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1 Introduction

The purpose of this essay is to present a partial survey of a family of theorems that are
usually referred to as analyst’s traveling salesman theorems (also referred to as geometric
traveling salesman theorems). There have been several new theorems recently added to this
family of theorems which we feel should be collected together to give some bigger picture.
Authors whose theorems we quote are David, Hahlomaa, Jones, Léger, Lerman, Okikiolu,
Pajot, Semmes and the author of this essay. We will try and present things in a chronological
order when it makes sense to do so. There are several excellent introductory sources we would
like to refer the reader to. One is a survey by Guy David [Dav], another is a book by Hervé
Pajot [Paj02], and yet another is the introduction of [DS93]. Finally, we mention that at
the time of writing this, the result at the end of section 3.3 has not yet been submitted for
publication.

The classical Traveling Salesman Problem is the problem of finding an optimal tour (of
some restricted class) through a collection of cities, when given a set of roads connecting
them. This is a famous problem in the computer science community. The Analyst’s version
is similar, except one is allowed to talk about an arbitrary set of cities, meaning that one
discusses questions like ‘what is the length of a shortest curve containing a given set K’.
It turns out however, that one really discusses more. What one ends up discussing in the
theorems we will present is a multi-scale geometric description of the set K. This in turn leads
to a quantitative discussion of rectifiability. Because of the multi-scale nature of this theory,
all the major difficulties present themselves when considering finite sets K. In the setting
of C (and R

d), this relates to boundedness properties of singular integrals, and in particular
to boundedness properties of the Cauchy integral, which was the original motivation for
considering this multi-scale description. See [DS] or the surveys previously mentioned.
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2 Some Definitions

. and ∼

Given two functions a and b into R we say

a . b

with constant C, when there exists a constant C = Ca,b such that

a ≤ Cb.

We say that a ∼ b if we have a . b and b . a.

K, M, Balls and Nets. Multiresolution Families

Let M be a metric space with metric dist(·, ·). We will fix a set K ⊂ M. We will always
assume that diam(K) < ∞. This assumption may be removed for some of the results,
however if we are to use DK as defined below then we have a ‘largest’ scale. No constants
will depend on diam(K) unless explicitly stated.

A ball Q is a set

Q = Ball(x, r) := {y : dist(x, y) ≤ r}

for some x ∈ M and some r > 0.
We say that X ⊂ K is an ε − net for K if

(i) for all x1, x2 ∈ X we have dist(x1, x2) > ε

(ii) for all y ∈ K there exits x ∈ X such that dist(x, y) ≤ ε

Hence K ⊂
⋃

x∈X

Ball(x, ε) for an ε − net X for K. Note that if X ′ ⊂ K satisfies (i) then

X ′ can be extended to an ε − net X for K since a maximal subset of K satisfying (i), will
satisfy (ii).

Fix a set K. Denote by XK
n a sequence of 2−n − nets for K, such that XK

n ⊂ XK
n+1. Set

DK = {Ball(x, A2−n) : x ∈ XK
n , n an integer, n > n0}

for a constants A > A0 > 1 and integer n0. The constant A0 is fixed large enough (in-
dependently of K) so that a collection of theorems we discuss later will hold. We require
n0 < − log(diam(K)).

Remark 2.1. The constant n0 is only needed to assure that we indeed have such a sequence
of nets. The constants in the theorems we state will be independent of the particular choice
of n0, and so it is suppressed in the notation. One may choose Xn0, and then for n > n0

build XK
n from XK

n−1 by extending to a 2−n − net.

Remark 2.2. For some of the theorems the requirement of XK
n ⊂ XK

n+1 is not needed.

We call DK a multiresolution family. Note that DK depends on K.
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Lipschitz Functions, Rectifiable Sets, Rectifiable curves

A function f : Rk → M is said to be Lipschitz if

dist(f(x), f(y))

‖x − y‖
≤ Cf , ∀x, y ∈ R

k.

A set is called k-rectifiable if it is contained in a countable union of images of Lipschitz
functions fj : Rk → M, except for a set of k-dimensional Hausdorff measure zero. For more
details see [Mat95], where one can also find an excellent discussion of rectifiability in the
setting of Rd, part of which carries over to the setting of other metric spaces.

A set is called a rectifiable curve if it is the image a Lipschitz function defined on R.
A standard result is that if Γ is a connected set of finite (Hausdorff) length then it is a
rectifiable curve.

Ahlfors-Regularity

Given a set K we say that K is k-Ahlfors-Regular if there is a C > 0 so that for all x ∈ K

and 0 < r < diam(K) we have

rk

C
≤ Hk|K(Ball(x, r)) < Crk.

Some of the theorems below will deal with 1-Ahlfors-Regular sets. One can view those
theorem and proofs as a discussion about a Carleson measure with support on K × R+.

The Jones β Numbers

Assume we have a set K lying in Rd. Consider Q a cube or ball. We define the Jones β∞

number as

β∞,K(Q) =
1

diam(Q)
inf

L line
sup

x∈K∩Q
dist(x, L)

=
radius of thinnest cylinder containing K ∩ Q

diam(Q)
.

Hence if K̂ ⊃ K then β∞,K̂(Q) ≥ β∞,K(Q). Note that we have defined a quantity which
is scale independent. This quantity has Lp variants. Given a locally finite measure µ and
1 ≤ p < ∞, one defines

βp,µ(Q) =
1

diam(Q)
inf

L line
{

∫
Q

dist(y, L)p dµ(y)

µ(Q)
}1/p.
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h

K ∩ Q

L

Figure 1: h = β∞,K(Q)diam(Q)

Clearly

βp,µ ≤ β∞,supp(µ). (2.1)

We define β∞,µ = β∞,supp(µ).

Various other definitions of β(Ball(x, r)) will appear below, with various sub-indices. The
common thread is that they in some sense measure how far a set K ∩Ball(x, r) is from being
along a geodesic (when this has a meaning), and that they are scale invariant.

Menger Curvature and other quantities

Let x1, x2, x3 ∈ M be three distinct points. Take x′
1, x

′
2, x

′
3 ∈ C such that dist(xi, xj) =

|x′
i − x′

j| for 1 ≤ i, j ≤ 3. If x′
1, x

′
2, x

′
3 are collinear then define

c(x1, x2, x3) := 0.

Otherwise, let R be the radius of the circle going through x′
1, x

′
2, x

′
3. In this case define

c(x1, x2, x3) :=
1

R
.

This quantity is referred to as the Menger curvature of the triple x1, x2, x3.
For an ordered triple (x1, x2, x3) ∈ M3 we define

∂1(x1, x2, x3) := dist(x1, x2) + dist(x2, x3) − dist(x1, x3).

Let {x1, x2, x3} ⊂ M be an unordered triple. Assume without loss of generality dist(x1, x2) ≤
dist(x2, x3) ≤ dist(x1, x3). Define

∂({x1, x2, x3}) := ∂1(x1, x2, x3),
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or equivalently

∂({x1, x2, x3}) = min
σ∈S3

∂1(xσ(1), xσ(2), xσ(3)).

Hence we have for all {x, y, z} ⊂ M

0 ≤ ∂({x, y, z}) ≤ ∂1(x, y, z)

where non-negativity follows from the triangle inequality.

Remark 2.3. If

dist(x, y) ≤ dist(y, z) ≤ dist(x, z) ≤ A · dist(x, y) (2.2)

then

c2(x, y, z)diam{x, y, z}3 ∼ ∂({x, y, z})

with constant depending only on A. See [Hah05].
Moreover, in a Euclidean space, by the Pythagorean theorem,

β2
∞,{x,y,z}(Ball(x, diam{x, y, z})diam{x, y, z} ∼ ∂({x, y, z}) (2.3)

with constant depending only on A.

3 Traveling Salesman Theorems

3.1 Rd

We start by stating two theorems. We will give a different formulations than the original
statements. The reason for this is that these formulation will generalize nicely later in the
survey. In the context of Rd the formulations we give are equivalent to the original ones.
The first theorem is a quantitative way of saying ‘a connected set is flat at most scales in
most locations’.

Theorem 3.1. [Jon90, Oki92] For any connected set Γ ⊂ R
d such that Γ ⊃ K we have

∑
DK

β2
∞,Γ(Q)diam(Q) . H1(Γ). (3.1)

This was first proven for d = 2 by Jones using complex analysis, and then extended to all
d by Okikiolu, who used geometric methods. The constant that comes out of Okikiolu’s proof
depends exponentially on the dimension d, however in remark 3.6 we will state a stronger
result. The following theorem gives a very good reason to care about the left hand side of
inequality (3.1).
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Theorem 3.2. [Jon90] Suppose A0 is large enough. Given a set K ⊂ Rd, there exists a
connected set Γ0 ⊃ K such that the length of Γ0 satisfies

H1(Γ0) . diam(K) +
∑
DK

β2
∞,K(Q)diam(Q). (3.2)

Again, the constant which comes out of the original proof is exponential in the dimension
d, but more general versions of this theorem exist where the dimension d becomes irrelevant.
See remark 3.6 and theorem 3.8.

One can actually get a little more from the proofs that were given in [Jon90, Oki92] to
these theorems. If Γ is 1-Ahlfors regular then for all z ∈ Γ and R > 0∑

Q∈DK

Q⊂B(z,R)

β2
∞,Γ(Q)diam(Q) . R. (3.3)

Conversely, if one has the condition that for all z ∈ K and R > 0∑
Q∈DK

Q⊂B(z,R)

β2
∞,K(Q)diam(Q) . R (3.4)

then the construction yields a 1-Ahlfors-Regular Γ0 (recall that we had assumed diam(K) <

∞).
In any case, combining theorems 3.1 and 3.2 one gets

diam(K) +
∑
DK

β2
∞,K(Q)diam(Q) ∼ H1(ΓMST )

where ΓMST is the shortest curve containing K.
We will give some idea of the arguments that are used for the proofs theorems 3.1 and

3.2 after we discuss their generalizations and variations in various categories. We will try
and discuss them in a roughly chronological order. Note that some theorems will contain
only a variation or generalization of theorem 3.2, whereas others will do so for both theorem
3.1 and theorem 3.2.

3.2 Variations in R
d

We start with a theorem by David and Semmes, who showed the following, which contains
both a variation of theorem 3.1 and a variation of theorem 3.2.

Theorem 3.3. [DS] Let K ⊂ Rd be a 1-Ahlfors-Regular set and 1 ≤ q ≤ ∞. Then K is
contained in a connected 1-Ahlfors-Regular set if and only if for all z ∈ K and 0 < R <

diam(K) ∫ R

0

∫
Ball(z,R)

βq,H1|K(Ball(x, t))2dH1|K(x)
dt

t
. R. (3.5)
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Remark 3.4. Note that the left hand side of inequality (3.5) can be discretized as a mul-
tiresolution sum as in the left hand side of inequality (3.3).

Remark 3.5. The theorem we stated is a special case of much more general theorem which
was proved in [DS]. The general theorem deals with sets in Rd, which are k-Ahlfors-Regular
for k ≥ 1. It gives an equivalence between several conditions that vary from the above
conditions, which are of geometric type, to conditions which have to do with the boundedness
of a family of singular integral operators. Since they show much more, the route they take to
show theorem 3.3 is different (and in particular, less direct) than the route used in the proofs
of the other results we discuss.

Later, in [Paj96], Pajot gave a construction which was based on [Jon90], and gives another
variation on theorem 3.2. For a compact 1-Ahlfors-Regular set K satisfying (3.5) and 1 ≤ q,
he constructed a 1-Ahlfors-Regular connected set Γ0 ⊃ K. This set satisfied

H1(Γ0) . diam(K) +

∫ diam(K)

0

∫
βq,H1|K(Ball(x, t))2dH1|K(x)

dt

t
. (3.6)

This gives a more direct proof of theorem 3.3 as we stated it, but does not prove the full
result of [DS]. Note that since βq,H1|K ≤ β∞,K, there is no need to show anything along the
lines of theorem 3.1.

3.3 Beyond Rd

The next evolution of these theorems came recently. The topic of interest was varying the
ambient space. Several results deal with substituting Rd by other metric spaces. We start
with a remark about the dependence on the ambient dimension d.

Remark 3.6. It turns out that both theorem 3.1 and theorem 3.2 hold with constants in-
dependent of the dimension d. In fact, they hold in the setting of an infinite dimensional
Hilbert space. Both of these were shown in [Schb]. For theorem 3.2, this statement can also
be deduced from [Hah05].

The original formulation of theorems 3.1 and 3.2 had the sums on the left hand side of
inequality (3.1) and the right hand side of inequality (3.2) being over cubes which are triples
of cubes in a dyadic grid on Rd. With that formulation, the dependence of the constant of
theorem 3.1 on the dimension d is indeed exponential!

We continue with a result by Ferrari, Franchi and Pajot. This is a Heisenberg group
analogue of theorem 3.2. Their first task was to define the analogue of β. Let H be the
first Heisenberg group with the Carnot-Caratheodory metric dH. As in [FFP], we follow
the notation of [Ste93], denoting Pk ∈ H by Pk = [zk, tk] = [xk + iyk, tk] and P1 · P2 =
[z1 + z2, t1 + t2 + 2=(z1z̄2)]. Denote by G(H, 1) the set of elements of the form a · r, where
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a ∈ H is any element, and r is a Euclidean straight line in the set {[z, 0] : z ∈ C} going
through the origin. Define

βH,K(Ball(P, t)) = inf
L∈G(H,1)

sup
P ′∈Ball(P,t)∩K

dH(P ′, L)

t
,

where a ball is of course a ball with respect to dH. This definition of βH is of interest since
in [FFP] they prove the following theorem.

Theorem 3.7. [FFP] Suppose A0 is large enough. Let K ∈ H be a compact set. Then there
exists a connected set Γ0 ⊃ K. The length of Γ0 satisfies

H1(Γ0) . diam(K) +
∑
DK

βH

2
,K(Q)diam(Q).

(They actually give an equivalent integral formulation.) One would like some variation
of theorem 3.1 in this setting as well. In [FFP] this is shown for some class of sets Γ, namely
images of C1,α regular simple horizontal curves (defined in [FFP]). We refer the reader to
the original for more details and definitions.

In [Hah05] Hahlomaa proves the following.

Theorem 3.8. [Hah05] Suppose A0 is large enough. Let M be a metric space. Let K ⊂ M.
Let Q ∈ DK. Define

β2
M,∞,K(Q)diam(Q) = diam(Q)3 sup

x1,x2,x3∈Q

dist(xi,xj)≥A−1diam(Q)

c2(x1, x2, x3). (3.7)

Then there exists K ′ ⊂ [0, 1] and a function f : K ′ → K such that

‖f‖Lip . diam(K) +
∑
DK

β2
M,∞,K(Q)diam(Q)

and Image(f) = K.

Notice that remark 2.3 relates this theorem to theorem 3.2. Also note that if M is
a complete geodesic space than one may extend f to a function with the same Lipschitz
constant and the domain [0, 1]. In fact this theorem generalizes theorem 3.2 further than
[Schb] (and may have even been done prior to it!). Unfortunately, the analogue of theorem
3.1 is false in this metric space setting. We give an example which illustrates this.
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3.3.1 An example

Consider the plane (R2) with the taxi-cab metric (i.e. dist((x1, y1), (x2, y2)) = |x1 − x2| +
|y1 − y2|). This is an isometric subset of L1. Let N ∈ N and ε > 0 be constants. Set

Γ = ([0, 1] × {0}) ∪
⋃

d= k

2N

0<k<2N

({d} × [0, ε2−i(d)]),

where d = j
2i(d) in reduced form.

Figure 2: Γ for ε = 1
8

and N = 4

Consider Xn = {(x, 0) : x = k
2n , 0 ≤ k ≤ 2n} dyadic numbers of scale 2−n and the family

of balls around it of radius A
2n , giving DΓ.

We have

H1(Γ) = 1 + ε(1 + 2
1

2
+ 4

1

4
+ ... + 2N 1

2N
) = 1 + εN.

Consider

Qm,d = Ball(d,
A

2m
),

where d = k
2n , 1 ≤ n ≤ N, 0 < k < 2n, m ≥ n. We have

β2
M,∞,Γ(Qm,d)diam(Qm,d) & min{diam(Qm,d), ε2

−n}

for all such Q (with constant independent of m, d). Summing over m, this gives a total of

& log(
1

ε
)ε2−n

for each d = k
2n .

We now sum over d to get

∑
DΓ

β2
M,∞,Γ(Q)diam(Q) & log(

1

ε
)εN.

9



Choosing ε and N properly we get that there is no universal constant C such that∑
DΓ

β2
M,∞,Γ(Q)diam(Q) ≤ CH1(Γ).

Remark 3.9. As pointed out by Hahlomaa, this example is not entirely satisfactory in the
following sense. One may strengthen the constraints on the set over which the supremum is
taken in equation (3.7) and still get theorem 3.8. One may also choose to look at a smaller
set of balls then the one in DK and again, still get theorem 3.8. Finally, one may look at the
infimum over all ‘suitable’ collections of balls DK rather than just any choice. If one does
that, then the example given is not satisfactory to be convinced that a variation of theorem
3.1 is false in this setting.

Fortunately, we are able to say more in the category of 1-Ahlfors-regular sets, as is seen
from the following sequence of theorems.

Theorem 3.10. [Hahb] Let K be a 1-Ahlfors-Regular set in a metric space M with metric
dist(·, ·). Then

inf ‖f‖Lip . diam(K) +

∫ ∫ ∫
c2(x1, x2, x3)dH

1|K(x3)dH
1|K(x2)dH

1|K(x1)

where the infimum on the left hand side is over functions f : K ′ → K with K ′ ⊂ [0, 1], the
norm ‖ · ‖Lip is the Lipschitz norm, and the integral on the right hand side is over all triples
x1, x2, x3 ∈ K such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.

This is a reformulation of the main theorem in [Hahb] according to a remark at the
end of the paper. Note that this is very close to the inequality (3.6). To see this one must
decompose the integral into triples of comparable diameters, and then discretize the integral.
Let us give another version of this theorem, which comes out of the proof of [Hahb], and is
reminiscent of the if half of theorem 3.3 (i.e. the analogue of theorem 3.2).

Theorem 3.11. [Haha] Let K be a 1-Ahlfors-Regular set in a complete geodesic metric space
M with metric dist(·, ·), so that diam(K) < ∞. Assume further, that for all z ∈ K and
R > 0 ∫ ∫ ∫

c2(x1, x2, x3)dH
1|K(x3)dH

1|K(x2)dH
1|K(x1) ≤ C0R

where the integral on the left hand side is over all triples x1, x2, x3 ∈ K∩Ball(z, R) such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.

Then there is a 1-Ahlfors-Regular connected set Γ0 ⊃ K, whose constant depends only on C0

and on the 1-Ahlfors-Regularity constant of K.
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A nice feature of the above theorem is that the analogue to theorem 3.1 holds for it. We
show in [Scha]

Theorem 3.12. [Scha] Let Γ be a connected 1-Ahlfors-Regular set in a metric space M with
metric dist(·, ·). Then for all z ∈ Γ and R > 0

∫ ∫ ∫
c2(x1, x2, x3)dH

1|Γ(x3)dH
1|Γ(x2)dH

1|Γ(x1) . R (3.8)

with constant depending only on the 1-Ahlfors-Regularity constant of Γ, where the integral
on the left hand side is over all triples x1, x2, x3 ∈ Γ ∩ Ball(z, R) such that

A · dist(xi, xj) ≥ diam{x1, x2, x3}.

In fact, a little more is true. One may replace inequality (3.8) by

∫ ∫ ∫
(Γ∩Ball(z,R))3

∂({x1, x2, x3})

diam{x1, x2, x3}3
dH1|Γ(x3)dH

1|Γ(x2)dH
1|Γ(x1) . R. (3.9)

Note that in inequality (3.9) we are integrating over all triples in (Γ ∩ Ball(z, R))3.

3.4 Argument Outlines

We try in this section to give some idea of what arguments for most of the above theorems
look like (the proof in [DS] is the exception). These are not easy theorems, and what we
say below ignores many precise details, technicalities and hard work that had to be done by
the authors attributed to these theorems. Needless to say, technicalities in different settings
are of different nature! An important observation is that in the Euclidean cases, a main
ingredient is inequality (2.3) which is essentially the Pythagorean theorem, whereas in the
Metric cases, one simply defines β in a way which gives the information on the right hand
side of inequality (2.3).

3.4.1 Theorem 3.1, Generalizations and Variations

Let Γ by given. Using a standard result for abstract graphs and a compactness property, one
may obtain a Lipschitz parameterization of Γ, γ : [0, 1] → Γ, with Lipschitz norm bounded
by a constant times the length (one dimensional Hausdorff measure) of Γ. If Γ is 1-Ahlfors-
Regular to begin with, then γ can be taken to satisfy |γ−1(Ball(x, r))| . r. In either case,
one fixes γ and uses it throughout the proof.

Assume first that for all x ∈ Γ and r ≥ 0 we have that γ−1(Ball(x, r)) has only one
connected component. Then one can translate the question of bounding

∑
β2(Q)diam(Q),

to a question about the geometry of the image under γ of a multiresolution on the domain
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of γ. It is sometimes non-trivial to obtain a useful multiresolution of the domain. Using
the idea of successive approximations, either inequality (2.3) (in the Euclidean case) or the
definition of β (the metric case), and some standard summation techniques one gets the
desired estimate. This idea was used in [Jon90, Oki92, Schb, Scha]. An important point
is that one may also use this idea to deal with balls where there is an arc which, up to a
constant, is far enough from being along a geodesic.

Balls where this idea cannot be used are harder to deal with. For such a ball Q, one can
philosophically consider the case where Γ ∩ Q is a collection of straight line segments with
endpoints outside the ball. In [Jon90] complex analysis comes into play. In [Oki92] geometric
ideas are used, and in [Schb, Scha] they are carried further. We give these geometric ideas
in the language of [Schb, Scha]. For such a ball Q, one assigns a weight wQ to the set
Γ ∩ Q. This is done in such a way, that for every Q,

∫
wQdH1|Γ ≥ β2(Q)diam(Q) and for

every x,
∑
Q

wQ(x) ≤ 1. In fact, a little more is obtained, namely control by
∫

wQdH1|Γ of

β(Q)diam(Q) rather then just β2(Q)diam(Q). Either way, since one may exchange the sum
and the integral, one gets the desired estimate.

3.4.2 Theorem 3.2, Generalizations and Variations

We briefly discuss the construction of Γ0. Most variations of theorem 3.2 use a similar theme
to the one we give below.

The construction of Γ0 is a multi-scale construction, starting from the ‘roughest’ scale
and then refining.

x xy y

z

Figure 3: Stage n (left) and stage n + 1 (right).

Let us first consider a naive approach to doing so. Suppose we have at stage n a connected
graph Γn, with vertices Xn. Suppose further, that Γn+1 is obtained from Γn by modifying the
edges of Γn. We would like to use either inequality (2.3) (Euclidean case) or the definition
of β (metric case) to estimate the difference in length between Γn+1 and Γn by the sum of
β2(Q)diam(Q) for Q of radius A2−n. At a first glance it is tempting to think that at least
for the category of β∞ this is trivial. Unfortunately, even in that category difficulties arise.

Generally speaking, there are three cases. The first case is that β∞(Q) ≥ ε0, some
universal constant. This case can usually be handled by crude estimates. (In [Schb, Hah05]
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one needs to be a little careful in this case since there are potentially unboundedly many
points in (Xn+1 r Xn) ∩ Q.) The second case, is the case where one may indeed apply
inequality (2.3). This is when the picture looks locally like figure 3, with comparable mutual
distances between x, y and z, i.e. x, y ∈ Xn, z ∈ Xn+1, and β∞(Q) ≤ ε0. Finally, there is
the case where β∞(Q) ≤ ε0 but either the distances between x, y and z are not comparable,
or the picture is not as in figure 3. One example is x = (0, 0), y = (1, 0), z = (1 − ε, ε)
where ε is small. This is in practice broken up into several cases, but the general philosophy
is that one uses coarser scales to account for the difference in length between Γn+1 and Γn

in Q, which is not so easy to do.

Remark 3.13. A consequence of these ideas is that as in inequality (3.4) , local control on
β numbers gives local control on length.

These ideas first appeared in [Jon90] and were later used in [Hah05, Paj96, FFP, Schb],
where more difficulties had to be dealt with. For instance the main difficulty in [FFP] is to
relate βH to the right hand side of inequality (2.3). In addition, the cases where one uses an
average rather than a supremum for the Jones-β number (i.e. [Paj96, Hahb]) require some
more work.

3.5 Other traveling salesman type theorems

We conclude with mentioning some results that use similar quantities, but are of a little
different nature. (One should note that these results appeared before several results we have
already mentioned)

We say that Γ is a 1-Lipschitz graph if it is an isometric image of the graph of a Lipschitz
function from R to Rd−1. A result by Léger gives the following.

Theorem 3.14. [Lég99] Let K ⊂ R
d be a set with 0 < H1(K) < ∞. Suppose further that

∫ ∫ ∫
K3

c2(x1, x2, x3)dH
1|K(x3)dH

1|K(x2)dH
1|K(x1) < ∞.

Then K is 1-rectifiable.

Let us also state a key lemma from the proof of the above theorem, which quite clearly
fits in with the results we discussed in previous sections.

Lemma 3.15. [Lég99] For any fixed C0 ≥ 10 there exists a number η > 0 such that if µ is
a compactly supported Borel measure on R

d satisfying
(i) µ(Ball(0, 2)) ≥ 1, µ(Rd r Ball(0, 2)) = 0
(ii) for any ball B, µ(B) ≤ C0diam(B)
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(iii)
∫ ∫ ∫

(Rd)3
c2(x1, x2, x3)dµ(x3)dµ(x2)dµ(x1) ≤ η

then there is a 1-Lipschitz graph Γ such that

µ(Γ) ≥
99

100
µ(Rd)

Note that there is no assumption on the 1-Ahlfors-Regularity of µ.
For the next result we need a few more definitions. Let µ be a locally finite Borel measure

on Rd. Set

J2(x) =
∑

Q∈dyadic grid
Q3x

β2
2,µ(Q). (3.10)

Denote by JQ0(x), where Q0 is a given cube (with sides parallel to the axes) the analogue of
J2(x), but where we only consider cubes Q ⊂ Q0 in the sum (3.10).

We can now give a result by Lerman, which is of nature similar to the previous lemma.

Theorem 3.16. [Ler03]. There exist a constants C1, C2, C3 > 1, that depends only on d,
such that if µ is a locally finite Borel measure on Rd, Q0 is a cube, and if

∫
C1Q0

eC2JQ0
(x)dµ(x) ≤ Aµ(Q0) (3.11)

(for some A > 0), then there is a curve Γ ⊂ C1Q0 such that

µ(Γ) ≥ C−1
3 A−1µ(Q0) (3.12)

and

H1(Γ) ≤ C3Adiam(Q0). (3.13)

Here, C1Q0 is a cube with sides parallel to those of Q, which is a dilate of Q by C1 (with
the same center). This result is a (difficult) variant of a result by Bishop and Jones about
the β∞ case (see [BJ94]).
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[Paj02] Hervé Pajot. Analytic capacity, rectifiability, Menger curvature and the Cauchy
integral, volume 1799 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
2002.

[Scha] Raanan Schul. Ahlfors-regular curves in metric spaces. In preperation.

[Schb] Raanan Schul. Subsets of rectifiable curves in Hilbert space. Submitted.

15



[Ste93] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscil-
latory integrals, volume 43 of Princeton Mathematical Series. Princeton University
Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs
in Harmonic Analysis, III.

16


