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Motivation

Classical Euclidean Isoperimetric inequality: If E ⊂ Rn is closed, then

Area(∂E) ≥ cnVol(E)
n−1
n .

Metric space generalizations of closely-related filling inequalities (Almgren,
Federer–Fleming, Gromov, Wenger). Mainly applicable to rectifiable
spaces/objects.

Analogs in many other contexts (Riemannian manifolds, sub-Riemannian
manifolds, graph theory). Common theme is to bound Area(∂E) below by
some function of Vol(E).

Motivating question: Are there analogous statements for possibly “fractal”
metric spaces, eg. for spaces quasisymmetrically equivalent to Rn or Sn?

Short answer: Yes, if one replaces Vol(E) by inradii of E and its
complement.
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Some definitions

Let (Z , d) be a metric space.

For E ⊂ Z Borel, define its inradius to be

in-rad(E) = sup{r ≥ 0 : B(x , r) ⊂ E for some x ∈ Z}.

For S ⊂ Z closed, define its separation radius to be

sep-rad(S) = sup {min(in-rad(U), in-rad(V ))} .

taken over U,V distinct connected components of Z\S .

Soft relationship: if (M, d) is an n-dimensional metric manifold and
S ⊂ M is closed, then sep-rad(S) > 0 =⇒ Hn−1(S) > 0.

Z is called D-doubling if every ball B(x , r) can be covered by ≤ D balls of
radius r/2.

Z is called L-linearly locally contractible if every ball B(x , r) with
0 < r ≤ diam(Z)/L can be contracted to a point inside of B(x , Lr).
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Main results

Theorem (K. ’16)

Let (M, d) be a closed, connected, metric manifold of dimension n ≥ 2 that is
D-doubling and L-linearly locally contractible. For any closed set S ⊂ M,

Hn−1(S) ≥ c · sep-rad(S)n−1,

where c > 0 depends only on n, D, and L.

Some consequences:

“Quantitative topological” isoperimetric inequality: For (M, d) as above,
if E ⊂ M is Borel then

Hn−1(∂E) ≥ c ·min(in-rad(E), in-rad(M\E))n−1.

Lower volume bounds for balls: For (M, d) as above,

Hn(B(x , r)) ≥ c · rn

for all x ∈ M and 0 < r ≤ diam(M).
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Outline of Proof

Let (M, d) be a closed, connected, metric manifold of dimension n ≥ 2 that is
D-doubling and L-linearly locally contractible. Fix S ⊂ M closed.

1 Not difficult to show that

sep-rad(S) ≈ sup {dist(S , {x , y}) : S separates x and y} .

Scaling M, assume that dist(S , {x , y}) = 1. Show that Hn−1(S) & 1.

2 Suppose Hn−1(S)� 1. Approximate M by a simplicial complex
N = Ner(U) using a well-chosen cover U . There is a natural Lipschitz
map f : M → N .

3 Hn−1(f (S)) is still very small. Find a “projection” p : N → N with
p(f (S)) in the (n − 2)-skeleton of N (Federer–Fleming argument).

4 There is g : N → M, an “approximate inverse” to f , such that g ◦ p ◦ f is
very close to idM .

The map g ◦ p ◦ f only wiggles S a little bit, so the image should still separate
x and y . However, g ◦ p ◦ f |S factors through an (n − 2)-dimensional complex.
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Simplicial approximation and Lipschitz maps

(M, d) as before, in particular D-doubling, L-linearly locally contractible,
n-manifold. Note that diam(M) ≥ 1.

For ε� 1, take open cover U = {Ui}`i=1 of M using balls of radius ≈ ε,
with Lebesgue number ≈ ε, and multiplicity ≤ D. Form the simplicial
complex

Ner(U) =
⋃
{conv(ei1 , . . . , eim ) : Ui1 ∩ · · · ∩ Uim 6= ∅} ⊂ R`.

Take Lipschitz partition of unity {fi} subordinate to U to obtain
f : M → Ner(U) via

f (x) =
∑̀
i=1

fi (x)ei .

Lipschitz constant is . 1/ε.

Define approximate inverse g : Ner(U)→ M by g(ei ) ∈ Ui , then induction
on skeleta to fill it in, using linear local contractibility. Note that
diam(g(σ)) . ε for all simplices σ ⊂ Ner(U). In particular,

d(g ◦ f (x), x) . ε for all x ∈ M.
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Federer–Fleming projection

Consider f (S) ⊂ Ner(U), which has Hn−1(f (S)) . ε−(n−1)Hn−1(S)� 1.

Starting with top-dimensional simplices in Ner(U), want to consecutively
project f (S) to simplex boundaries, down to the (n − 2)-skeleton.

Key lemma: Let E ⊂ ∆m closed with Hk(E) <∞ and k < m. There is
p : ∆m → ∆m, fixing ∂∆m, with p(E) ⊂ ∂∆m and Hk(p(E)) ≤ CmHk(E).

Idea: For y ∈ 1
2
∆m\E , radial projection py away from y has Lipschitz

constant . dist(y ,K)−1 on each compact set K . This implies

Hk(py (E)) .
∫
E

|x − y |−kdHk(x)

Integrating over y ∈ 1
2
∆m\E , we find y with Hk(py (E)) . Hk(E).

We know Ner(U) has dimension ≤ D. Consecutively project f (S) to
(D − 1)-skeleton, (D − 2)-skeleton, . . . . . ., (n − 1)-skeleton. Increases
Hn−1-measure by a uniform multiplicative factor each time.

As long as initial measure is small enough, after projections it is still � 1.
The image can’t fill an (n − 1)-simplex, so radially project to
(n − 2)-skeleton.
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Choice of ε and small wiggling

Consider g ◦ p ◦ f : M → M, which has d(g ◦ p ◦ f (x), x) . ε for all x ∈ M.

S. Semmes: under the given conditions on M, there is δ > 0 such that
whenever h : M → M has d(h(x), x) < δ for all x , there is homotopy
between h and idM moving points by distance ≤ 1/4.

Taking ε small enough, depending only on the data, this applies to
h = g ◦ p ◦ f . In particular, h|S is homotopic to ι : S ↪→ M through maps
that do not meet {x , y}.
On cohomology:

1 The induced homomorphism

h∗ : Ȟn−1(h(S))→ Ȟn−1(S)

is non-trivial (in particular, both groups are non-trivial).

2 On the other hand,

Ȟn−1(h(S))
h∗−→ Ȟn−1(S)

g∗ ↘ ↗(p◦f )∗

Ȟn−1(Ner(U)(n−2)) = 0

Contradiction! So Hn−1(S) & εn−1 & 1.

Kyle Kinneberg Lower codimension-1 mass bounds in metric spaces


