Removability, Rigidity of Circle Domains and Koebe's Conjecture

Malik Younsi, Stony Brook University

2016 AMS Spring Meeting

Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe's Conjecture

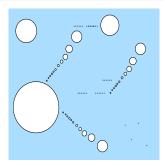
Definition

Definition

A domain Ω in the Riemann sphere $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.

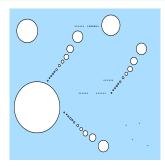
Definition

A domain Ω in the Riemann sphere $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.



Definition

A domain Ω in the Riemann sphere $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.



 The boundary of any circle domain contains at most countably many circles.

Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe's Conjecture

The Koebe Uniformization Conjecture

Every domain $D \subset \widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

Every domain $D \subset \widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

The conjecture is true if D

Every domain $D \subset \widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

The conjecture is true if D

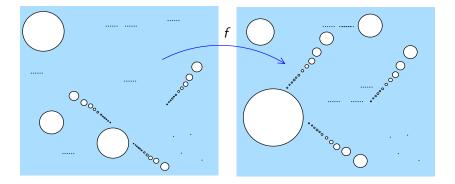
• has finitely many boundary components (Koebe, 1918)

Every domain $D \subset \widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

The conjecture is true if D

- has finitely many boundary components (Koebe, 1918)
- has countably many boundary components (He–Schramm, 1993).

Uniqueness of the Koebe map



Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe's Conjecture

Conformal rigidity

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 Ω is conformally rigid if

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 $\boldsymbol{\Omega}$ is conformally rigid if

• it has finitely many boundary components (Koebe, 1918)

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 $\boldsymbol{\Omega}$ is conformally rigid if

- it has finitely many boundary components (Koebe, 1918)
- it has countably many boundary components (He–Schramm, 1993)

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 $\boldsymbol{\Omega}$ is conformally rigid if

- it has finitely many boundary components (Koebe, 1918)
- it has countably many boundary components (He–Schramm, 1993)
- it has σ -finite length boundary (He–Schramm, 1994).

Conformally removable sets

Conformally removable sets

Definition

Conformally removable sets

Definition

Let $E \subset \mathbb{C}$ be compact.

Let $E \subset \mathbb{C}$ be compact.

We say that E is **conformally removable** if every homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

Let $E \subset \mathbb{C}$ be compact.

We say that E is **conformally removable** if every homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

• Removable : sets of σ -finite length, quasicircles, Hölder curves

Let $E \subset \mathbb{C}$ be compact.

We say that E is **conformally removable** if every homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

- Removable : sets of σ -finite length, quasicircles, Hölder curves
- Non-removable : sets of positive area

Let $E \subset \mathbb{C}$ be compact. We say that E is **conformally removable** if every homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

- Removable : sets of σ -finite length, quasicircles, Hölder curves
- Non-removable : sets of positive area
- There exist removable sets of Hausdorff dimension two and non-removable sets of Hausdorff dimension one

Let $E \subset \mathbb{C}$ be compact. We say that E is **conformally removable** if every homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

- Removable : sets of σ -finite length, quasicircles, Hölder curves
- Non-removable : sets of positive area
- There exist removable sets of Hausdorff dimension two and non-removable sets of Hausdorff dimension one
- The complement of any non-removable Cantor set is a non-rigid circle domain.

Rigidity conjecture

Let Ω be a circle domain.

Let Ω be a circle domain. The following are equivalent :

Let Ω be a circle domain. The following are equivalent : (A) Ω is conformally rigid;

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid;
- (B) The boundary of Ω is conformally removable;

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid;
- (B) The boundary of Ω is conformally removable;
- (C) Every Cantor set contained in the boundary of Ω is conformally removable.

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid;
- (B) The boundary of Ω is conformally removable;
- (C) Every Cantor set contained in the boundary of Ω is conformally removable.

Remarks :

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid;
- (B) The boundary of Ω is conformally removable;
- (C) Every Cantor set contained in the boundary of Ω is conformally removable.

Remarks :

• (B) \Rightarrow (C) is trivial

Conjecture (He-Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid;
- (B) The boundary of Ω is conformally removable;
- (C) Every Cantor set contained in the boundary of Ω is conformally removable.

Remarks :

- (B) \Rightarrow (C) is trivial
- If there are no circles in $\partial \Omega$, then **(A)** \Rightarrow **(B)**.

First Main Theorem

Let Ω be a circle domain whose boundary is the union of countably many circles and countably many totally disconnected compact sets.

Let Ω be a circle domain whose boundary is the union of countably many circles and countably many totally disconnected compact sets.

Then (B) and (C) are equivalent.

Let Ω be a circle domain whose boundary is the union of countably many circles and countably many totally disconnected compact sets.

Then (B) and (C) are equivalent.

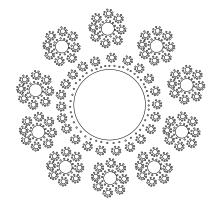
• The assumption holds if boundary circles don't accumulate *too much* on point boundary components.

Let Ω be a circle domain whose boundary is the union of countably many circles and countably many totally disconnected compact sets.

Then (B) and (C) are equivalent.

- The assumption holds if boundary circles don't accumulate *too much* on point boundary components.
- The assumption does not hold if boundary circles accumulate everywhere.

A Sierpinski-type circle domain



The theorem is a consequence of the following more general result.

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

$$\Xi = \bigcup_{j=1}^{\infty} \Gamma_j \cup \bigcup_{k=1}^{\infty} E_k,$$

where each Γ_j is a quasicircle and each E_k is a totally disconnected compact set.

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

$$\Xi = \bigcup_{j=1}^{\infty} \Gamma_j \cup \bigcup_{k=1}^{\infty} E_k,$$

where each Γ_j is a quasicircle and each E_k is a totally disconnected compact set. Then E is conformally removable if and only if every E_k is

conformally removable.

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

$$\Xi = \bigcup_{j=1}^{\infty} \Gamma_j \cup \bigcup_{k=1}^{\infty} E_k,$$

where each Γ_j is a quasicircle and each E_k is a totally disconnected compact set. Then E is conformally removable if and only if every E_k is conformally removable.

• Still open whether the union of two conformally removable sets is conformally removable (Jones–Smirnov, 2000).

Second Main Theorem

• a compact set is conformally removable if and only if it is quasiconformally removable

- a compact set is conformally removable if and only if it is quasiconformally removable
- quasiconformal mappings of the plane preserve conformally removable sets.

- a compact set is conformally removable if and only if it is quasiconformally removable
- quasiconformal mappings of the plane preserve conformally removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

- a compact set is conformally removable if and only if it is quasiconformally removable
- quasiconformal mappings of the plane preserve conformally removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

Corollary

- a compact set is conformally removable if and only if it is quasiconformally removable
- quasiconformal mappings of the plane preserve conformally removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

Corollary

Let Ω be a circle domain and let f be a quasiconformal mapping of the sphere which maps Ω onto another circle domain $f(\Omega)$.

- a compact set is conformally removable if and only if it is quasiconformally removable
- quasiconformal mappings of the plane preserve conformally removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

Corollary

Let Ω be a circle domain and let f be a quasiconformal mapping of the sphere which maps Ω onto another circle domain $f(\Omega)$. If Ω is conformally rigid, then $f(\Omega)$ is also conformally rigid.

Lemma

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

Lemma

If Ω is quasiconformally rigid, then $\partial \Omega$ has zero area.

Lemma

If Ω is quasiconformally rigid, then $\partial \Omega$ has zero area.

Assume $\partial \Omega$ has positive area.

• Construct a measurable function $\mu:\widehat{\mathbb{C}}\to\mathbb{D}$ such that

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

Assume $\partial \Omega$ has positive area.

• Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that

•
$$\mu = 0$$
 on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

- Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}} \qquad (\epsilon > 0).$

Lemma

If Ω is quasiconformally rigid, then $\partial \Omega$ has zero area.

- Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}} \qquad (\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

- \bullet Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}}$ $(\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .
- Use David's theorem to obtain a homeomorphism $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ belonging to $W_{loc}^{1,1}$ with $\mu_f := \partial_{\overline{z}} f / \partial_z f = \mu$ a.e.

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

- \bullet Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}}$ $(\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .
- Use David's theorem to obtain a homeomorphism $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ belonging to $W_{loc}^{1,1}$ with $\mu_f := \partial_{\overline{z}} f / \partial_z f = \mu$ a.e.
- Deduce that

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

- \bullet Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}}$ $(\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .
- Use David's theorem to obtain a homeomorphism $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ belonging to $W_{loc}^{1,1}$ with $\mu_f := \partial_{\overline{z}} f / \partial_z f = \mu$ a.e.
- Deduce that
 - f is conformal on Ω

Lemma

If Ω is quasiconformally rigid, then $\partial \Omega$ has zero area.

- \bullet Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}}$ $(\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .
- Use David's theorem to obtain a homeomorphism $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ belonging to $W_{loc}^{1,1}$ with $\mu_f := \partial_{\overline{z}} f / \partial_z f = \mu$ a.e.
- Deduce that
 - f is conformal on Ω
 - *f* is not the restriction of a quasiconformal mapping of the whole sphere

Lemma

If Ω is quasiconformally rigid, then $\partial\Omega$ has zero area.

- \bullet Construct a measurable function $\mu:\widehat{\mathbb{C}}\rightarrow\mathbb{D}$ such that
 - $\mu = 0$ on Ω , $\|\mu\|_{L^{\infty}(\overline{\Omega})} = 1$
 - μ satisfies the (strong) David condition : $m(\{z \in \widehat{\mathbb{C}} : |\mu(z)| > 1 - \epsilon\}) \le Me^{-\beta e^{\frac{\alpha}{\epsilon}}}$ $(\epsilon > 0).$
 - μ is **invariant** with respect to the Schottky group of Ω .
- Use David's theorem to obtain a homeomorphism $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ belonging to $W_{loc}^{1,1}$ with $\mu_f := \partial_{\overline{z}} f / \partial_z f = \mu$ a.e.
- Deduce that
 - f is conformal on Ω
 - *f* is not the restriction of a quasiconformal mapping of the whole sphere
 - $f(\Omega)$ is a circle domain.

Quasiconformally rigid implies conformally rigid

Assume that Ω is quasiconformally rigid, and let f be a conformal map of Ω onto another circle domain.

Assume that Ω is quasiconformally rigid, and let f be a conformal map of Ω onto another circle domain.

• Then f is the restriction of a quasiconformal mapping $g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.

Assume that Ω is quasiconformally rigid, and let f be a conformal map of Ω onto another circle domain.

- Then f is the restriction of a quasiconformal mapping $g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$.
- Use the fact that $\partial \Omega$ has zero area and results of Sullivan on Kleinian groups to deduce that g is a Möbius transformation.

Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe's Conjecture

THANK YOU!