Recall that if $I = [a, b] \subset \mathbb{R}$ then we defined $h_I : I \to \mathbb{C}$ by

$$h_I(x) = \begin{cases} |b-a|^{-\frac{1}{2}}, & \text{if } x \in [a, \frac{a+b}{2}) \\ -|b-a|^{-\frac{1}{2}}, & \text{if } x \in [\frac{a+b}{2}, b) \\ 0, & \text{if } x \notin [a, b) \end{cases}$$

The Collection of dyadic intervals \mathcal{D} is defined by

$$\mathcal{D} := \{ \left[\frac{i}{2^j}, \frac{i+1}{2^j} \right) : i, j \in \mathbb{Z} \}$$

We have that $\{h_I : I \in \mathcal{D}\} \cup \{\chi_{[0,1]}\}\$ is a basis for the vector space of Riemann integrable functions. Let

$$f(x) = \begin{cases} \epsilon^{-\frac{1}{2}}, & \text{if } x \in \left[\frac{1}{2}(1-\epsilon), \frac{1}{2}(1+\epsilon)\right] \\ 0, & \text{otherwise} \end{cases}$$

Assume $\epsilon = 2^{-n_0}$.

1. How many non-zero coefficients a_I would it take to write

$$f(x) = \sum_{I \in \mathcal{D} \atop I \subset [0,1]} a_I h_I(x)$$

- 2. How many of them would be bigger than δ ?
- 3. How many non-zero coefficients c_n would it take to write f in the Fourier basis?
- 4. How many of them would be bigger than δ ?