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Besicovitch(1938) Let E ⊂ R2, 0 < H1(E ) <∞ and for H1

almost every x ∈ E ,

lim
r→0

H1(E ∩ B(x , r))
2r = 1.

Then
E is 1− rectifiable.

A. Dali Nimer (University of Washington) Singular sets of n-uniform measures



Introduction
Results

Current projects

Theorem (Preiss)
Let Φ be a Radon measure on Rd . Then Φ is n-rectifiable (i.e.
Φ << Hn and that Φ(Rd\E ) = 0 for some n-rectifiable set E) if
and only if for Φ almost every x, Θn(Φ, x) = limr→0

Φ(B(x ,r))
ωnrn

exists and

0 < Θn(Φ, x) <∞.
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Definition
Let Φ be a Radon measure on Rd , x a point in its support such
that Θn(Φ, x) is positive and finite. We say that λ is a tangent
measure of Φ at x and denote λ ∈ Tan(Φ, x) if λ 6= 0 and there
exists a sequence of positive radii (ri ), with ri ↓ 0 such that:

Φx ,ri ⇀ λ as i →∞,

where the convergence is the weak convergence of measures and

Φx ,r = r−nTx ,r Φ

is the push-forward of Φ by the homothecy Tx ,r (y) = y−x
r .
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Definition
Let µ be a Radon measure in Rd . We say µ is n-uniform if there
exists c > 0 such that for all x ∈ spt(µ), r > 0:

µ(B(x , r)) = crn.
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(Kirchheim-Preiss)The support of an n-uniform measure is
an analytic variety. Remark: By Lojasiewicz’ structure
theorem, its singular set has Hausdorff dimension at most
(n − 1).
(Preiss) n = 1, d ≥ 1: H1xR.
(Preiss) n = 2, d ≥ 2: H2xR2.
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(Kowalski-Preiss) In R4, consider the cone

C =
{

(x1, x2, x3, x4); x2
4 = x2

1 + x2
2 + x2

3

}
.

Then the measure H3xC is 3-uniform.
(Kowalski-Preiss) d = n + 1 the support of an n-uniform
measure in Rn+1 can only be an n-plane or (up to rotation)
Rn−3 × C
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Questions:
How large is the singular set of n-uniform measures?

Are there other n-uniform measures?

Can we classify them?
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Definition
Let µ be an n-uniform measure in Rd .

We call x0 a flat point of µ if there exists a unique n-plane
Vx0 such that Tan(µ, x0) = {cHnxVx0 ; c > 0}.
We denote by Sµ the singular set of µ defined as:

Sµ = {x ∈ spt(µ); x is not a flat point } .

We say µ is a conical n-uniform measure if for A ⊂ Rd , r > 0,

µ(rA) = rnµ(A).
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Theorem (N. 2015)
Let µ be an n-uniform measure in Rd , n ≥ 3 and Sµ be its set of
singularities. Then:

dimH(Sµ) ≤ n − 3.
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This bound is sharp. Indeed, taking µ = Hnx(Rn−3 × C) we have

dimH(Sµ) = n − 3.
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Theorem (N. 2015)
Let ν be a conical 3-uniform measure, Ω = spt(ν) ∩ Sd−1, and
σ = H2xΩ. Then for all x ∈ Ω, for 0 ≤ r ≤ 2:

σ(B(x , r)) = πr 2.
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Theorem (N. 2015)
Let µ be an n-uniform measure in Rd , x0 ∈ spt(µ). Let ν be a
tangent to µ at x0 and let rj be a sequence of positive radii so that

µx0,rj ⇀ ν.

Then if {xj} ⊂ Sµ, there exists y ∈ Sν so that:

xj − x0
rj

→ y .
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Projects

Obtain full description of 3-uniform conical measures.
Are there other examples of 3-uniform measures?
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Thank you!
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