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RNP Lipschitz differentiability spaces

Let (X, d) be a metric space, V' be a Banach space, and ¢ : X — R" (a
chart). We say f : X — V is p-differentiable at xg € X if there exists a
unique Df(xp) € L(R", V) so that

f(x) = f(x0) + Df (x0)(#(x) = ¢(x0)) + o(d(x; x0))-

Definition

A metric measure space (X, d, i) is a Radon-Nikodym Lipschitz
differentiability space (RNP-LDS) if there is a Lipschitz chart ¢ : X — R”
so that for every Banach space V with the Radon-Nikodym property and
every Lipschitz function f : X — V is p-differentiable at p-a.e. x € X.



Upper gradients

Let (X, d, ) be a (rectifiably) path connected space. A measurable
function p : X — [0, 0] is an upper gradient for a Lipschitz function
f : X — R if for every rectifiable curve 7 : [a, b] — X we have

F(4(b)) — F(1(a))] < / ) ds.

Y

Upper gradients are not unique, but they always exist for path connected

spaces by considering p = oco. If X is geodesic, then we may take p = L
when f is L-Lipschitz.



Poincaré inequality

Definition (Heinonen-Koskela)

A path connected space (X, d, ;1) satisfies a Poincaré inequality if there
exists C > 1 and p € [1,00) so that for every Lipschitz function
f : X — R with upper gradient p : X — [0, 0], we have

1/p
][ If — fB(x,n| du < Cr (][ pP du) . VxeX,r>0o.
B(x,r) B(x,Cr)

“Path fluctuations control metric fluctuations”

A Pl space is metric measure space that satisfies a Poincaré inequality and
is doubling, i.e. there exists C > 1 so that

w(B(x,2r)) < Cu(B(x,r)), Vx e X,r>0.




Pl and differentiability

Theorem (Cheeger-Kleiner)
Pl spaces are Radon-Nikodym Lipschitz differentiability spaces.

Q: Does the converse hold? A: No.

Pl spaces are path connected. Positive measure subsets of RNP-LDS are
RNP-LDS (with induced measure and metric). Thus, fat Cantor sets of
[0,1] are RNP-LDS, but totally disconnected.

Need to relax doubling and PI.

Need to relax line integral and upper gradient.



Line integrals

Let (X, d, 1) be a metric measure space (possibly disconnected) and
f : X — R be 1-Lipschitz and p : X — [0, 0] be measurable.

Let v : K — X be a 1-Lipschitz map so that K C R is compact (a
“fragment”) with a = min K and b = max K. We want something like

F2(6) ~ Fr()] < [ o ds.
v
We can still make sense of

L p ds = /K (1 (5)1 ()] ds.

However, f can fluctuate across gaps of X and thus K.

Example: Let X C [0, 1] be a fat Cantor set and f(t) = fot X[0,1)\x dX.



Line integrals (cont.)
Let (c,d) be a gap in K. As f and ~y are 1-Lipschitz, we have

[f(v(€)) = F(v(d)] < |e — d.

Define the *-integral
[ o= [ o ds Iz blKL.
¥ K

We then have that

1f(v(b)) = F(r(a))] <

4\*
=

We say p: X — [0,1] is a x-upper gradient of f if for all fragments 7

#(3(b)) — F(x(2))] < /Vp



Asymptotic nonhomogeneous Poincaré inequality

A metric measure space (X, d, i) satisfies an asymptotic nonhomogeneous
Poincaré inequality if there exist C > 1 and continuous increasing moduli

(x, 0x 1 [0,00) — [0,00) for u-a.e. x € X so that for every 1-Lipschitz
f: X — R with x-u.g. p: X —[0,1], we have

][ ‘f - fB(x,r)| dp < rix <][ P du) + oX(r).
B(x,r) B(x,Cr)

Here, (« and o, satisfy

. ox(t) . B
e 0 el =0




Characterization of RNP-LDS

Definition
A metric measure space (X, d, u) is pointwise doubling if for u-a.e. x € X,

: 1(B(x,2r))
I'Tjgp n(BG,r)

Theorem (Bate-L.)

A metric measure space is a Radon-Nikodym Lipschitz differentiability
space if and only if it is pointwise doubling and satisfies an asymptotic
nonhomogeneous Poincaré inequality.




