vcrypt);
end:

Note that matrices allow the encodings of nearby characters in the message to interact. For

example, we can exchange every other character in a message using the matrix

(

0 1
1 0

)

:

We should point out that all the examples in this section are using the 53-character alphabet
of the previous section.
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> AffineMatEncode("I am so mixed up", [[0,1],[1,0]], [0,0]);

“ Imas oimex dpu”

To decode a message encoded using A, b, we can encode the crypttext with the matrix A−1

and the shift vector −A−1b. You should check for yourself why this is the proper transformation.
To obtain the inverse matrix in Maple, you can use inverse. This is part of the linear algebra
package, so you must either first issue the command with(linalg,inverse) or refer to the
function as linalg[inverse].

> A := matrix([[12, 27], [46, 44]]); B:=[25, 50];

A :=

[

12 27
46 44

]

B := [25, 50]

> AffineMatEncode("Lester Hill",A, B);

xMPKFUGRxtaa

> AffineMatEncode(%, inverse(A), evalm(-inverse(A) &* B));

“Lester Hill ”

8.3 A Known-plaintext attack on an affine matrix cipher

As in §7.3, we can determine the key if we know what certain characters correspond to. If
the message is encoded using n-vectors, we will need to know the decodings for n+ 1 different
vectors, that is, n(n+ 1) characters. We then solve the n+ 1 vector equations simultaneously
to find out the deciphering matrix and shift vector.

We will give a small example: Suppose we receive a message that we know was encoded
using an affine cipher on 2-vectors, in our usual 97-letter alphabet. Suppose we also know that
the plaintext “secret” corresponds to the ciphertext “cilbup”. This is sufficient information to
decipher the message, because we know the encodings of three different 2-vectors.

> Alphabet := cat("\n\t", Select(IsPrintable,convert([seq(i,i=1..255)],bytes))):
plain:=StringToVects("secret",2);

plain := [[85, 71], [69, 84], [71, 86]]
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> crypt:=StringToVects("cilbup",2);

crypt := [[69, 75], [78, 68], [87, 82]]

These three vectors give us three equations to solve:

Ac1 +B ≡ p1 Ac2 +B ≡ p2 Ac3 +B ≡ p3

where the ci are the crypttext vectors and the pi are the corresponding plaintext, and the
equations are taken mod 97. (If this seems backwards, remember we are trying to find the
deciphering transformation.) If the code were linear, then the deciphering matrix would be
PC−1, where P and C are the matrices whose columns are made up of the vectors pi and ci
respectively.26

Since the code is affine, we can either play around manipulating matrices, or we can just
translate everything into 6 linear equations in 6 variables. We will take the latter approach.

> A:=matrix([[a,b],[c,d]]);
B:=[e,f];

A :=

[

a b
c d

]

B := [e, f ]

Note that we wish to solve Aci+B ≡ pi (mod 97) for A and B. If we execute the statement
evalm(A &* crypt[i] + B - plain[i]), we will get a vector which should be the zero vector.
For example, using the first sample, we obtain

> evalm( A&*crypt[1] + B - plain[1]);

[69 a+ 75 b− 85 + e, 69 c+ 75 d− 71 + f ]

This gives us a vector of two expressions we would like to set to zero. If we do this for all three
of our samples, and unwrap the vectors using op and convert( ,list), we will get a system
of equations appropriate to solve:

> eqns:= {seq(op(convert(
evalm(A&*crypt[i] + B - plain[i]),
list)), i=1..3)};

eqns := {87 c+ 82 d− 86 + f, 87 a+ 82 b− 71 + e, 78 c+ 68 d− 84 + f,

78 a+ 68 b− 69 + e, 69 c+ 75 d− 71 + f, 69 a+ 75 b− 85 + e}
Now, we use msolve to find out the decoding matrix and shift vector.

26Do you see why this is so? Hint: think about the relationship between matrices and linear functions.
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> Answer:= subs(msolve(eqns,97),[evalm(A),B]);

Answer := [

[

42 84
19 78

]

, [5, 88]]

We can decode our message now, by encoding the crypttext using the matrix A and shift B
found above. A is the inverse of the matrix used for encoding, and B is A times the negative
of the original shift vector.

> AffineMatEncode("cilbup",Answer[1],Answer[2]);

“secret”

It is worth noting that combining an affine matrix cipher with a large multibyte alphabet
(see §5.3) greatly increases its security, at least if one restricts to short messages, each using
different keys. While the matrix cipher is still susceptible to a known-plaintext attack, getting
the plaintext becomes much harder.

9 Modern cryptography

9.1 Secure cryptosystems

As mentioned before, most of the ciphers we have examined are not really cryptographically
secure, although they may have been adequate prior to the widespread availability of computers.
A cryptosystem is called secure if a good cryptanalyst, armed with knowledge the details of the
cipher (but not the key used), would require a prohibitively large amount of computation to
decipher a plaintext. This idea (that the potential cryptanalyst knows everything but the key)
is called Kerckhoff’s Law or sometimes Shannon’s Maxim.

Kerckhoff’s Law at first seems unreasonably strong rule; you may be thinking that, given
a mass of encrypted data, how is the cryptanalyst to know by what means it was encrypted?
If you are encrypting your own files for personal use and writing your own software which you
keep under lock and key, this assumption is not unreasonable. But today, most encryption is
done by software or hardware that the user did not produce himself. One can reverse engineer a
piece of software (or hardware) and make the cryptographic algorithm apparent, so we cannot
rely on the secrecy of the method alone as a good measure of security. For example, when you
make a purchase over the internet, the encryption method that is used between your browser
and the seller’s web server is public knowledge. Indeed, it must be public: if not, only those
privy to the secret could create web browsers or web servers. The security of the transaction
depends on the security of the keys.

There are several widely used ciphers which are believed to be fairly secure. We will not go
into the details of any of these; most of the algorithms are quite involved and require manip-
ulations at the bit level— Maple is not really the appropriate tool for them. Implementations
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are widely available, both commercially and as free public software (see, for example, the In-
ternational Cryptography page27).

Probably the most commonly used cipher today is DES (the Data Encryption Standard),
which was developed in the 1970s and has been adopted as a standard by the US government.
The standard implementation of DES operates on 64-bit blocks (that is, it uses an alphabet of
length 264— each “character” is 8 bytes long), and uses a 56-bit key. Unfortunately, the 56-
bit key means that DES, while secure enough to thwart the casual cryptanalyst, is attackable
with special hardware by governments, major corporations, and probably well-heeled criminal
organizations. One merely needs to try a large number of the possible 256 keys.28 This is a
formidable, but not insurmountable, computational effort. A common variation of DES, called
Triple-DES, uses three rounds of regular DES with three different keys (so the key length is
effectively 168 bits), and is considerably more secure.

DES was originally expected to be used for “only a few years” when it was first designed.
However, due to its surprising resistance to attack it was generally unassailable for nearly 25
years. The powerful methods of linear and differential cryptanalysis were developed to attack
block ciphers like DES.

In the January of 1997, the National Institute for Standards and Technology (NIST) issued
a call for a new encryption standard to be developed, called AES (the Advanced Encryption
Standard). The requirements were that they operate on 128-bit blocks and support key sizes
of 128, 192, and 256 bits. There were five ciphers which advanced to the second round: MARS,
RC6, Rijndael, Serpent, and Twofish. All five were stated to have “adequate security”– Rijn-
dael was adopted as the standard in October of 2000. Rijndael was created by the Belgian
cryptographers Joan Daemen and Vincent Rijmen; the underlying mathematics is the algebra
of polynomials in the finite field GF (2).

Other commonly used ciphers are IDEA (the International Data Encryption Algorithm,
developed at the ETH Zurich in Switzerland), which uses 128-bit keys, and Blowfish (developed
by Bruce Schneier), which uses variable length keys of up to 448 bits. Both of these are currently
believed to be secure. Another common cipher, RC4 (developed by RSA Data Security) can
use variable length keys and, with sufficiently long keys, is believed to be secure. Some versions
the Netscape web browser used RC4 with 40 bit keys for secure communications. A single
encrypted session was broken in early 1995 in about 8 days using 112 networked computers
(see Damien Doligez’s web page about cracking SSL29 for more details); later in the same year
a second session was broken in under 32 hours. Given the speed increases in computing since
then, it is reasonable to believe that a 40-bit key can be cracked in a few hours. Notice, however,
that both of these attacks were essentially brute-force, trying a large fraction of the 240 possible
keys. Increasing the key size resolves that problem. Nearly all browsers these days use at least
128-bit keys.

27http://www.cs.hut.fi/ssh/crypto/
28that is, 72,057,594,037,927,936 keys.
29http://pauillac.inria.fr/ doligez/ssl/
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There are, of course, many other ciphers in common use, and more being developed all the
time.

9.2 Message digests

Related to encryption are message digests, or cryptographic hash functions. A message digest
takes an arbitrary length string and computes a number, or hash, from it. Changing the string
changes the value of the hash. Hashing functions also play a major role in searching and sorting,
and hence in computer databases. While it is obvious that several plaintexts must correspond
to the same hash value, it is a difficult problem in general to construct such a plaintext from the
value of the hash alone. Thus, one can use a good message digest to authenticate a message—
appending an encrypted version of the hash to an otherwise clear text message can act as a
seal, showing that the message was not otherwise tampered with, since it would be infeasably
hard to construct a different message with the same hash.

Some commonly used Message digests are MD5 (developed by RSA Data Security), and
SHA or SHS (the Secure Hash Algorithm/Standard, developed by the US government).

It is worth remarking here that computer systems can use a cryptographic hash function
as a way to store a password (for example, Linux allows the use of MD5 for passwords). A
computer password never need be decrypted; it only needs to be verified. Instead of storing
the password itself, or an encrypted version of it, the computer stores the corresponding hash.
Then, when a user signs in, the password is hashed and compared to the stored value. If they
match, the user typed the right password (or managed to find another password with the same
hash, which is computationally impossible).

9.3 Public Key cryptography

All of the ciphers so far discussed are symmetric encryption routines (also called secret-key or
traditional ciphers): if one knows the key used to encode the message, one also can decrypt the
message without too much work. For example, in an affine cipher x 7→ ax + b mod p (see §7),
if we know the values of a and b used to encode the message, we can quickly compute the
deciphering key 1/a mod p, −b/a mod p. By the same token, the ability to decrypt the message
usually also yields the key used for encryption.30

30A story related to this appears in Casanova’s memoirs (1757) (quoted in [Kahn]). He was given an encrypted
manuscript by a Madame d’Urfé, which he deciphered. From deciphering, he determined the key used to encipher
the manuscript. Later, upon learning this, Madame d’Urfé was incredulous, believing he must have learned the
keyword in order to decode the message.

I then told her the key-word, which belonged to no language, and I saw her surprise. She told
me that it was impossible, for she believed herself the only possessor of that word which she kept
in her memory and which she had never written down.

I could have told her the truth— that the same calculation which had served me for deciphering
the manuscript had enabled me to learn the word— but on a caprice it struck me to tell her that
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This was true of all cryptosystems up until the mid 1970s: knowledge of how to encode a
message allowed one also to decipher it. However, in 1976 Whitfield Diffie and Martin Hellman
invented public key cryptography [DH76]. In a public key system, someone who knows how to
encipher a message cannot determine how to decipher the message without a prohibitively large
computation. That is, given the enciphering transformation fkey : P 7→ C, discovering f−1

key is
not computationally realistic. It is important to realize that there may be a procedure for
doing so, but to carry out this process would take a prohibitively long time (say, hundreds of
years on the fastest known computers). Such a function is sometimes called a one-way function.
However, to be usable for public key cryptography, it must be possible to find the inverse of the
function provided you have some extra information. This extra information is referred to as a
trapdoor (like a trapdoor that a magician would use to escape from a “sealed” box), resulting
in a trapdoor one-way function.

What good is a public key cryptosystem? Since knowledge of the encoding key KE does
not give information about the decoding key KD, the encoding key KE can be made public
(hence the name public key). This allows anyone to encode messages that only the recipient can
decode. For example, suppose you want to make a credit card purchase over the Internet. Data
sent across the Internet unencrypted is not secure: someone with access to the transmission
lines can listen in and capture sensitive data.31 However, if the merchant provides a public key,
you can encrypt your credit card number and transmit it without worry. Only the merchant
can decrypt the message, even though anyone may send one.32

Another feature of public key cryptography is authentication. In many public key systems,
either the enciphering key KE or the deciphering key KD may be made public without revealing
the other one. In order to digitally sign a message, I could append my name encrypted with my
enciphering key, which I keep secret. I could also make public the deciphering key KD. Then
anyone can check that I was the actual sender, because only I could have encoded my name.
Of course, to stop someone from merely appending a valid encrypted signature to a forged
message, I should also encrypt something specific to that message, such as a message digest
(see §9.2) computed on its contents. This feature is commonly used to digitally sign email by

a genie had revealed it to me. This false disclosure fettered Madame d’Urfé to me. That day, I
became the master of her soul, and I abused my power. Every time I think of it, I am distressed
and ashamed, and I do penance now in the obligation under which I place myself of telling the
truth in writing my memoirs.

31This is not as hard as you might expect. In many places, such as universities, portions of the network
backbone pass through public places like dormitories or classrooms. One merely needs to attach a computer to
the network lines to “sniff” the network traffic. This will, of course, be limited to users communicating to or
from that location, but that can be quite a lot. This same problem occurs with some cable-modem providers:
appropriate software can detect the network traffic of one’s neighbors. Also, there are many segments of the
Internet which consist of microwave links. To listen in on a huge part of network traffic, all you need is an
appropriately placed receiver.

32Of course, you should still only deal with reputable merchants. You probably wouldn’t give your credit card
number to a guy selling stuff on the street; neither should you automatically trust anyone with a web site.
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software such as PGP33.

Public-key cryptography is very computationally intensive, so typically its use is limited to
allow for the secure transmission of a secret key; this secret key is then used to encrypt the rest
of the message using a symmetric encryption method such as AES, triple-DES or IDEA.

A common public key system in current use is RSA (named for its inventors: Ronald
Rivest, Adi Shamir and Leonard Adelman), which we will look at in detail in §11. Others are
the Diffie-Hellman key exchange system, El Gamal, Subset-sum (or Knapsack) systems, and
systems based on elliptic curves. We will not discuss these here.

10 Some Number Theory

Most public key systems rely on number-theoretic results. Before we can discuss the imple-
mentation of one, we need to quickly go over the necessary background. We have already used
a tiny amount of number theory (in our discussion of computing mod p and of the greatest
common divisor). Of course, this must be done briefly, and we will only touch on a small part
of a large and ancient field— the interested reader would do well to consult a text on number
theory (e.g. [NZM], [Ros]) for more information.

10.1 The greatest common divisor and the Euclidean algorithm

We have already met the greatest common divisor, or gcd, which is the largest integer which
divides both of a pair of numbers. Two numbers are said to be relatively prime if their greatest
common divisor is 1. As we have already seen, finding two relatively prime numbers has
important applications in many cryptosystems.

How can we determine the gcd of two numbers? If the numbers are not too large, just
looking at their factors does the trick. For example,

gcd(138, 126) = 6 since 138 = 2 · 3 · 23 and 126 = 2 · 32 · 7.

However, there must be a more efficient way, since Maple can calculate the gcd of two 60-digit
numbers in well under a second, while taking a long time (about 10 minutes on a 600 Mhz
pentium computer) to factor either one of them.

One such algorithm is the Euclidean algorithm, which has been around for thousands of
years. It works by computing successive differences— to compute gcd(a, b), where a > b, we
first compute r1 = a − k1b, where k1b is the largest multiple of b that is less than a. Then we
repeat this, finding r2 = b − k2r1, r3 = r1 − k3r2, and so on until the remainder is zero. The
last nonzero remainder is the gcd. For example, to calculate gcd(138, 126),

33http://www.pgpi.com
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a = 138
b = 126

a −b = 12 = r1

b− 10r1 = −10a +11b = 6 = r2

r1 − 2r2 = 21a −23b = 0

This not only gives gcd(138, 126) = 6, but expresses it as a difference of multiples of the two
numbers: 6 = 11× 126− 10× 138. We can write this procedure more formally as a theorem.

Theorem 10.1 (The Euclidean Algorithm) Let a and b be two positive integers, with b < a.
Then we can construct two decreasing sequences of positive integers ri and ki as follows:

a − k1b = r1 0 < r1 < b
b − k2r1 = r2 0 < r2 < r1

r1 − k3r2 = r3 0 < r3 < r2

r2 − k4r3 = r4 0 < r4 < r3
...

rn−2 − knrn−1 = rn 0 < rn < rn−1

rn−1 − kn+1rn = 0

and rn is the greatest common divisor of a and b.

We have already seen that the Euclidean algorithm also gives us the following:

Corollary 10.2 Let a and b be two positive integers. Then there are integers x and y so that

ax+ by = gcd(a, b).

Why does the Euclidean Algorithm work? It follows from the observation that if a = bk+r,
then gcd(a, b) = gcd(b, r). For example, gcd(138, 126) = gcd(126, 12) = gcd(12, 6) = 6. We
write this as a lemma.

Lemma 10.3 Let b be a positive integer, and a be a nonnegative integer. If

a = bk + r, with k and r positive integers

then gcd(a, b) = gcd(b, r).

Proof. Let d = gcd(a, b). Then since d is a divisor of a and a divisor of b, it is also a divisor
of a− bk. Since r = a− bk, we have d a divisor of r. So it must divide gcd(b, r).

Now, in order to prove equality, we want to show that also gcd(b, r) is a divisor of d.
Certainly gcd(b, r) divides a, since a = r + bk. It also divides b, and so we have gcd(b, r) as a
divisor of gcd(a, b).
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Thus, gcd(b, r) = gcd(a, b). tu

Now we are ready to prove that the Euclidean Algorithm (Thm. 10.1) always yields the
greatest common divisor.

Proof. Notice that the sequence b > r1 > r2 > r3 > . . . is a strictly decreasing sequence of
positive integers, so it must eventually terminate with some rn > 0. The last equation can be
written as kn+1rn = rn−1, and so rn is a divisor of rn−1. Then certainly rn = gcd(rn, rn−1). Ap-
plying the lemma to the equation above it, we obtain gcd(rn, rn−1) = gcd(rn−1, rn−2). Repeating
in this way, we obtain rn = gcd(rn, rn−1) = gcd(rn−1, rn−2) = . . . = gcd(r1, b) = gcd(a, b). tu

Recall that if r is such that ar ≡ 1 (modn), then r is called the multiplicative inverse of
a modulo n. We have already dealt with such objects extensively. We now state a theorem
which tells us exactly when such inverses exist. Note that this is really just Prop. 7.1 slightly
reworded.

Theorem 10.4 Let a and n be integers, with n ≥ 2. Then a has a multiplicative inverse

modulo n if and only if gcd(a, n) = 1.

Proof. First, suppose that a has an inverse modulo n. Then there is a k so that

ak ≡ 1 (modn).

In particular, n is a divisor of ak − 1, so there must be some integer t so that ak − 1 = nt.
Rewriting this as

ak − nt = 1,

we see that gcd(a, n) = 1 (by Cor. 10.2).

Now suppose that gcd(a, n) = 1. Then again using Cor. 10.2, there are integers r and s
with ar + ns = 1. This means ar − 1 is divisible by n, so

ar ≡ 1 (modn).

But this says that r is the inverse of a modulo n. tu

Notation. It is common (and quite convenient) to denote the set of integers modulo n as Zn.
That is,

Zn = {0, 1, 2, . . . , n− 1}
As we already know, this set is closed under addition and multiplication, and the usual as-
sociative, distributive, and commutativity laws hold. This set is an example of an algebraic
structure called a ring.
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Notation. We will use Z
∗
n to denote the elements of Zn which have multiplicative inverses. In

light of the last theorem, we have

Z
∗
n = {a ∈ Zn gcd(a, n) = 1}

For example,

Z
∗
7 = {1, 2, 3, 4, 5, 6} Z

∗
8 = {1, 3, 5, 7} Z

∗
12 = {1, 5, 7, 11}

10.2 The Chinese Remainder Theorem

In this section, we state a very old theorem about simultaneous solutions to congruences. This
theorem may have been known to the eight-century Buddhist monk I-Hsing, and certainly
appears in Ch’in Chiu-shao’s Mathematical Treatise in Nine Sections, written in 1247. It is
sometimes (rarely) referred to as the “Formosa Theorem”.

Theorem 10.5 Let m ≥ 2 and n ≥ 2 be integers with gcd(m,n) = 1. Then for any integers a
and b, the system of equations

x ≡ a modm
x ≡ b modn

has a solution. Furthermore, there is only one solution x between 0 and mn− 1.

As an example of this, suppose five kids pool all their money and buy a bag of candy. They
divide the candy up evenly, and find there are 3 pieces left over. Suddenly, one kid’s mom
comes out, tells him “no candy before dinner”, and hauls him off. The other four kids divide
up the candy and there is one piece left over. While they are squabbling over it, a dog runs up
and eats the disputed piece.

The Chinese Remainder Theorem tells us that we can always determine how many pieces of
candy were in the bag, at least up to multiples of 20. In the above example, there were 13 pieces
of candy (or 33, or 53, or . . . ). If we want to solve this problem with Maple, the command
chrem([3,1],[5,4]) does the trick. We could also use numtheory[mcombine](5,3,4,1).

Proof. Since m and n are relatively prime, there are integers k and t so that mk + nt = 1.
Then

c = bkm+ ant

is the desired solution. To verify this, we need only check:

c ≡ ant ≡ a(1−mk) ≡ a (modm)

and

c ≡ bkm ≡ b(1− nt) ≡ b (modn)
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To check uniqueness, suppose there are two solutions c and d. Since c ≡ a (modm) and
d ≡ a (modm), we have c − d ≡ 0 (modm). Similarly, c − d ≡ 0 (modn). Since both m
and n divide c − d, and m and n are relatively prime, we have that mn divides c − d. Thus
c− d ≡ 0 (modmn), that is, c ≡ d (modmn). tu

10.3 Powers modulo n

Notation. In this and future sections, we shall use the notation
[[

a
]]

b
to denote a mod b.

First, let’s take a look at a few examples of what happens when we reduce the sequence
a, a2, a3, a4, . . . modulo n. Consider

[[

3k
]]

20
:

3,
[[

32
]]

20
= 9,

[[

33
]]

20
= 7,

[[

34
]]

20
=
[[

21
]]

20
= 1,

[[

35
]]

20
= 3, . . .

The sequence consists of four numbers 3, 9, 7, 1 and then it repeats. What about 4? We have

4,
[[

42
]]

20
= 16,

[[

43
]]

20
= 4,

[[

44
]]

20
= 16, . . .

This is also periodic, but notice that we never get back to 1. Similarly, let’s look at the powers
of 6:

6,
[[

62
]]

20
=
[[

36
]]

20
= 16,

[[

63
]]

20
=
[[

16 · 6
]]

20
=
[[

96
]]

20
= 16,

[[

64
]]

20
= 16, . . .

This gets stuck at 16. Finally, consider the powers of 11:

11,
[[

112
]]

20
=
[[

121
]]

20
= 1,

[[

113
]]

20
= 11, . . .

This sequence is periodic of period 2, and contains 1.

Definition 10.6 If there is a positive integer k so that
[[

ak
]]

n
= 1, we say that a has finite

multiplicative order modulo n. The smallest such integer k is called the order of a modulo n.

We can readily categorize the elements with finite order. If you look at the examples above,
3 and 11 have finite order mod 20, while 4 and 6 do not. You probably have already guessed
that this is because gcd(3, 20) = 1 and gcd(11, 20) = 1, while gcd(4, 20) = 4 and gcd(6, 20) = 2.

Theorem 10.7 Let a and n > 2 be integers. Then a has finite order modulo n if and only if

gcd(a, n) = 1.

Proof. First, suppose a has finite order mod n. Then there is some k so that

1 =
[[

ak
]]

n
=
[[

a
]]

n
·
[[

ak−1
]]

n
.
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Thus, a has a multiplicative inverse, namely
[[

ak−1
]]

n
. By Thm. 10.4, this means gcd(a, n) = 1.

Now we suppose gcd(a, n) = 1, and we want to find the inverse of a. Consider the sequence

a,
[[

a2
]]

n
,
[[

a3
]]

n
, . . . ,

[[

an
]]

n
,
[[

an+1
]]

n
.

Since there are n+1 elements and we are reducing modulo n, there must be at least two which
are equal. Let’s denote these by

[[

ak
]]

n
and

[[

at
]]

n
, with 1 ≤ t < k. Since

[[

ak
]]

n
=
[[

at
]]

n

we have
[[

ak−t
]]

n
= 1.

Thus, a has order k − t mod n. tu

So, we have seen that any invertible element of Zn has finite order. In particular, if p is
a prime number, every element except 0 is invertible and so has finite order. What are the
possible orders? A theorem of Pierre de Fermat gives a result in that direction.

Theorem 10.8 (Fermat’s Little Theorem, 1640) Let p be a prime. If gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).

For any integer a,
ap ≡ a (mod p).

Among other things, this theorem says that if p is prime, then the order of a mod p always
divides p− 1. Note that it doesn’t say the order is p− 1, just that it is a divisor of it. Also, it
says nothing about order with modulo a non-prime. We won’t give the proof of this theorem
here. Rather, we will give a proof of a more general result in the next section.

10.4 The Euler ϕ-function and Euler’s Theorem

Recall that we denote the set of invertible elements of Zn by Z
∗
n. That is,

Z
∗
n = {a ∈ Zn gcd(a, n) = 1} .

This set is sometimes called a reduced residue system modulo n.

Definition 10.9 Let n be a positive integer. Then ϕ(n) is the number of elements in Z
∗
n, that

is, the number of positive integers less than n which are relatively prime to n. This function is

called the Euler ϕ-function,34 or sometimes Euler’s totient function.

34Although the function was invented by Euler, the notation ϕ(n) to represent it is actually due to Gauss.
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We can compute a few values of ϕ(n) just by counting.

ϕ(2) = 1 since Z
∗
2 = {1}

ϕ(3) = 2 since Z
∗
3 = {1, 2}

ϕ(4) = 2 since Z
∗
4 = {1, 3}

ϕ(5) = 4 since Z
∗
5 = {1, 2, 3, 4}

ϕ(6) = 2 since Z
∗
6 = {1, 5}

ϕ(7) = 6 since Z
∗
7 = {1, 2, 3, 4, 5, 6}

ϕ(8) = 4 since Z
∗
8 = {1, 3, 5, 7}

ϕ(9) = 6 since Z
∗
9 = {1, 2, 4, 5, 7, 8}

ϕ(10) = 4 since Z
∗
10 = {1, 3, 7, 9}

ϕ(11) = 10 since Z
∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

ϕ(12) = 4 since Z
∗
12 = {1, 5, 7, 11}

Of course, Maple also knows about the function ϕ in the numtheory package, so we could
generate more values by asking Maple. But let’s try to understand a bit more. We can readily
prove some properties of ϕ.

Proposition 10.10 Let p ≥ 2 be a prime. Then

a. ϕ(p) = p− 1.

b. If n is a positive integer, then ϕ(pn) = pn − pn−1.

c. If a and b are relatively prime, then ϕ(ab) = ϕ(a)ϕ(b).

Proof. (a) This is immediate, since all non-zero elements of {0, 1, . . . , p− 1} are invertible.
(b)We prove this part just by counting. Since p is prime, the only numbers in Zp which are not
relatively prime to pn are multiples of p. These are 0, p, 2p, 3p, . . . , p2, (p+1)p, . . . , (pn−1− 1)p.
Note that pn−1p = pn, so there are exactly pn−1 multiples of p less than pn (including 0). All
the others are relatively prime to p— this gives the result.

(c) We need to show that the number of elements in Z
∗
ab is the same as the product of the size

of Z
∗
a and Z

∗
b . We do that by showing that for each t ∈ Z

∗
ab, there is exactly one pair (r, s) with

r ∈ Z
∗
a and s ∈ Z

∗
b .

So, let r ∈ Z
∗
a and s ∈ Z

∗
b . Then, by the Chinese Remainder Theorem (Thm. 10.5), there is

an integer t < ab with

t ≡ r mod a and t ≡ s mod b.

Since t is a solution of the first, we can find an integer k so that r = t + ka, so gcd(t, a) =
gcd(a, r) = 1 by Lemma 10.3. Similarly, gcd(t, b) = 1. Since t is relatively prime to both a and
b, it is relatively prime to their product, so gcd(t, ab) = 1. Thus t ∈ Z

∗
ab.
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Now take t ∈ Z
∗
ab, and we must find a corresponding r and s. Let r =

[[

t
]]

a
. Now, since

gcd(t, ab) = 1, certainly gcd(t, a) = 1. Since r ≡ t mod a, there is an integer k so that t = r+ka,
so we have gcd(r, a) = 1. Thus r ∈ Z

∗
a. Similarly, we let s =

[[

t
]]

b
, and we see that s ∈ Z

∗
b .

Since we have paired each t ∈ Z
∗
ab with a unique pair (r, s) ∈ Z

∗
a × Z∗

b , they have the same
cardinality. The first set has ϕ(ab) elements, and the latter has ϕ(a)ϕ(b). tu

We now come to Euler’s generalization of Fermat’s result. This result is the central idea
underlying the RSA public key cryptosystem.

Theorem 10.11 (Euler, 1750) Let a and n be relatively prime integers, with n ≥ 2. Then
[[

aϕ(n)
]]

n
= 1.

Proof. Let a be relatively prime to n, and consider the set

aZ∗
n =

{[[

ab
]]

n
b ∈ Z

∗
n

}

.

Since a and n are relatively prime,
[[

a
]]

n
∈ Z

∗
n. Thus every element of aZ

∗
n is in Z

∗
n. But also

every element of Z
∗
n is an element of aZ

∗
n, since

[[

ab
]]

n
=
[[

ac
]]

n
if and only if

[[

b
]]

n
=
[[

c
]]

n
. This

means that the sets aZ∗
n and Z

∗
n are equal.

Now, multiply all the elements of Z
∗
n together; call the result N . Then

[[

N
]]

n
∈ Z

∗
n. If we

multiply all the elements of aZ∗
n together, we get a

ϕ(n)N , and since the two sets are the same,
we have

[[

aϕ(n)N
]]

n
=
[[

N
]]

n
.

Thus,
[[

aϕ(n)
]]

n
= 1.

tu

11 The RSA Public key cryptosystem

In 1978, R. Rivest, A. Shamir, and L. Adelman published the description of the RSA public
key system[RSA], which we will describe here. As discussed in §9.3, a public key system allows
anyone to encode messages that only the intended recipient may decode. This algorithm relies
on the fact that unless one knows some special facts about n, calculating the Euler ϕ-function
ϕ(n) is as hard as factoring n, which, for very large n (say, 200 digits), is very hard indeed.
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11.1 Details of the RSA algorithm

To set up the system, we pick at random two large primes p and q, of about 100 digits each.
We then compute the base n as the product of p and q. Note that ϕ(n) = (p− 1)(q − 1). We
also pick some other number e, called the exponent, which is relatively prime to ϕ(n). We make
the numbers (n, e) public— these form the key needed for encoding. We also use the Euclidean
algorithm to compute x which satisfies ex − yϕ(n) = 1; that is, so that

[[

ex
]]

ϕ(n)
= 1. The

number x is the part of the key we keep private; our decrypting key is the pair (n, x).

To encode a message: The sender divides his message up into blocks of length k, and to each
block assigns an integer β (for example, by treating the characters of the message as a k-graph,
as in §5.3, with 0 ≤ β < n. For each block of plaintext, the sender transmits

[[

βe
]]

n
= µ.

To decode the message: For each unit µ of the crypttext received, the recipient computes
[[

µx
]]

n
, which is the integer representing of a k-graph of the original plaintext message. We can

see that this is so, because
[[

µx
]]

n
=
[[

βex
]]

n
=
[[

β1+ϕ(n)y
]]

n
=
[[

β
]]

n

[[

βyϕ(n)
]]

n
=
[[

β
]]

n

([[

βϕ(n)
]]

n

)y
=
[[

β
]]

n
· 1y = β.

This relies on Euler’s theorem (Thm. 10.11), so that
[[

βϕ(n)
]]

n
= 1. Euler’s theorem only

guarantees that this will work for gcd(β, n) = 1. However, we can easily see that decryption
works for all β < n, whether or not it is relatively prime to n.

Proposition 11.1 Let n = pq, with p and q prime, and let 0 ≤ β < n. Then for any integer

y,
[[

β1+yϕ(n)
]]

n
= β.

Proof. If gcd(β, n) = 1, the result follows from Euler’s theorem.

Otherwise, since p and q are prime, we have β a multiple of either p or q, but not both
(since β < pq by assumption). Suppose β ≡ 0 (mod p), and so

[[

β1+yϕ(n)
]]

p
= 0 =

[[

β
]]

p
.

Since β is a multiple of p less than pq, and both p and q are prime, we must have gcd(β, q) = 1.
We can apply Euler’s theorem using modulus q to conclude

[[

βϕ(q)
]]

q
= 1, so

[[

β1+yϕ(n)
]]

q
=
[[

β
]]

q

(

[[

βϕ(q)
]]

q

)y(p−1)

=
[[

β
]]

q
.

We have two equations modulo p and modulo q, and can apply the Chinese Remainder Theorem
(Thm. 10.5) to obtain one modulo pq. Hence

[[

β1+yϕ(n)
]]

n
=
[[

β
]]

n
= β

as desired. In the case where
[[

β
]]

q
= 0, the argument is the same after exchanging p and q. tu

Remarks.
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1. The symmetry between e and x means that we can encrypt with either the public or
the private key, using the other for decryption. To use RSA works for authentication,
the private key (n, x) is used encrypt a message which can be decrypted with the public
key (n, e). Only one who possesses the private key could have encrypted such a message,
which serves as a proof of identity.

2. If e is small, there is a possibility of having some message elements β for which βe < n;
for such a β, decrypting without knowledge of ϕ(n) is easy: just compute the e-th root
of β, since n is not a consideration. With care, one can either ensure that such β do not
occur, or one can encrypt such messages in a slightly different manner.

3. For efficiency reasons, many implementations always use 3 for the encoding exponent e.
In general, computing

[[

βe
]]

n
when e is of the form 2k+1 is quite efficient. Other common

choices for e are 17 and 65537 (216 + 1), which are only slightly less efficient than 3.

4. Instead of using the Euler ϕ-function, one can use Carmichael’s λ-function, which is the
largest order of any element of Z

∗
n. In the case where n is a product of two primes p and

q, we have λ(n) = lcm(p− 1, q − 1). Since p− 1 and q − 1 are always even, the resulting
private exponent x will be smaller.

5. There are a number of considerations in the choice of primes p and q that we will mostly
ignore. For example, p and q should not be too close together, and both p− 1 and q − 1
should both have at least one large prime factor.

11.2 Implementing RSA in Maple

Now that we have covered how the RSA system works in theory, it is fairly straightforward to
implement it.

Implementing the basics of RSA

First, we write a Maple procedure which, given a size for n (our public base), will choose n as
the product of two large primes p and q, as well as an exponent e which is relatively prime to
ϕ(n), and compute the decrypting exponent x.

For real security, n should be at least 200 decimal digits, meaning that the primes p and
q will be about 100 digits each. Such large numbers are not easily factored (which is how we
get our security), so how do we expect to be able to find 100-digit prime numbers? It turns
out that there are a number of very efficient ways to test whether a number is prime without
actually factoring it. Maple’s isprime function uses such methods. So all we really need to do
is generate a random number of around 100 digits, then use nextprime to get the next prime
bigger than that number. We should use randomize() to ensure that we get different numbers
each time (See the discussion of pseudo-random numbers in §5.2, page 4:17).
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In RSAsetup below, the approximate number of digits for n is given, and p is chosen as a
prime with one less than half that many digits, while q has one more than half the number of
digits of n. This means n must have at least 5 digits (or else p would have to be 2, 3, 5 or 7).
After calculating n and ϕ(n), a random number is chosen for the public exponent e. If this
number is not relatively prime to ϕ(n), another random choice is taken until such a number is
found. Finally, x is computed as the inverse of e modulo ϕ(n). The result of the function is
the public key (n, e) and the private key (n, x).

> randomize():

RSAsetup:=proc(numdigits::posint)
local p,q,phi,e,n, x, pm, qm;

if (numdigits <= 4) then
error("Too few digits for this to work");

fi;

pm:=floor((numdigits-1)/2);
qm:=numdigits-pm;
p:=nextprime(rand(10^(pm-1)..10^(pm))());
q:=nextprime(rand(10^(qm-1)..10^(qm))());

n:=p*q;
phi:=(p-1)*(q-1);

e:=rand(3..phi/2)();
while(gcd(e,phi) <> 1) do

e:=rand(3..phi/2)();
od;
x := modp(1/e, phi);
return([[n,e],[n,x]]);

end:

We should remark that in certain cases, both p and q might be chosen at the extreme ends of
their ranges, giving n with one fewer or one more digit than requested. If this were important,
it could be repaired with a slightly more complicated program.

Once the keys are chosen, writing the heart of the RSA encoding is quite easy. We just need
a function that eats a number β and a key (n, e), and computes

[[

βe
]]

n
.

> RSAEncodeNum := proc(num::nonnegint, key::list(posint))
return( modp( num &^ key[2], key[1] ));

end:

As a brief example, we’ll generate a random pair of keys with a 5-digit modulus, and then
encrypt and decrypt the number 47.

> keys:=RSAsetup(5):
public := keys[1];
private:= keys[2];
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public := [10793, 2371]

private := [10793, 31]

> RSAEncodeNum(47,public);
RSAEncodeNum(%,private);

3991

47

Of course, we want to encrypt more than a single number, but this is the heart of the whole
thing.

Making it Useful

In order to encrypt a string of text, we have to convert our text to a list of numbers. It is
probably best to use k-graphs to represent our text, as in §5.3, where k is the largest integer
power of the size of our alphabet that is smaller than n. While it will work to use a single
character alphabet, this can compromise security significantly— see the remarks at the end of
§11.1.

We can use StringToKgraph and KgraphToString from §5.3 to represent our strings as
k-graphs. In order to determine the appropriate choice of k, we find the largest integer k so
that

Alenk < n

where Alen is the length of our alphabet.

Once we have our plaintext represented as a list of integers, we merely map the function
RSAEncodeNum onto that list.

> Alphabet := cat("\n\t",Select(IsPrintable,convert([seq(i,i=1..255)],bytes))):
Alen := length(Alphabet);
k:=floor(log[Alen](public[1]));

Alen := 97

k := 2

> text := "Once upon a midnight dreary, while I pondered, weak and weary":
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> StringToKgraph(text,k);

[7809, 6956, 8441, 7939, 274, 261, 7354, 7830, 7156, 8416, 6792, 6971, 8215, 1449,

8635, 7349, 6965, 4173, 7956, 7841, 6957, 6971, 1428, 8635, 6570, 271, 7827,

264, 6976, 8215, 91]

> crypt:=map(RSAEncodeNum,%,public);

crypt := [23972, 14519, 16728, 21226, 15537, 16168, 23547, 21311, 657, 15151, 20048,

7796, 961, 8740, 4392, 5615, 18965, 18341, 18628, 14070, 9286, 7796, 23471,

4392, 17418, 12708, 3247, 11788, 23561, 961, 9606]

We can reverse the process, using the private key, to decrypt.
> KgraphToString(

map(RSAEncodeNum,crypt,private),
k);

“Once upon a midnight dreary, while I pondered, weak and weary”

It is important to note that if we want to represent the result of the encryption as a string
instead of a list of numbers, we must use (k + 1)-graphs rather than k-graphs. This is because
Alenk < n, so there will often be β so that

[[

βe
]]

n
> Alenk. In the example above, note that

972 = 9409, and there are several elements of the list crypt larger than 9409.

We can put it all together in two simple procedures.
> RSAEncodeString := proc(text::string, key::list(posint))

local Alen, k;
global Alphabet;

Alen := length(Alphabet);
k:=floor(log[Alen](key[1]));
KgraphToString(

map(RSAEncodeNum,
StringToKgraph(text, k),
key),

k+1);
end:

RSADecodeString := proc(text::string, key::list(posint))
local Alen, k;
global Alphabet;

Alen := length(Alphabet);
k:=floor(log[Alen](key[1]));
KgraphToString(

map(RSAEncodeNum,
StringToKgraph(text, k+1),
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key),
k);

end:

Now we try it out, with a 150-digit choice of n. Note that this means we’ll be using 75-
graphs, since 9775 < 10150 < 9776.

> keys:=RSAsetup(150):
public:=keys[1]; private:=keys[2];

public := [582757988242592241527296499231639188385179508302715855017\
1444848474216092727784907675976501184435973118498314592404067\
38402555037014297170960267438521, 18499822186252355491629282387\
3069724195125984703150098794787826856490657875937058983979216\
6564841269310221397039646221986692531497073722912893849813]

private := [582757988242592241527296499231639188385179508302715855017\
1444848474216092727784907675976501184435973118498314592404067\
38402555037014297170960267438521, 33116290696193906028353889077\
81095383522640902859475195789426689481950851913681223087714308\
97081124962779673548200136089054119501927242337355077933565]

> crypt:=RSAEncodeString(text,public);

crypt := “?!2<*h&l9![</*(=X5’oMT\\*Mnc /T%j*r˜\“ =?b00‘UP \
gQ#O¡oyVQdx3r—. N=s)¡!oidl?+$”

> RSADecodeString(crypt,private);

“Once upon a midnight dreary, while I pondered, weak and weary”

12 RSA encoding a file

Now we will write a procedure that uses RSA to encrypt a file, rather than a string. Of
course, we could just read in the string and use RSAEncryptString, but in some cases, it makes
sense to use a different alphabet for the crypttext. For example, we might want to accept
all possible ASCII codes 0-255 as plaintext input, but restrict our encrypted output to use
a limited collection of characters (so that it can be printed or emailed without transcription
problems, say). For example, in the example below, we use the character set of RFC 204535,
which specifies how to encode base 64 MIME attachments for email.

35http://www.faqs.org/rfcs/rfc2045.html



4:48 CHAPTER 4. FSQFSHN SGGOUSG

Here is our procedure which reads the contents of a file, encrypts it with RSA, and writes
out the result to another file.

> Alphabet:=cat(Select(IsAlphaNumeric,convert([seq(i,i=1..255)],bytes)),"+/");

> RSAEncodeFile:=proc(plainfile::string, cryptfile::string, key::list(posint))
local k, pf, cf, chunk, chunklen, codenum, crypt, Alen;
global Alphabet;

Alen := length(Alphabet);
chunklen:= ceil(log[Alen](key[1]));
k := floor(log[256](key[1]));

try
pf := fopen(plainfile, READ, BINARY);
cf := fopen(cryptfile, WRITE, TEXT);
chunk := readbytes(pf, k);
while (chunk <> 0) do

codenum := map(RSAEncodeNum,
convert( chunk, base, 256, 256^k),
key);

crypt:=KgraphToString(codenum, chunklen);
writeline(cf, crypt);
chunk := readbytes(pf, k);

od;

finally
fclose(cryptfile);
fclose(plainfile);

end try;
RETURN();

end:

> RSADecodeFile:=proc(cryptfile::string, plainfile::string, key::list(posint))
local k, pf, cf, chunk, chunklen, plain, crypt, Alen;
global Alphabet;

Alen := length(Alphabet);
chunklen:= ceil(log[Alen](key[1]));
k:= floor(log[256](key[1]));

try
pf := fopen(plainfile, WRITE, BINARY);
cf := fopen(cryptfile, READ, TEXT);
chunk := readline(cf);
while (chunk <> 0) do

plain:= convert(
map(RSAEncodeNum,

StringToKgraph(chunk, chunklen),
key),

base, 256^k, 256);
writebytes(pf, plain);
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chunk := readline(cf);
od;

finally
fclose(cryptfile);
fclose(plainfile);

end try;

RETURN();
end:
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Chapter 5

A turtle in a fractal garden

1 Turtle Graphics

Imagine you have a small turtle who responds to certain commands like “move forward a step”,
“move back a step”, “turn right”, and “turn left”. Imagine also that this turtle carries a pen
(or just leaves a trail of green slime wherever he crawls— the pond he came out of was none
too clean). As long as our turtle follows our commands without tiring, we can get him to
make rather intricate patterns easily.1 The turtle graphics commands described here are not a
standard part of maple. Rather, they are in a file “turtle.txt” which we will examine in more
detail later in this chapter. Maple has a somewhat different implementation included in the
share library. In order to get our turtle commands known to maple, we must first load them
with a command such as

> read(‘turtle.txt‘);

Let us suppose our turtle is given a string such as “FLFRF” and interprets it as the sequence
of instructions “Move Forward. Turn Left. Move Forward. Turn Right. Move Forward.” Then
we should see the turtle move in a zigzag pattern:

> TurtleCmd(‘FLFRF‘);

We shall begin assuming the turtle knows the following commands:

F — move forward one step R — turn right (but don’t move)
B — move backward one step L — turn left

1This is the premise of the computer language LOGO, invented in the late 1960s and often used to teach
children the basic ideas of programming. The “turtle graphics” we do here has very little to do with real LOGO,
which is a much more powerful system.

5:1
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We will point out some more commands later, although this set is sufficient to do quite a lot.2

For example, we can ask our turtle to make a self portrait:

> TurtleCmd(‘FRFLFFF RFFLFFLFFR FFFFF RFFLFFLFFR FFFLFR FFLF RBFL
FLFF RFLFRFLFRFLF FRFLFFRFLFFF LFRFFLF RFFLF RFLFRFLF FFF‘);

Or, we can make a spiral:

> TurtleCmd(‘FRFR FFRFFR FFFFRFFFFR FFFFFFFFRFFFFFFFR‘);

This last can be represented more succinctly if we add a pair of new commands, namely

G — “Grow”, i.e. double the unit of length S — “Shrink” (halve the unit of length)

Then the last picture can be produced by the string “FRFRG FRFRG FRFRG FRFR”, or,
even better, we can make it spiral much more by repeating “FRFRG” twenty times:

> TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

You may have noticed that the command TurtleCmd always resizes the resulting graphic
to be of constant width. While this may seem a minor point, it is not. In any single string
of turtle commands, “FF” will always be twice as long as “F”; however, TurtleCmd(‘F‘) and
TurtleCmd(‘FFFFFFFFFF‘) produce identical results. This is because the a single “F” in the
second case is 1/10 the width of the figure, while it is the full width in the first case.

We can also adjust some of the turtle’s attributes. For example, the turtle need not make
only 90 degree turns. We use the command ResetTurtle() to set the turtle back to its initial
state, then SetTurtleAngle to specify the angle (in degrees) that the turtle will turn left or
right when it encounters an L or R command.

2In fact, this set of commands is already redundant. We could replace L with RRR and B with RRFLL.
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> ResetTurtle(); SetTurtleAngle(60);
TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

Here is a somewhat prettier example. Can you figure out what is happening?

> ResetTurtle(); SetTurtleAngle(30);
TurtleCmd(cat(seq(cat(‘L‘,

seq(‘FL‘,i=1..12)),
j=1..12)));

SetTurtleScale allows us to modify the behavior of the S and G commands. Its argument
is the factor the unit of length changes when an S is encountered.

> ResetTurtle(); SetTurtleAngle(60); SetTurtleScale(.8);
TurtleCmd(cat(seq(‘FRFRG‘,i=1..20)));

2 A fractal

Now let’s try to do something more interesting. Begin with a straight segment (command
“F”). Now remove the middle third of the segment, and replace it with the top two sides of an
equilateral triangle. Since the overall figure produced by the turtle is always rescaled to unit
size, we can represent the latter with the command “F LFRRFL F”, where the part LFRRFL
describes the bump we added. Of course, we have to set the angle the turtle turns to be 60◦,
and we need the RR in the middle to make a 120◦ turn.
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> SetTurtleAngle(60);
plots[display](array([TurtleCmd(‘F‘), TurtleCmd(‘FLFRRFLF‘)]));

Now let’s put a bump on each segment in the second figure. This is the same as replacing
each F in the second command with “FLFRRFLF”, giving us

> TurtleCmd(‘FLFRRFLF L FLFRRFLF RR FLFRRFLF L FLFRRFLF‘);

Putting bumps on each segment of that figure, and then adding smaller bumps to each
segment of that figure, and then doing it yet again, gives us a very wiggly curve:

Notice that the width of each bump added is 1/3 of the one added previously, so by the
time we have done this five times (as in the previous figure), the bumps are 1/35 the size of
the whole figure. If we continue much more, the changes become smaller than we can discern.
It should be clear that there is a well defined “curve” which corresponds to the limit of doing
this process infinitely often. We shall try to make this statement a little more precise now.

Let K0 be the figure at the 0-th stage, that is, the straight segment, and let K1 be the curve
after we have added one bump. In general, let Kn be the curve after the n-th step. We claim
that there is a well-defined limit curve K∞ = limn→∞Kn.

To make sense of this statement, we need a way to measure how far apart two sets in the
plane are. That is, if S1 and S2 are two sets of points, we shall define the “Hausdorff distance”
between S1 and S2 as follows. First, define the distance from a point x to a set S as the distance
between x and the closest point in S, that is

d(x, S) = inf
y∈S

d(x, y).

Then let the Hausdorff distance between S1 and S2 be the greatest of all such distances, as x
moves through each set.

d(S1, S2) = max

{

sup
x∈S1

d(x, S2), sup
x∈S2

d(x, S1)

}

Once you have absorbed that, it should be simple to see that that we now need only show
that for any ε > 0, we can always find N sufficiently large so that d(KN ,Kn) < ε for all n > N .
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This follows from the fact that the size of the bumps goes down by a factor of 1/3 at each stage.
Thus, d(Kn,Kn+1) < 1/3

n+1, and

d(KN ,Kn) <
n
∑

j=N

1/3j <
1

2 · 3N−1
.

This means that the sets Kn form a Cauchy sequence, and so there is a well-defined limit set
K∞.

3

Now, this “curve” K∞ has some interesting properties. First, notice that the distance in
the plane from one end to the other is 1, but the “curve” itself is infinitely long. In fact, the
length of any small part of the curve is infinite, as well. We can see that by examining how the
lengths of each Kn varies with n:

curve # segments segment length total length

K0 1 1 1
K1 4 1/3 4/3
K2 16 1/9 16/9
K3 64 1/27 64/27
...

...
...

...
Kn 4n 1/3n 4n/3n

At each stage, every segment is replaced by four segments 1/3 as long. Thus, the overall
length grows by a factor of 4/3 at each step. For any finite length ` we choose, we can find an
n so that the length of Kn is greater than `.

Note also that K∞ is nowhere differentiable: it has corners densely throughout it. Finally,
note that K∞ is “self-similar”. By this we mean that if you take any small piece of it, no matter
how small, there is a small copy of the whole K∞ within it.

The curve K∞ is an example of a fractal.4 This particular example is called the von Koch
curve, and was discovered by H. von Koch in the late nineteenth century. This curve, and others
like it, caused quite a stir in the mathematics community at the time because of its peculiar
properties. We will explore additional fractals and some of their properties in the remainder of
this chapter.

3In order to completely finish this argument, we need to know that the collection of all compact sets forms
a complete metric space if we use the Hausdorff distance as our metric. Without this fact, we don’t know that
the limiting object K∞ is also a compact set in the plane. Although this isn’t difficult to prove (and is nearly
self-evident), we will skip over this detail.

4The term “fractal” was coined by Benoit Mandelbrot in the late 1970s. Unfortunately, there is no universally
accepted definition for this term. Some definitions require that a fractal be a self-similar object, but this excludes
one of the most well-known examples of a fractal, the Mandelbrot set, which is only approximately self-similar.
We shall take it to mean any set whose Hausdorff dimension exceeds its topological dimension (we will see what
this means in section 5).
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The particular way we generated the Koch curve is called an “L-system” or a “Lindenmeyer
system”. In an L-system, one begins with an initial figure (called the initiator), and a set of
rules for modifying any figure to obtain the next in the sequence. In our example above, the
initiatior was a straight segment (F) and the recursion rule was F 7→ FLFRRFLF.

3 Recursion and making a Koch Snowflake with Maple

In the previous section, we didn’t give the specifics of exactly how we generated the Koch curve
of level 5 which we showed. The general procedure was pointed out (“Begin with F. Replace
each F with FLFRRFLF. Repeat 5 times.”), but if you actually tried to do it yourself, you
might have found it a bit tricky. Since the turtle command for the curve has 2388 letters,
certainly it isn’t something you would expect someone to type in directly.

Instead, a small maple procedure was written to generate it. Before giving the details, let’s
analyze the process a bit. We shall rely heavily on the self-similar nature of the Koch curve
K∞.

Notice that the curve K∞ is made up of four small copies of itself, arranged as

K∞L K∞RR K∞L K∞.

If we use Kn to denote the set of turtle commands used to produce Kn, then a similar statement
is true for each Kn, namely

Kn =

{

Kn−1LKn−1RRKn−1LKn−1 if n > 0
F if n = 0

.

3.1 Recursive functions.

This is an example of a recursive definition. You’ve probably encountered such definitions
previously in math classes. For example, the factorial function can be defined either as

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

or

n! =

{

n · (n− 1)! if n > 1
1 if n = 1

.

The second definition is much simpler to implement in a programming language which allows
recursive functions, such as maple.5 To see this, let’s implement the factorial function in both
ways:

5Most programming languages these days do allow recursive function calls, although this was not the case
until 1985 or so.
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> fact1 := proc(n::posint)
local i,ans;
ans := 1;
for i from 1 to n do

ans := ans*i;
od;
ans;

end:

> fact2 := proc(n::posint)
if (n=1) then

1;
else

n*fact2(n-1);
fi;

end:

Notice how much shorter and clearer the second version is.6 However, there is a price to
pay: a recursively defined function has a bit more overhead than a non-recursive one. However,
the savings in simplicity often overwhelms the minor loss in speed.7

To test your understanding, you might try to write a procedure to generate the Fibonacci
numbers, which are defined by

F (n) =

{

F (n− 1) + F (n− 2) if n > 2
1 if n = 1 or n = 2

.

Try to implement this with both a recursive and non-recursive procedure. The non-recursive
one is much more complicated!

3.2 A recursive procedure to generate Kn

With the idea of recursion in our bag of tools, we can now easily write our procedure to generate
the Koch curve, using the observation we made in §3, namely that

Kn =

{

Kn−1LKn−1RRKn−1LKn−1 if n > 0
F if n = 0

.

6We’ve stretched things a bit here. We could have implemented the factorial even more simply as
fact3:=n->product(i,i=1..n);. However, this relies on the fact that the factiorial is a special product.

7Also, symbolic systems such as maple often have additional means to speed up recursive procedures. If you
expect your function to be called several times with the same argument, you can add options remember to the
definition. This instructs maple to save the result of previous function calls. When the function is called again,
maple just gives the same result as before, rather than computing it again. But be careful: you get the same
answer, even if you change the function later.
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> Koch:= proc (n::nonnegint)
if (n=0) then

‘F‘;
else

cat( Koch(n-1), ‘L‘, Koch(n-1), ‘RR‘, Koch(n-1), ‘L‘, Koch(n-1));
fi;

end:

> Koch(2);

FLFRRFLFLFLFRRFLFRRFLFRRFLFLFLFRRFLF

If you think about it for a second, you might notice that what we have just done is to write
a little program (Koch) whose output is a program in another language (the string of turtle
commands which describe Kn). While this may seem odd at first, doing this sort of thing is
not at all uncommon.

3.3 The Koch Snowflake

Often, one sees the curve K∞ as one side of a closed plane figure, the Koch Snowflake (sometimes
also called the “Koch Island”). This is an infinite length “curve” which bounds a finite area,
and resembles a snowflake. It is made by sticking together three copies of K∞ meeting each
other at 60◦ angles so that they close up. We do this now:

> KochFlake := proc(n::nonnegint)
ResetTurtle();
SetTurtleAngle(60);
cat(‘L‘,Koch(n),‘RR‘,Koch(n),‘RR‘,Koch(n));
end:

> plots[display](array([[seq(TurtleCmd(KochFlake(i)),i=0..2)],
[seq(TurtleCmd(KochFlake(i)),i=3..5)]]));
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3.4 Some variations on the Koch curve

What happens to the curve K∞ if we change the height of the bumps we add at each stage?
We can do this easily by changing the angle the turtle turns when it encounters an R or an L.
For example, an angle of 10◦ gives a curve which is nearly smooth.

> ResetTurtle(); SetTurtleAngle(10);
TurtleCmd(Koch(6));

But an angle of 80◦ gives a curve which wiggles wildly and almost seems to take up area.
> ResetTurtle(); SetTurtleAngle(80);

TurtleCmd(Koch(6));

We shall make this observation more precise in section 5. You might try some additional experi-
ments on your own, to gain intuition about how the limit curve depends on the parameters. For
example, what would happen if you make the angle be 90◦? Do you find the result surprising?

Some other variations you might want to try on your own might be to modify the Koch

procedure so that the bumps are added alternately above and below the curve, as shown in the
following figure:
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Here the angle used was less than 60◦. What happens for an angle of exactly 60◦? How about
a larger angle? Can you adjust things so that using 75◦ angle does not cause self-intersections?

Or, you might try using a different shape of a bump. For example, below we used squares,
shrinking the scale first so the bumps don’t run into each other. What happens if you vary the
scale factor with SetTurtleScale?

4 Making a tree

We now try to get our turtle to trace out a tree. In our tree, we start with a trunk, and then
add two branches at the top. Then, at the end of each branch, we will add more branches.

First, we prefer our trees to grow up, so we change the turtle’s initial heading. We also set
our angle to be 45◦.

> read(‘turtle.txt‘);
SetInitialTurtleHeading(90);
SetTurtleAngle(45);

The trunk of our tree will have no branching, and will just be the single command F. We
will call this T0. For T1, we add a pair of branches to the top, to make a Y shape.8 At each
subsequent stage, we add another level of branches, as below:

How do we go about implementing this? As in the case of the Koch curve, we can use
recursion, by noticing that Tn contains two small copies of Tn−1 forming the left and right limbs
of the tree. Thus, we can define Tn recursively. Before proceeding, you might want to take a
minute to think about how to do this on your own.

Notice that the letter Y cannot be drawn without either retracing part of the curve or lifting
your pen. Rather than using a PenUp and PenDown command to tell the turtle to stop drawing,9

we will have our turtle back up over a branch after we draw it. We also have to make sure our
turtle is pointing in the proper direction when we finish the branch, or things won’t work out
at all.

8As in §3, we will use a calligraphic font (Tn) for the curve and ordinary roman (Tn) to denote the commands
to produce the curve.

9The file turtle.txt does, in fact, implement these commands as D and U— see §8 for more details.
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Thus, T0 = FB, and we can take T1 as “F S LFBR RFBL G B”. The “LFBR” part goes
out the left branch and returns, and “RFBL” goes out the right branch and returns. To get
T2, we replace each copy of “FB” in T1 with a scaled version of all of T1, after turning a bit to
the left or right. In general, we have

Tn =

{

FSLTn−1RRKn−1LGB if n > 0
FB if n = 0

.

Using this, it is now easy to write the generating procedure.

> Tree:= proc(n::nonneg)
options remember;
if (n=0) then

‘FB‘;
else

cat(‘FSL‘, Tree(n-1), ‘RR‘, Tree(n-1), ‘LGB‘);
fi;

end:

> TurtleCmd(Tree(10));

You might want to experiment with varying the angle and the scale factor, and see how the
tree changes. For example, if we use SetTurtleScale(.6), the branches of T8 just touch, and
they overlap in Tn if n > 8. However, if we change the angle to 60◦, the branches stay away
from each other.

> ResetTurtle(); SetInitialTurtleHeading(90);
SetTurtleAngle(45); SetTurtleScale(.6);
t10a:=TurtleCmd(Tree(10)):

> SetTurtleAngle(60);
t10b:=TurtleCmd(Tree(10)):

> plots[display](array([t10a, t10b]));
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As an extra challenge, try your hand at producing a fern like the one below.

5 Fractal Dimension

From an early age, we that learn lines and curves are one-dimensional, planes and surfaces are
two-dimensional, solids such as a cube are three dimensional, and so on. More formally, we say
a set is n-dimensional if we need n independent variables to describe a neighborhood of any
point. This notion of dimension is called the topological dimension of a set.10 The dimension
of the union of finitely many sets is the largest dimension of any one of them, so if we “grow
hair” on a plane, the result is still a two-dimensional set. We should note here that if we take
the union of an infinite collection of sets, the dimension can grow. For example, a line, which is
one-dimensional, is the union of an infinite number of points, each of which is a zero-dimensional
object.

There can occaisionally be a little confusion about the dimension of an object: sometimes
people call a sphere a three-dimensional object, because it can only exist in space, not in the
plane. However, a sphere is two-dimensional: any little piece of it looks like a piece of the

10In fact, there is a much more precise definition of topological dimension, but to give it requires more
background material than we are prepared to give here.
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Figure 1: Some one- and two-dimensional sets (the sphere is hollow, not solid).

plane R
2, and in such a small piece, you only need two coordinates to describe the location of

a point.11

But, what about the fractals we have been considering? For example, what is the dimension
of the Koch snowflake? It has topological dimension one, but it is by no means a curve— the
length of the “curve” between any two points on it is infinite. No small piece of it is line-like,
but neither is it like a piece of the plane or any other R

n. In some sense, we could say that it
is too big to be thought of as a one-dimensional object, but too thin to be a two-dimensional
object. Maybe its dimension should be a number between one and two. In order to make this
kind of thinking more precise, let’s look at the dimension of familiar objects another way.

5.1 Box counting dimension

What is the relationship between an object’s length (or area or volume) and its diameter? The
answer to this question leads to another way to think about dimension. Let us consider a few
examples.

If we try to cover the unit square with little squares of side length ε, how many will we
need? Obviously, the answer is 1/ε2. How about to cover a segment of length 1? Here we need
only 1/ε little squares. If we think of the square and segment as sitting in space and try to
cover them with little cubes ε on a side, we get the same answer. And if we use the little cubes
to cover a 1× 1× 1 cube, how many will we need? Exactly 1/ε3. Note that the exponent here
is the same as the dimension of the thing we are trying to cover. This is no coincidence.

11In fact, this is just a different measure of dimension, called the embedding dimension: a set has embedding
dimension n if n is the smallest integer for which it can be embedded into R

n without intersecting itself. Thus,
the embedding dimension of a plane is 2, the embedding dimension of a sphere is 3, and the embedding dimension
of a klein bottle is 4, even though they all have (topological) dimension two. A famous theorem (the Whitney
embedding theorem) says that if a manifold has topological dimension n, its embedding dimension is at most
2n.
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Figure 2: Covering a curve, a surface, and a solid cube with cubes of diameter ε.

We define the box-counting dimension (or just “box dimension”) of a set S contained in
R
n as follows: For any ε > 0, let Nε(S) be the minimum number of n-dimensional cubes of
side-length ε needed to cover S. If there is a number d so that

Nε(S) ∼ 1/εd as ε→ 0,

we say that the box-counting dimension of S is d. We will denote this by dimtu(S) = d.
Note that the box-counting dimension is d if and only if there is some positive constant k

so that

lim
ε→0

Nε(S)
1/εd

= k.

Since both sides of the equation above are positive, it will still hold if we take the logarithm of
both sides to obtain

lim
ε→0

(lnNε(S) + d ln ε) = ln k.

Solving for d gives

d = lim
ε→0

ln k − lnNε(S)
ln ε

= − lim
ε→0

lnNε(S)
ln ε

.

Note that the ln k term drops out, because it is constant while the denominator becomes infinite
as ε→ 0. Also, since 0 < ε < 1, ln ε is negative, so d is positive as we would expect.

We should remark that there are some sets S for which dimtu(S) cannot be defined because
there is no d for which the limit converges.12 We will not encounter such examples here, how-
ever. Since the box-counting dimension is so often used to calculate the dimensions of fractal

12Mathematicians often use a more general measure called Hausdorff dimension, which is defined for every
such set. One difficulty with the Hausdorff dimension is that it is often very hard to compute. The Hausdorff and
box dimensions coincide for compact, self-similar fractals, so we will not concern ourselves with the distinction.



5. FRACTAL DIMENSION 5:15

sets, it is sometimes referred to as “fractal dimension”. We prefer the term box dimension, how-
ever, because sometimes the term “fractal dimension” might refer to box dimension, Hausdorff
dimension, or even other measures of dimension such as the information dimension or capacity
dimension.

When computing box dimension, several simplifications can be made.

• We need not use boxes if some other shape is more convenient: if we cover our set with
disks of diameter ε, or even stars or mickey-mouses of diameter ε, we will get the same
answer.

• Not every possible ε need be considered. It is enough to consider the limit of lnNεi/ln εi
where εi is a sequence converging to zero. Choosing a convenient sequence often makes
the calculations much easier.

Sometimes box counting dimension is referred to as “similarity dimension” in the context
of self-similar sets. If a set is self-similar, there is an expansion factor r by which one can blow
up a small copy to get the whole set. If there are exactly N such small copies that make up
the entire set, the box dimension is easily seen to be lnN/ ln r.

5.2 Computing the box dimension of some examples

Not surprisingly, the box dimensions of ordinary Euclidean objects such as points, curves,
surfaces, and solids coincide with their topological dimensions of 0, 1, 2, and 3— this is, of
course, what we would want to happen, and follows from the discussion at the beginning of
§5.1. But what about other, more complicated sets? Let’s try a few simple examples for some
subsets of the unit interval [0, 1]. In these cases, our ε-cubes can be closed intervals of length ε.

Consider the set of points A =
{

0, 1
2
, 1

4
, 1

8
, 1

16
, . . .

}

. For any n ≥ 0, we can cover A with n
intervals of length 1/2n: we need one for the elements between 0 and 1

2n , and another interval
for each of the remaining n− 1 elements of A. This means that dimtu(A) = limn→∞ n/2n = 0.
The box dimension and the topological dimension of A are the same.

Let Q be the set of rational numbers in the interval [0, 1], that is,

Q =
{

p

q
p, q are relatively prime integers with p ≤ q

}

.

What is dimtu(Q)? Since the rationals are dense in [0, 1], any interval we choose contains some.
This means for every ε > 0, we will need 1/ε intervals to cover Q. Thus, Nε(Q) = 1/ε.

Consequently, dimtu(Q) = limε→0
1/ε
1/ε
= 1.

Recall that any real number x can be represented as a (possibly infinitely long) decimal.
For example, 1/4 = .25, 1/11 = .010101 . . ., and π = 3.14159265 . . .. The decimal expansion
is not quite unique— for example, 1/2 can be written as either .49999999 . . . or .50000000 . . ..
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This is the only possible point of confusion, however: any real number x ending in all zeros has
another representation ending in all nines.

Let us determine the box-counting dimension of the set

D = {x ∈ [0, 1] x has a decimal expansion containing no 4s or 5s} .

First, let’s note a few things about D:

• It is totally disconnected: that is, between any two points of D, there is another point
which is not in D.

• It is closed: the limit of any convergent sequence of points in D is still in D. Note that
this is not the case for the set Q above— a sequence of rational numbers can converge to
an irrational.

• It has uncountably many points. Much like the irrational numbers, there are far too many
elements of D to enumerate them. Also like the irrational numbers, we can enumerate
what is not in D.

• We shall see that D is also self-similar: any small piece of it can be scaled up to look like
the whole thing just by multiplying by an appropriate power of 10.

So, what is dimtu(D)? Let’s construct a sequence of covers of D whose diameter tends to
zero, and count the number of pieces we need. Note that while D contains the points13 .4 and
.6, it does not contain the open interval (.4, .6), so we can cover it by two intervals of length .4,
namely [0, .4] and [.6, 1]. This means N.4 = 2.

At the next finer level, we can see that D can be covered with the intervals

[0, .04], [.06, .10], [.10, .14], [.16, .20], [.20, .24], [.26, .30], [.30, .34], [.36, .40],

[.60, .64], [.66, .70], [.70, .74], [.76, .80], [.80, .84], [.86, .90], [.90, .94], [.96, 1]

That is, we need 16 intervals of length .04. This means that N.04 = 16.
For ε = .004, we will need 8 times as many intervals to cover D. This pattern continues:

each time we shrink ε by another factor of 10, we need 8 times as many intervals.
This means that

dimtu(D) = − lim
n→∞

ln 8n−1

ln (4 · 10−n) = − lim
n→∞

(n− 1) ln 8
ln 4− n ln 10

=
ln 8

ln 10
=
3 ln 2

ln 10
≈ .903089987

The box-counting dimension of D is not an integer. Note that the topological dimension of
D is zero.

13D contains .4 because it can be written as 0.3999 . . ., which contains no 4s or 5s.
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6 Cantor sets

The set D of the previous section is an example of a Cantor set. Often, a Cantor set is described
as the result of an iterative process, much in the same way we described the Koch curve in §2.
We’ll describe the most common Cantor set, the “middle-thirds Cantor set”, this way now.

Begin with the interval [0, 1] as the set C0. Now remove the open interval (
1
3
, 2

3
) from C0 to

obtain

C1 =

{[

0,
1

3

]

,

[

2

3
, 1

]}

.

To get the second stage, we remove the middle third of each interval in C1. This gives

C2 =

{[

0,
1

9

]

,

[

2

9
,
1

3

]

,

[

2

3
,
7

9

]

,

[

8

9
, 1

]}

.

We continue in this way, removing the middle third of each interval in Cn to obtain Cn+1 (See
Fig. 3). Note that Cn ⊂ Cm for all n > m. What is left as we let n → ∞ is the Cantor set.
That is,

C =
∞
⋂

n=0

Cn.

Figure 3: The first few stages C0, C1, . . . , C5 in the construction of the middle-thirds
Cantor set C.

It may not be clear at first that C even exists. It seems we are taking just about everything
out when we remove the intervals. Indeed, the total length of intervals we remove is

1

3
+
2

9
+
4

27
+
8

81
+ . . . = 1.

That is, the total length of the segments removed is equal to the segment we started with! For
this reason, a set like C is sometimes called a “Cantor dust”. But notice that the endpoints
of each interval of Cn must be in C, because they never get removed at any level. Thus, C is
nonempty, since it contains at least the points

{

0, 1, 1
3
, 2

3
, 1

9
, 2

9
, 7

9
, 8

9
, 1

27
, 2

27
, . . .

}

. And it contains
quite a few more points, as well. To see that, we can view C in a manner similar to the
description of the set D given in §5.2. However, C is more naturally described in base 3, rather
than base 10. Let’s briefly review what we mean by this.
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When we express a number x in base 10, we are expressing it as sums of powers of ten.
Thus, when we write e5 ≈ 148.413, we are actually saying that

e5 ≈ 1 · 102 + 4 · 101 + 8 · 100 + 4 · 10−1 + 1 · 10−2 + 3 · 10−3.

There is nothing magic about powers of 10, of course (except that it is the base we learned
as children, and the base used by just about every living human14for everyday numbers). For
example, we could express this15 in ternary (that is, base 3), where we would have

e5 ≈ 12111.1020113 = 1·34+2·33+1·32+1·31+1·30+1·3−1+0·3−2+2·3−3+0·3−4+1·3−5+1·3−6.

In computer applications, the bases 16 (hexadecimal) and 2 (binary) are very common, because
the computer represents everything internally in binary.16

Returning to the Cantor set C, note that when we remove the interval (1/3, 2/3), we are
removing all the numbers whose ternary expansion has a 1 immediately after the decimal
place.17 At the next stage, we remove those points which have a 1 in the second place after the
decimal, and so on. Thus, in the limit, we obtain the following alternate description of C:

C = {x ∈ [0, 1] x has a ternary expansion containing no 1s} .

You may remember that rational numbers correspond to numbers with a decimal expansion
that eventually repeats; the same holds true of the expansion in any base (how might you prove
this if you assume it for decimals?). It is easy to see using this description that C is closed (that
is, it contains all its limit points), totally disconnected, and contains an uncountable number of
elements (there are a lot of sequences of 0s and 2s), just like the set D of the previous section.
It is also self-similar, because if we take any small section of it and expand it by an appropriate
power of 3, it looks like the entire set.

What is its box dimension? The description by the sets Cn give us an effective way to
calculate the limit: at the nth stage, we have 2n intervals of length 3−n. Using this, we can
immediately calculate that

dimtu(C) = lim
n→∞

ln 2n

ln 3n
=
ln 2

ln 3
≈ 0.63093.

14Some Native American peoples used base 20, and the Babylonians were very fond of base 12 and base 60
(consider how we measure time).

15Maple will convert integers to other bases, using a command such as convert(148, base, 3). One has to
work a little bit to convert fractions— can you think of a way to do this?

16Hexadecimal is convenient for use with a binary system, because we can group blocks of 4 binary digits to
obtain one hexadecimal digit (by convention, the letters A–F are used to represent the integers 10–15). This
is quite handy in computer applications, because a single byte is represented by 8 binary digits (bits), or two
hex digits. Before 8-bit bytes became standard, octal (base 8) was very common as well. Octal is much less
convenient for 8-bit quantities, however, because 8 bits don’t break up nicely into groups of 3 bits.

17As in decimal expansions, some points have two representations. Thus, the point 1/3 can be written either
as .13 or as .02222 . . .. As in the construction of D in §5.2, we keep such points in our set.
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You may have noticed the strong similarity in the construction of the Koch curve K of §2 and
the middle-thirds Cantor set C. In fact, notice that the intersection of K with its base (the
initial segment K0) is exactly the middle-thirds Cantor set.

7 The Sierpinski gasket

Another very commonly encountered fractal is the Sierpinski gasket, which can be described as
follows:

We start with an equilateral triangle S0, and replace it by three equilateral triangles with
a base half the size of the original, stacked so the original perimiter is kept, but leaving a hole
in the center. We then replace each of those triangles by three more triangles, to obtain S2 as
nine triangles, each with a base of length 1/4. Continuing in this fashion infinitely many times
yields the Sierpinski gasket S. The sets S0 through S6 are shown below.

It is easy to see that dimtu(S) is ln 3/ ln 2, or about 1.58. You should try to confirm this fact
for yourself. The self-similarity of the Sierpinski gasket should help this calculation considerably.

How might we coerce our turtle into making a Sierpinski gasket? While the procedure is
simple enough to describe, explicitly writing it down in symbols requires a bit of thought. Give
it a try before continuing.

One way to accomplish this18 involves taking a slightly different viewpoint. Rather than
making the gasket by replacing triangles with smaller triangles, we construct a fractal “curve”
that traverses the base and the perimeters of the “holes”. This traces out the same sets Sn,
except for two segments which we can easily add later.

We view S0 as the straight horizontal segment F, along with two other segments which
are not horizontal. To emphasize the difference between the horizontal and the non-horizontal
segments, we will traverse the non-horizontal segments backwards, and use the command B.
Thus, our first triangle is S0 = FRBLLB.

Now, to obtain S1 from S0, we replace the horizontal segment F by two smaller ones with
an inverted triangle between them. As with S0, we use F to denote the horizontal parts and
B for the non-horizontal portions. Thus, we apply the transformation F 7→ SF RBLFLBR FG.
This gives us S1 from S0 as the command “SF RBLFLBR FG RBLLB”. If we replace all three
Fs in S1 using this transformation, we will obtain S2.

Before we try to describe any of the Sn recursively, note that in this description, each one
really consists of two pieces: there is the complicated, recursive portion which describes most

18We will give another solution which is closer to our original description in §9.
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of the gasket, and then there is the final RBLLB which makes the outer “hat” (see figure 4).
Let’s call the commands to produce this first part sn and call commands for the hat h, that is,
Sn = sn h. Then we can describe Sn as follows

Sn = sn h sn =

{

Ssn−1RBLsn−1LBRsn−1G if n > 0
F if n = 0

h = RBLLB.

Figure 4: The sets produced by the commands for s2, h, and S2 in the construction
of the Sierpinski gasket. Here, the set for s1 is drawn thicker within that of s2.

As in the previous sections, once we have worked out the algorithm, writing the maple code
to implement it is quite straightforward. We we will use the name Sierp for the procedure that
produces sn, and Sierpinski for the procedure to produce Sn.

> Sierp:=proc(n::nonnegint)
if (n=0) then

‘F‘;
else

cat(‘S‘,Sierp(n-1), ‘RBL‘, Sierp(n-1), ‘LBR‘, Sierp(n-1), ‘G‘);
fi;

end:

> Sierpinski:= n -> cat( Sierp(n), ‘RBLLB‘):

Since we also need to set the angle and scale appropriately, we can combine them all into a
single command DrawSierp:

> DrawSierp:= proc(n::nonnegint)
SetTurtleAngle(60);
SetInitTurtleHeading(0);
SetTurtleScale(.5);
TurtleCmd(Sierpinski(n));

end:

> DrawSierp(9);
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Warning: Drawing even S8 takes a significant amount of time and is almost indistinguishable
from S7. If you try to draw S9, be prepared to wait quite a while, and make sure your computer
has plenty of memory.

8 Inside the turtle’s shell

We have how to use the turtle package in several ways; now it is time to look at how the package
itself is implemented. This was done in several layers. At the highest or outermost layer is the
TurtleCmd procedure,19 which does all the work of interpreting the turtle “language”. Much
of this procedure is implemented in other “lower level” procedures, such as Forward and Left,
which exist to make the programming of the higher-level routines easier. And these procedures
may be implemented using even other lower-level procedures.

Why was it programmed this way? In part, to make it easier to understand and to change.
This program is modular, and to write the top-level program we don’t need to know all the ins
and outs of the lower levels, just what is available and what it does. This sort of thing is very
common and useful in programming, and in everyday life as well. For example, to go to the
store you might drive a car. But you don’t need to know how to build a car to drive it, nor do
you need to know how to build a road. You just need to know what it does and how to use it.
And the man in the body shop who repairs your windshield (after a rock from the construction
site you passed on the way to the store cracks it) doesn’t need to know how to manufacture a
windshield, he only needs to know where to get the right one for your car and how to install it
properly.

19The command AnimateTurtleCmd, which we haven’t discussed, is very similar to this, but shows the turtle’s
path as the curve is traversed.
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command meaning

TurtleCmd(cmd) run the turtle program given in cmd and plot the result
AnimateTurtleCmd(cmd) like TurtleCmd, but animates the path

SetTurtleAngle(n) set the angle the turtle turns at each L or R to n degrees
GetTurtleAngle() retrieve the current setting of the TurtleAngle
SetTurtleScale(s) Set the factor the length scales by when an S or G is done
GetTurtleScale() return the current scale factor
SetInitialTurtleHeading(h) set the initial heading of the turtle to h
GetInitialTurtleHeading() report the value of the turtle’s initial heading
SetTurtleHeading(h) Set the current heading of the turtle to h
GetTurtleHeading() return the current heading of the turtle
SetTurtleStepsize(l) Set the current length of a F command to be l
GetTurtleStepsize() return the current length of a F command
DoCommand(c) perform the command indicated by c

DoUserCommand(c) “hook” to handle extra turtle commands
Forward() move the turtle forward one unit in its current heading
Back() move the turtle back by one unit
Left() change the heading of the turtle TurtleAngle degrees left
Right() change the heading of the turtle TurtleAngle degrees Right
Shrink() multiply the current length unit by the scale factor
Grow() divide the current length unit by the scale factor
PenUp Stop remembering the turtle’s path (“stop drawing”)
PenDown Start remembering the turtle’s path again
SetPenColor(r,g,b) Set the path to the RGB color given
PushState() remember the state of the turtle
PopState() restore the state of the turtle (except the position history)
ShowPath() Plot the turtle’s path
ClearPage() clear the turtle’s page, and set the position to (0, 0)
ResetTurtle() Clear the page, and set all variables to default.

Table 5.1: Most of the commands implemented by the turtle package.
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Without going into the deepest details, let’s pop off the shell of TurtleCmd and see how it
works.

> TurtleCmd := proc(cmd::name)
local c, i;
ClearPage();
for i from 1 to length(cmd) do

c:=substring(cmd,i);
DoCommand(c);

od;
ShowPath();

end:

Not much to it, is there? The procedure uses the command ClearPage to wipe the slate
clean, setting the turtle’s position to (0, 0), aiming in the initial direction, and so on. Then,
for each character in its command string, it calls DoCommand to perform that command, and
finally uses ShowPath to actually render the plot. We won’t discuss exactly how ClearPage

and ShowPath now (feel free to look at them yourself, of course). But here is DoCommand:
> DoCommand:=proc(c)

if (c=‘F‘) then
Forward();

elif (c=‘B‘) then
Back();

elif (c=‘L‘) then
Left();

elif (c=‘R‘) then
Right();

elif (c=‘S‘) then
Shrink();

elif (c=‘G‘) then
Grow();

elif (c=‘U‘) then
PenUp();

elif (c=‘D‘) then
PenDown();

elif (c=‘ ‘) then
NULL;

else
if (not DoUserCommand(c)) then

WARNING(sprintf("Unknown turtle command %c encountered",c));
fi;

fi;
NULL;

end:

DoUserCommand:=c->false:

All this does is look at its argument (a single character), and call the corresponding lower-
level routine. For example, DoCommand(‘F‘) just calls Forward(), which advances the internal
position of the turtle ahead one step. Note that there are two commands we haven’t used yet,
namely U and D, which raise and lower the pen that the turtle holds. For example, the turtle
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command FUFDF produces two line segments separated by a gap. The line with DoUserCommand
will be discussed in the next section; it is a way to allow the user of the turtle package to add
his or her own commands.

In the previous paragraph, we refered to the “internal position of the turtle”— what did
we mean by this? We think of the turtle as having a current position, direction, step size,
and so on. Each of these are stored in variables internal to the turtle package and updated
by commands such as Back, Shrink, or SetTurtleAngle. A history of the positions of the
turtle since the last ClearPage is kept, and when ShowPage is called, they are formatted into
an appropriate maple Plot command.

9 Extending the turtle’s commands

Armed with this little bit of information about the inner workings of the turtle, how might
we exploit it? We can extend the turtle language. You may recall that the way we made the
Sierpinski gasket in §7 did not correspond exactly to our initial description, but relied on finding
a fractal curve that traced out most of the gasket. We’ll now describe another method, which
will be closer to our original description.

Recall that the gasket consists of three copies of itself, two along the base, and one at
the top. Consequently, we can construct an approximate gasket Sn out of three copies of the
approximate gasket Sn−1. The first approximation S0 is just an equilateral triangle.

First, lets write a procedure EqTriangle, which causes the turtle to trace out an equilateral
triangle with a horizontal base.

> EqTriangle := proc()
PushState();
PenDown();
SetTurtleHeading(0);
SetTurtleAngle(120);

Forward();
Left();
Forward();
Left();
Forward();

PopState();
end:

The middle of this procedure is obvious: we send the turtle along the path FLFLF. But before
that, we save its current state with PushState, then make sure that the heading and angle are
correct for the triangle (since perhaps they were different), and ensure that the pen is down.
After we are finished with the triangle, we put the turtle back the way it was with PopState.
Note that we have taken care to ensure that the triangle always has the same orientation, no
matter what direction the turtle is heading. The procedure also leaves the position and heading
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of the turtle unchanged.
Now, we will plug in an additional procedure to handle the new turtle command T, which

draws a triangle. This is done by replacing DoUserCommand with our own version. This pro-
cedure is expected to return true if it recognized and handled the character, and false if
not.

> DoUserCommand:=proc(c)
if (c=‘T‘) then

EqTriangle();
else

RETURN(false);
fi;
true;

end:

With this new command in hand, we can produce a new set of commands to produce a
Sierpinski gasket, closer to our original description. Assuming that the angle is 60◦and the
scaling factor is .5, then

Sn =

{

S Sn−1 FSn−1B LFRSn−1LBR G if n > 0
T if n = 0

.

In words, this means to make Sn, we include a half-size Sn−1, advance forward along its
base and put in another copy. The we back up to the starting point, go up the left side, put in
the third copy, and return. It is important to take care that the turtle is pointing in the proper
direction when we finish.

Here is the corresponding maple procedure:
> Sierp2 := proc(n::nonnegint)

if (n=0) then
‘T‘;

else
cat(‘S‘, Sierp2(n-1), ‘F‘, Sierp(n-1),

‘BLFR‘, Sierp2(n-1), ‘LBRG‘);
fi;

end:
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