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Lipschitz differentiability spaces

We will consider generalisations of Rademacher’s theorem to
metric measure spaces (X, d, ). Fix a Lipschitz ¢: X — R".

Definition
A function f: X — R is differentiable at xp if there exists a
unique, linear Df(xg): R" — R such that

f(x) = f(x0) = Df (x0)((x) = ¢(x0)) + o(d(x; x0))-
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metric measure spaces (X, d, ). Fix a Lipschitz ¢: X — R".

Definition
A function f: X — V is differentiable at xg if there exists a
unique, linear Df(xg): R” — V such that

f(x) = f(x0) = Df (x0)((x) = ¢(x0)) + o(d(x; x0))-

Definition

A metric measure space is an n-dimensional RNP Lipschitz
differentiability space if every Lipschitz f: X — V is differentiable
1 a.e. for every V with the Radon Nikodym property.

V' has the RNP if every Lipschitz v: [0,1] — V is differentiable
(Lebesgue) a.e.
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Theorems of Cheeger and Cheeger-Kleiner

Theorem (Cheeger '99)

Any doubling metric measure space that satisfies the Poincaré
inequality is a Lipschitz differentiability space.

Theorem (Cheeger-Kleiner '09)

It is a RNP Lipschitz differentiability space.

Examples: Heisenberg group, Laakso space.
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Alberti representations

Another generalisation of Rademacher’'s theorem to metric spaces:
form partial derivatives of a Lipschitz function along curves.

Let I' denote the set of bi-Lipschitz v: dom~y C R — X. We call
the elements of I curve fragments.

Definition
A probability measure P on ' and measures j, < H1 v form an
Alberti representation of p if

u(B) = / i,(B)AE()

for each Borel B C X.

Gives a partial derivative (f o v)'(t) of any Lipschitz function f at
p-a.e. Xx.
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Multiple Alberti representations

For simplicity, suppose that the partial derivative of every Lipschitz
function is well defined almost everywhere.

Then, given n Alberti representations of u, we can form the
gradient of partial derivatives Vf(x) € R" for u-a.e. x.

> n Alberti representations are independent if there exists a
Lipschitz ¢: X — R" such that V(x) is invertible for p-a.e
X.

» Independent Alberti representations are universal if there
exists a > 0 such that max; V;f(x) > ¢ Lip f(x) for u-a.e. x.

Theorem (B '12)

(X, d, ) is an n-dimensional Lipschitz differentiability space if and
only if i has a universal collection of n Alberti representatations.
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A purely geometric approach

Can we describe universal Alberti representations purely in terms of
the geometry of the metric space?

» Suppose i has 2 Alberti representations supported on 'y, >
and there exists a C > 1 such that

» forany e > 0 and S C X, for y-a.e. xp € S and every
sufficiently close x there exists a 1-Lipschitz

~v: dom~y C [a,b] = X

formed by concatenating curves in [; that joins xg to x with
» b—a< Cd(x,xo) and [[a, b] \ v1(S)| < ed(x, x0).

We say that such Alberti representations connect points in X.
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A purely geometric approach

Now let f: X — R be Lipschitz and for D € R” and € > 0 set
S5=5pc={yeX:[[Vf(y) = D-Ve(y)|l <e}.
(For any € > 0, we can cover almost all of X by sets of this form.)

Then by using the Fundamental theorem of calculus along the
curve -,

f(x) - f(x0) =

Let €e -+ 0, D — Df(xg) for pu-a.e xp. Also works for RNP valued f.
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A characterisation of RNP-LDS

Theorem (B, Li '15)

(X,d, ) is a RNP-LDS if and only if i has Alberti representations
that connect points.

» We need RNP targets, specifically an ¢; sum of ¢, spaces
(p — 00).
» It is an open question whether LDS < RNP-LDS.



Idea of the proof

» Negating “Alberti representations connect points” (and some
measure theory) gives a § > 0 such that, for every ¢ > 0,

pe(x, x0) := inf €| dom~| + |[a, b] \ dom ~|
ol

(v a concatenation of curves in I'; joining x to xp) satisfies

: pe(X, 0)
limsup ————
X—>xop d(X7 XO)

> .



Idea of the proof

» Negating “Alberti representations connect points” (and some
measure theory) gives a § > 0 such that, for every ¢ > 0,

pe(x, x0) := inf €| dom~| + |[a, b] \ dom ~|
ol

(v a concatenation of curves in I'; joining x to xp) satisfies

: pe(X, 0)
limsup ————
X—>xop d(X7 XO)

> .

» Also, if 4 is a curve in I'; then |(pe 0 %) (t)| < € for a.e. t.



Idea of the proof

» Negating “Alberti representations connect points” (and some
measure theory) gives a § > 0 such that, for every ¢ > 0,

pe(x, x0) := inf €| dom~| + |[a, b] \ dom ~|
ol

(v a concatenation of curves in I'; joining x to xp) satisfies

: pe(X, 0)
limsup ————
x—>xop d(X7 XO)

> .

» Also, if 4 is a curve in I'; then |(pe 0 %) (t)| < € for a.e. t.
» Universal Alberti representations = | Lip pe(x)| < €/0 p-a.e. x



Idea of the proof

>

Negating “Alberti representations connect points” (and some
measure theory) gives a § > 0 such that, for every ¢ > 0,

pe(x, x0) := inf €| dom~| + |[a, b] \ dom ~|
ol

(v a concatenation of curves in I'; joining x to xp) satisfies

. pE(X7X0)
limsup ————
X—>X0p d(X7 XO)

> .

Also, if 4 is a curve in T; then |(p. 0 5)'(t)| < € for a.e. t.

X

Universal Alberti representations = | Lip pe(x)| < €/d p-a.e.

They cannot be glued together to form a single function that
is bad on a set of large measure.



Idea of the proof

>

Negating “Alberti representations connect points” (and some
measure theory) gives a § > 0 such that, for every ¢ > 0,

pe(x, x0) := inf €| dom~| + |[a, b] \ dom ~|
ol

(v a concatenation of curves in I'; joining x to xp) satisfies

. pE(X7X0)
limsup ————
X—>X0p d(X7 XO)

> .

Also, if 4 is a curve in ['; then |(pc 0 7)'(t)| < € for a.e. t.
Universal Alberti representations = | Lip pe(x)| < €/d p-a.e.

X

They cannot be glued together to form a single function that
is bad on a set of large measure.

Instead, each function goes into a component of an £, valued
function. Combining over ¢ — 0 requires a further £ sum.



