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o Classical Euclidean Isoperimetric inequality: If E C R" is closed, then
Area(9E) > c,,VoI(E)n;nl.

@ Metric space generalizations of closely-related filling inequalities (Almgren,
Federer—Fleming, Gromov, Wenger). Mainly applicable to rectifiable
spaces/objects.

@ Analogs in many other contexts (Riemannian manifolds, sub-Riemannian
manifolds, graph theory). Common theme is to bound Area(0E) below by
some function of Vol(E).

@ Motivating question: Are there analogous statements for possibly “fractal”
metric spaces, eg. for spaces quasisymmetrically equivalent to R" or S"?

@ Short answer: Yes, if one replaces Vol(E) by inradii of E and its
complement.
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Some definitions

Let (Z, d) be a metric space.

@ For E C Z Borel, define its inradius to be

in-rad(E) = sup{r > 0: B(x, r) C E for some x € Z}.
o For S C Z closed, define its separation radius to be
sep-rad(S) = sup {min(in-rad(U), in-rad(V))}.

taken over U, V distinct connected components of Z\S.

@ Soft relationship: if (M, d) is an n-dimensional metric manifold and
S C M is closed, then sep-rad(S) > 0 = H,-1(S) > 0.

@ Z is called D-doubling if every ball B(x, r) can be covered by < D balls of
radius r/2.

@ Z is called L-linearly locally contractible if every ball B(x, r) with
0 < r < diam(Z)/L can be contracted to a point inside of B(x, Lr).
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Main results

Theorem (K. '16)

Let (M, d) be a closed, connected, metric manifold of dimension n > 2 that is
D-doubling and L-linearly locally contractible. For any closed set S C M,

Ho-1(S) > c - sep-rad(S)"

where ¢ > 0 depends only on n, D, and L.

Some consequences:

e “Quantitative topological” isoperimetric inequality: For (M, d) as above,
if E C M is Borel then

Hy—1(OE) > ¢ - min(in-rad(E), in-rad(M\E))"".
o Lower volume bounds for balls: For (M, d) as above,
Ho(B(x,r)) >c-r"
for all x € M and 0 < r < diam(M).
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Outline of Proof

Let (M, d) be a closed, connected, metric manifold of dimension n > 2 that is
D-doubling and L-linearly locally contractible. Fix S C M closed.

@ Not difficult to show that
sep-rad(S) = sup {dist(S, {x,y}) : S separates x and y}.

Scaling M, assume that dist(S, {x, y}) = 1. Show that H,—1(S) 2 1.

@ Suppose H,—1(S) < 1. Approximate M by a simplicial complex
N = Ner(U) using a well-chosen cover U. There is a natural Lipschitz
map f: M — N.

© Ho—1(f(S)) is still very small. Find a “projection” p: N — N with
p(f(S)) in the (n — 2)-skeleton of A/ (Federer—Fleming argument).

Q Thereis g: N'— M, an “approximate inverse” to f, such that gopo f is
very close to iduy.

The map g o po f only wiggles S a little bit, so the image should still separate
x and y. However, g o p o f|s factors through an (n — 2)-dimensional complex.
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Simplicial approximation and Lipschitz maps

(M, d) as before, in particular D-doubling, L-linearly locally contractible,
n-manifold. Note that diam(M) > 1.

@ For € < 1, take open cover U = {U;}t_; of M using balls of radius = ¢,

with Lebesgue number = ¢, and multiplicity < D. Form the simplicial
complex

Ner(U/) = L_J{conv(e,-17 e):Upn--nU;, #£0} cRY

o Take Lipschitz partition of unity {f;} subordinate to I/ to obtain

f: M — Ner(U{) via
¢

Fx) = fi(x)er.

i=1
Lipschitz constant is < 1/e.

o Define approximate inverse g: Ner(i{) — M by g(e;) € Ui, then induction
on skeleta to fill it in, using linear local contractibility. Note that
diam(g(o)) < e for all simplices o C Ner({). In particular,

d(gof(x),x)Se forall xe M.
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Federer—Fleming projection

Consider £(S) C Ner(Uf), which has H,_1(f(S)) < e "V, 1(S) < 1.

Starting with top-dimensional simplices in Ner(l{), want to consecutively
project f(S) to simplex boundaries, down to the (n — 2)-skeleton.

Key lemma: Let E C Ay, closed with H(E) < co and k < m. There is

p: Am — Ap, fixing 0Anm, with p(E) C 0An, and Hi(p(E)) < CuHi(E).
Idea: For y € %Am\E, radial projection p, away from y has Lipschitz

constant < dist(y, K)™! on each compact set K. This implies

Hilpy () < / Ix — y | dHa(x)

Integrating over y € 1A\ E, we find y with H(py(E)) S Hi(E).
We know Ner(l{) has dimension < D. Consecutively project f(S) to

(D — 1)-skeleton, (D — 2)-skeleton, ...... , (n — 1)-skeleton. Increases
Hn—1-measure by a uniform multiplicative factor each time.

As long as initial measure is small enough, after projections it is still < 1.
The image can't fill an (n — 1)-simplex, so radially project to
(n — 2)-skeleton.

Kyle Kinneberg Lower codimension-1 mass bounds in metric spaces



Choice of € and small wiggling

Consider gopof: M — M, which has d(g o po f(x),x) < e for all x € M.

@ S. Semmes: under the given conditions on M, there is § > 0 such that
whenever h: M — M has d(h(x),x) < ¢ for all x, there is homotopy
between h and idy moving points by distance < 1/4.

@ Taking e small enough, depending only on the data, this applies to
h=gopof. In particular, h|s is homotopic to ¢: S < M through maps
that do not meet {x,y}.

@ On cohomology:

@ The induced homomorphism

h*: H™Y(h(S)) — H™Y(S)
is non-trivial (in particular, both groups are non-trivial).
@ On the other hand,
A (h(s)) 5 AT(S)
g N (pof)*
A" (Ner()("=2)) =0

o Contradiction! So H,_1(S) > "' > 1.
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