The $\frac{1}{3}$-Trick

Let

$$
\Delta_{\mathbb{R}}:=\left\{\left[\frac{i}{2^{k}}, \frac{i+1}{2^{k}}\right): i, k \in \mathbb{Z}\right\}
$$

and for an interval I, let

$$
\Delta_{I}:=\left\{[a, b) \in \Delta_{\mathbb{R}}: \quad[a, b) \subset I\right\}
$$

Similarly, let

$$
\Delta_{\mathbb{R}^{n}}:=\left\{I_{1} \times \ldots \times I_{n}: I_{j} \in \Delta_{\mathbb{R}} ;\left|I_{j}\right|=\left|I_{\ell}\right|\right\}
$$

and

$$
\Delta_{Q}:=\left\{R \in \Delta_{\mathbb{R}^{n}}: R \subset Q\right\}
$$

For $U \subset \mathbb{R}^{n}$, and $v \in \mathbb{R}^{n}$ denote by $U+v$ the set

$$
U+v:=\{u+v: u \in U\} .
$$

If \mathcal{U} is a collection of subsets of \mathbb{R}^{n}, then we denote by \mathcal{U}^{+v} the collection

$$
\mathcal{U}^{+v}:=\{U+v: U \in \mathcal{U}\} .
$$

The following are 3 pretty easy questions. The main lesson is "any ball in \mathbb{R}^{n} is contained in a cube of roughly the same size, where the cube is from one of several dyadic grids". Let $J_{0}=[-1,2)$ and $Q_{0}=[-1,2)^{n} \subset \mathbb{R}^{n}$.

1. Show that there is an interval $J \subset[0,1)$ such that $J \notin \Delta_{J_{0}}$
2. Show that there is a constant $C>0$ such that for any $x \in[0,1)$, and $r \in\left(0, \frac{1}{C}\right)$ we have an interval J such that $(x-r, x+r) \subset J$, and

$$
J \in \Delta_{J_{0}} \cup \Delta_{J_{0}}^{+\frac{1}{3}}
$$

where J satisfies $r \leq|J|<C r$.
Hint: you will need to use the fact that 3 and 2 are co-prime. It could be useful to write $\frac{1}{3}$ in binary.
3. Conclude that there is a constant $C_{n}>0$ and vectors $v_{1}, v_{2}, \ldots ., v_{N} \in \mathbb{R}^{n}$, where $N=2^{n}$, such that for any $x \in[0,1)^{n}$, and $r \in\left(0, \frac{1}{C_{n}}\right)$ we have a cube Q such that $B(x, r) \subset Q$, and

$$
Q \in \bigcup_{i=1}^{N} \Delta_{Q_{0}}^{v_{i}}
$$

where Q satisfies $r \leq \operatorname{diam}(Q)<C r$.
Hint: take $v_{i} \in\left\{0, \frac{1}{3}\right\}^{n}$.

