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The Traveling Salesman Theorem in R2

β-numbers in R2

Let E be a set in R2, and let Q be a cube in R2.

Define

βE (Q) =
1

diam(Q)
inf
L

sup
x∈E∩Q

dist(x , L)

where the infimum is taken over all lines L in the plane
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The Traveling Salesman Theorem in R2

The Analyst’s Traveling Salesman Theorem

Theorem (Jones ’90)

(a) (Upper Bound) If Γ ⊂ R2 is connected, then∑
dyadic cubes Q

βΓ(3Q)2diam(Q) . H1(Γ).

(b) (Construction) If E ⊂ R2 is any set, then E is contained in a
connected set Γ satisfying

H1(Γ) . diam(E ) +
∑

dyadic cubes Q

βE (3Q)2diam(Q).
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The Traveling Salesman Theorem in R2

Generalizations

Okikiolu ’92: True in all Rn.

Schul ’07: True in Hilbert space.

Hahlomaa, Schul: Generalizations via Menger curvature and other
quantities to metric spaces.

Ferrari-Franchi-Pajot ’07: Generalization to the Heisenberg group,
with β-numbers measured with respect to horizontal lines.

Li-Schul ’14, ’15: Improved generalization to Heisenberg group,
showing that the relevant exponent is 4, not 2.
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The Traveling Salesman Theorem in R2

Lessons from the Heisenberg group story

Suppose you have a metric space and you want a “geometric” traveling
salesman theorem: Subsets of rectifiable curves are characterized by being
quantitatively close to “lines” at most locations and scales.

You then need:

a correct notion of “lines”, which might not be “all geodesics”, and

the correct exponent(s).
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Metric spaces as limits of graphs

Definition of the spaces (Cheeger-Kleiner)
Our space X will be an inverse limit of connected simplicial metric graphs:

X0
π0←− X1

π1←− . . . πi−1←−− Xi
πi←− . . .

For some constants η > 0, 2 ≤ m ∈ N, ∆ > 0, we require that our graphs
satisfy four axioms for each i ∈ Z:

1 (X0, d0) is isometric to [0, 1].
2 (Xi , di ) is a nonempty connected graph with all vertices of valence at

most ∆, and such that every edge of Xi is isometric to an interval of
length m−i with respect to the path metric di .

3 If X ′i denotes the graph obtained by subdividing each edge of Xi into
m edges of length m−(i+1), then πi induces a map
πi : (Xi+1, di+1)→ (X ′i , di ) which is open, simplicial, and an isometry
on every edge.

4 For every xi ∈ X ′i , the inverse image π−1
i (xi ) ⊂ Xi+1 has

di+1-diameter at most ηm−i .
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Metric spaces as limits of graphs

Example 1: The Lang-Plaut example
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Metric spaces as limits of graphs

Example 2: The dyadic Laakso example
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Metric spaces as limits of graphs

Monotone geodesics
Analogous to horizontal lines in the Heisenberg group, these spaces have a
naturally distinguished class of geodesics.

Definition

A geodesic γ in X is called monotone if π0|γ : γ → X0
∼= [0, 1] is an

isometry.
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The main results

β-numbers in these spaces

Let E be a subset of X , and let B be a ball in X .

Definition

We define

βE (B) =
1

diam(B)
inf
L

sup
x∈E∩B

dist(x , L)

where the supremum is taken over all monotone geodesics L in X .
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The main results

The upper bound

Fix a space X as above, and an appropriate m-adic system G of balls in X .

Theorem (Upper bound)

For every p > 1, there is a constant Cp such that, if Γ ⊂ X is connected,
then ∑

B∈G
βΓ(B)pdiamB ≤ CpH1(Γ).

The constant Cp depends only on p and the constants associated to the
construction of X .

The exponent is sharp: there is a counterexample for p = 1.
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The main results

The construction
Fix a space X as above, and an appropriate m-adic system G of balls in X .

Theorem (Construction)

There are constants C > 1 and ε > 0, depending only on the data of X ,
with the following property: Let E ⊂ X be compact. Then there is a
compact connected set Γ ⊂ X containing E such that

H1(Γ) ≤ C

diam(E ) +
∑

B∈G,βE (B)≥ε

diam(B)

 .

Remark: This implies that

H1(Γ) ≤ Cp

(
diam(E ) +

∑
B∈G

βE (B)pdiam(B)

)
,

where Cp depends only on p > 0 and the data of X .
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Ideas in the proof

Idea of the proof in the upper bound

Modifying ideas of Okikiolu, we divide the collection of m-adic balls G
into two types:

G1 ⊂ G consists of those balls in which the size of the β-number is due
to the presence of multiple individually flat but far pieces of the curve.

G2 ⊂ G consists of those balls in which the size of the β-number is
due to one large wiggly piece of the curve.
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G1 ⊂ G consists of those balls in which the size of the β-number is due
to the presence of multiple individually flat but far pieces of the curve.

G2 ⊂ G consists of those balls in which the size of the β-number is
due to one large wiggly piece of the curve.

(a) A G1 ball. (b) A G2 ball.
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Ideas in the proof

Idea of the proof in the upper bound

The sum over the flat balls G1 can be controlled by a very general
martingale construction of Schul.

The sum over the non-flat balls G2 is controlled by parametrizing the
curve Γ by γ : [0, 1]→ X and using a quantitative differentiation
result for the function π0 ◦ γ : [0, 1]→ [0, 1].

The idea here is that, due to the discrete approximation of the space,
if the parametrization γ passes through a “non-flat ball”, π0 ◦ γ must
backtrack, and there is a quantitative bound on how much a
real-valued Lipschitz function can backtrack.
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Ideas in the proof

Idea in the proof of the construction

Fix a set E ⊂ X .

One tries to inductively build connected constructions

Γi ⊂ Xi

that are progressively nearer to πi (E ).

The idea is to use β-numbers to inductively “lift” the previous
construction Γi−1 ⊂ Xi−1 to a connected construction Γi ⊂ Xi

without adding too much length.

At locations in Γi−1 with large β, it is clear what to do: just take all
possible lifts.

At locations with small β, one must be careful to take an essentially
optimal lift and maintain its connectedness to the rest of the curve.
This is where the majority of the technical problems come in.
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