MAT-544 Schul

Final

First Name: _____

Last Name:

Stony Brook ID: _____

Signature:

There are 8 problems. Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, **you must fully state it**. If you give an example/construction then you must prove it is such. Please write clearly.

Rules.

- 1. Start when told to; stop when told to.
- 2. No notes, books, etc,...
- 3. Turn off all unauthorized electronic devices (for example, your cell phone).

1 (10 pts)	2 (10 pts)	3 (20 pts)	4 (10 pts)	5 (10 pts)
6 (10pts)	7 (10 pts)	8 (10 pts)		TOTAL

FOR ALL QUESTIONS: Unless stated otherwise, always assume:

- $(\mathbb{X}, \mathcal{M}, \mu)$ is a measure space. \mathbb{R} is the extended real number system $\mathbb{R} \cup \{-\infty, +\infty\}$.
- when a function $q: \mathbb{X} \to \overline{\mathbb{R}}$ is said to be measurable, we mean that it is measurable with respect to the σ -algebras \mathcal{M} on \mathbb{X} and \mathcal{B} (the Borel σ -algebra) on $\overline{\mathbb{R}}$; in other words, q is $(\mathcal{M}, \mathcal{B})$ -measurable.
- a measurable function f is called integrable if $\int |f| < \infty$.
- for an integrable function f we define $||f||_1 := \int |f|$.
- m denotes the Lebesgue measure on \mathbb{R}^n .

1. (10 points) Let \mathcal{D}_0 be the sigma algebra on \mathbb{R} generated by the collection of intervals

$$\{[a, a+1) : a \in \mathbb{Z}\}.$$

Give a precise description of all functions $f : \mathbb{R} \to \mathbb{R}$ which are \mathcal{D}_0 -measurable, (in other words, functions which are $(\mathcal{D}_0, \mathcal{B})$ -measurable).

2. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a positive Borel-measurable function. Define $\nu(E)$ by

$$\nu(E) := \int_E f d\mu.$$

Show that ν is a Borel measure.

- 3. (20 points) Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of Lebesgue-integrable functions. For each of the statements below, prove it or find a counterexample.
 - (a) If $f_n \to f$ almost everywhere, then a subsequence converges to f in L^1 .
 - (b) If $f_n \to f$ in measure, then a subsequence converges to f almost everywhere.
 - (c) If $f_n \to f$ in measure, then $f_n \to f$ in L^1 .
 - (d) If $f_n \to f$ in L^1 , then a subsequence converges to f in measure.

(extra page)

4. (10 points)

(a) State the Hahn-Jordan decomposition theorems.

(b) Show that if ν is a signed measure, and $\nu = \mu - \lambda$, the difference of two (positive) measures, then $\nu^+ \leq \mu$ and $\nu^- \leq \lambda$.

(c) Give an example where the inequalities in part (b) are not equalities.

5. (10 points) Let m^n be the Lebesgue measure on \mathbb{R}^n . Let $E \subset \mathbb{R}^2$ be a measurable set satisfying $m^2(E) = 3$. For $x \in \mathbb{R}$, let

$$E_x := \left\{ y : (x, y) \in E \right\}.$$

We know that for almost every $x \in \mathbb{R}$ the set E_x is measurable. Show that

$$m^1\{x: E_x \text{ measurable}, m^1(E_x) > \lambda\} < \frac{3}{\lambda}.$$

6. (10 points) Suppose μ is a finite Borel measure on \mathbb{R} , which is singular to Lebesgue measure. Show that except for a set of Lebesgue measure zero, we have

$$\lim_{r \to 0} \frac{\mu([x - r, x + r])}{2r} = 0.$$

Note: you may use any result from class or the textbook provided you quote it precisely.

7. (10 points) Recall a FACT: For a Lebesgue integrable function $f : \mathbb{R} \to \mathbb{R}$, and $x \in \mathbb{R}$, define

$$Mf(x) = \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} fdm.$$

Let E_{λ} be defined as

$$E_{\lambda} := \{ x \in \mathbb{R} : Mf(x) > \lambda \}.$$

Then there is a constant C, independent of f, such that

$$m(E_{\lambda}) < \frac{C\|f\|_1}{\lambda}.$$

For a mesurable set $E \subset \mathbb{R}$, define

$$A_r(x) = \frac{1}{2r}\mu(B(x,r) \cap E).$$

Let $\mu(E) \in (0, \infty)$. Use the above fact to show that for almost every $x \in E$ we have

$$\lim_{r \to 0} A_r(x) = \chi_E(x) \,.$$

8. (10 points) Suppose a set $E \subset \mathbb{R}^3$ satisfies that for every $x \in \mathbb{R}^3$ and r > 0 there exists a point $z \in B(x,r)$ such that $E \cap B(z,r) \cap B(x,2r) = \emptyset$. Show that m(E) = 0, where m is the Lebesgue measure on \mathbb{R}^3 .