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In 1960, Reifenberg proved that if a set is well approximated
by n-planes, then it is a homeomorphic (more precisely
bi-Hölder) image of an n-plane.

In 2012, David and Toro proved that if the oscillations of
these approximating n-planes are controlled, then the set is a
bi-Lipschitz image of an n-plane.

Smooth surfaces of co-dimension 1 whose oscillation of the
unit normal is small are called CASSC. They were introduced
by Semmes in 1991.

It is still an open question if CASSC admit a bi-Lipschitz
parametrization.

In this talk, we give a condition on the oscillation of the unit
normal of a rectifiable set that guarantees a bi-Lipschitz
parametrization.



Motivation and History Preliminaries Main Results

In 1960, Reifenberg proved that if a set is well approximated
by n-planes, then it is a homeomorphic (more precisely
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The setting:

We consider M, an n-rectifiable subset of Rn+1.

We ask that M be Ahlfors regular:

Definition

An Hn-measurable set M is called Ahlfors regular if it is closed and
there exists a constant C ≥ 1 such that

C−1rn ≤ Hn(Br (x) ∩M) ≤ C rn

for all x ∈ M and r > 0.

Let µ = Hn M, the n-dimensional Hausdorff measure
restricted to M.
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Carleson Condition on the unit normals to M

We consider the following Carleson-type condition on the
oscillation of the unit normal ν to our rectifiable set M:

For all x ∈ M, we have

∫ 1

0

(
−
∫
Br (x)

|ν(y)− νx ,r |2 dµ

)
dr

r
< ε , (1)

where νx ,r = −
∫
Br (x)

ν(y) dµ(y) is the average of the unit normal ν

on Br (x),and where ε is a small number to be determined later.
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Poincaré Inequality on M

We consider the following Poincaré-type inequality on our
rectifiable set M:

For all x ∈ M, r > 0, and for any locally Lipschitz function f on
Rn+1, we have

−
∫
Br (x)

|f (y)− fx ,r | dµ(y) ≤ cP r

(
−
∫
B2r (x)

|∇M f (y)|2 dµ(y)

) 1
2

,

(2)
where cP denotes the Poincaré constant, which is a constant
depending only on n, fx ,r = −

∫
Br (x)

f (y) dµ(y) is the average of the

function f on Br (x), and ∇M f (y) = pTyM(∇f (y)) denotes the
tangential derivative of f .
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Bi-Lipschitz Parametrization of M

Theorem (M., 2015)

Let M ⊂ B1(0) be an n-Ahlfors regular rectifiable set containing
the origin. Assume that M satisfies the Poincaré inequality (2) and
the unit normal ν to M satisfies the Carleson-type condition (1)
with an ε > 0 (small enough) that depends only on n.

Then, there exists a bijective K-bi-Lipschitz map g : Rn+1 → Rn+1

where the bi-Lipschitz constant K depends only on n, and an
n-dimensional plane Σ, such that

g(Σ) is a ε-Reifenberg flat set, and

M ∩ B 1
2
(0) ⊂ g(Σ).



Motivation and History Preliminaries Main Results

Ideas of the proof

Recall Carleson-type Condition∫ 1

0

(
−
∫
Br (x)

|ν(y)− νx ,r |2 dµ

)
dr

r
< ε

Define Px ,r to have unit normal νx ,r .

Poincare Inequality =⇒ Px ,r good approximating n-plane.

Carleson Condition =⇒ oscillations of Px ,r is controlled.
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Quasiconvexity of M

Notice that the containment in the above result is because M
might be full of holes. It turns out that these holes cannot be too
big.

Definition

A space X in Rn+1 is quasiconvex if there exists a constant κ ≥ 1
such that for any two points x and y in X , there exists a rectifiable
curve γ in X , joining x and y , such that length(γ) ≤ κ |x − y |.

Theorem (M., 2015)

Let M ⊂ B1(0) be an n-Ahlfors regular rectifiable set in Rn+1.
Suppose that M satisfies the Poincaré inequality (2). Then M is
quasiconvex.
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quasiconvex.



Motivation and History Preliminaries Main Results

Quasiconvexity of M

Notice that the containment in the above result is because M
might be full of holes. It turns out that these holes cannot be too
big.

Definition

A space X in Rn+1 is quasiconvex if there exists a constant κ ≥ 1
such that for any two points x and y in X , there exists a rectifiable
curve γ in X , joining x and y , such that length(γ) ≤ κ |x − y |.

Theorem (M., 2015)

Let M ⊂ B1(0) be an n-Ahlfors regular rectifiable set in Rn+1.
Suppose that M satisfies the Poincaré inequality (2). Then M is
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Further Results and Current Projects

The above results also hold in higher co-dimensions when
considering a Carleson-type condition on the oscillation of the
tangent planes of the rectifiable set M.

There are examples of non-smooth surfaces that satisfy the
Poincaré-type inequality.

It seems that the Poincaré inequality does not get rid of the
holes in M.
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It seems that the Poincaré inequality does not get rid of the
holes in M.



Motivation and History Preliminaries Main Results

Thank You!
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