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Slide 1

What are we trying to accomplsh?

We would like to understand the geometric conditions that are imposed
upon a non-atomic measure y from the L2(u) boundedness of an
associated Calderén-Zygmund operator.
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Slide 2

Fix s € (0, d). A Calderén-Zygmund kernel of dimension s is an odd
function K : R9\{0} — RY satisfying

1 1
< — <
|K(x)| < — and |[VK(x)| < MEs

x|

for every x € R9\{0}.
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Fix s € (0, d). A Calderén-Zygmund kernel of dimension s is an odd
function K : R9\{0} — R satisfying

1
|X‘5+1

|K(x)| < 2 ond IVK(x)| <

[x°

for every x € R9\{0}.

Notation
We say that a CZO (with CZ kernel K) is bounded in L2(y) if

sup/
e>0 JRRY

for every f € L?(u).

2
[ K= y)f)duty)] dutx) < e
RI\ B(x,e)

v
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What would we like to know about 7

— If s € Z, then we would like to determine whether p is supported in some
collection of Lipschitz surfaces (assuming that supp(u) has dimension s).
(Jones '89, David-Semmes '91, '93, Mattila-Melnikov-Verdera '96,
David-Mattila '98, David-Leger '99, Nazarov-Tolsa-Volberg '12,
Hofmann-Martel-Mayboroda-Uriate-Tuero '12).
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— If the CZO has non-integer dimension, then we would like to know sharp
conditions on the density function of the measure. (Mateu-Prat-Verdera
'05, Tolsa '11, Eiderman-Nazarov-Volberg '11, Reguera-Tolsa '14.)
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collection of Lipschitz surfaces (assuming that supp(u) has dimension s).
(Jones '89, David-Semmes '91, '93, Mattila-Melnikov-Verdera '96,
David-Mattila '98, David-Leger '99, Nazarov-Tolsa-Volberg '12,
Hofmann-Martel-Mayboroda-Uriate-Tuero '12).

— If the CZO has non-integer dimension, then we would like to know sharp
conditions on the density function of the measure. (Mateu-Prat-Verdera
'05, Tolsa '11, Eiderman-Nazarov-Volberg '11, Reguera-Tolsa '14.)

Theorem (Jaye-Nazarov-Reguera-Tolsa, '16)

Fix s € (d — 1,d). Suppose that the s-Riesz transform (the CZO with
kernel K(x) = IXI%“) is bounded in L?(p), then there is a constant C > 0

such that 2
/ / HBL DO 41 < Cu(@)

for every cube Q C RY.

v
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What is a reflectionless measure (associated to a integral kernel K)?
— It is a measure for which the potential

/ K(x —y)du(y)
Rd

is constant for x on the support of i (when considered in a suitable weak
sense).
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More Information

— If one can, for a given CZO, describe the reflectionless measures
associateed to it in terms of the two kinds of examples, then one can prove
structural theorems.
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More Information

— If one can, for a given CZO, describe the reflectionless measures
associateed to it in terms of the two kinds of examples, then one can prove
structural theorems.

— Several general results (for both integer and non-integer homogeneity
CZOs) in this spirit appear in Reflectionless Measures for
Calderén-Zygmund Operators II: Wolff potentials and rectifiability.
(J-Nazarov, arXiv September 2015.)
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More Information

— If one can, for a given CZO, describe the reflectionless measures
associateed to it in terms of the two kinds of examples, then one can prove
structural theorems.

— Several general results (for both integer and non-integer homogeneity
CZOs) in this spirit appear in Reflectionless Measures for
Calderén-Zygmund Operators II: Wolff potentials and rectifiability.
(J-Nazarov, arXiv September 2015.)

— We shall present a result in the opposite direction.
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A Case Study: Three revolutions (J-Nazarov arXiv:1307.3678)

Consider the kernel K(z) = L(& )3.

6}
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A Case Study: Three revolutions (J-Nazarov arXiv:1307.3678)
Consider the kernel K(z) = (@)3.

Then the 2 dimensional Lebesgue measure restricted to a ball B(z,r) is
reflectionless in the sense that

/ K(z — w)dmy(w) = 0 for all z € B(z, r).
B(Z(): )
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A Case Study: Three revolutions (J-Nazarov arXiv:1307.3678)

Consider the kernel K(z) = (@)3.
Then the 2 dimensional Lebesgue measure restricted to a ball B(z,r) is

reflectionless in the sense that

/ K(z — w)dmy(w) = 0 for all z € B(z, r).
B(Z(): )

v

J-Nazarov. There is a one dimensional purely unrectifiable measure p for
which the singular integral operator associated to the kernel K(z) = % is
bounded in L2(u).
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A Case Study: Three revolutions (J-Nazarov arXiv:1307.3678)

Consider the kernel K(z) = (|f|)3.
Then the 2 dimensional Lebesgue measure restricted to a ball B(z,r) is

reflectionless in the sense that

/ K(z — w)dmy(w) = 0 for all z € B(z, r).
B(Z(): )

J-Nazarov. There is a one dimensional purely unrectifiable measure p for
which the singular integral operator associated to the kernel K(z) = Z% is
bounded in L2(u).

Compare to David-Leger: If the Cauchy transform of a 1-dimensional
non-atomic measure / is bounded in L2(u), then the support of j is
rectifiable. This result was generalized by Chousionis, Mateu, Prat,
Tolsa to other kernels.
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Construction of the measure

Take very fast decaying sequence (r,),. First put 1/r1 roughly equally
spaces discs D,((l) of radius r; in B(0,1). Then put r;/r> roughly equally
spaced discs D,((z) of radius r> in each of the discs of radius r;. Continue in
this manner......
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Construction of th easure

Consider probability measures p, = %ZJ xD(n)%mg.
j n

Ben Jaye (Kent State) Reflectionless Measures April 2, 2016 9/11



Slide 4

Construction of the measure

- aye 1 1
Consider probability measures p1, = > xDj(n)r—nmg.
Pass to a subsequence with a limit. Get a limit (probability) measure p,
supported on the Cantor dust (let's call it K).
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Construction of the measure

- aye 1 1
Consider probability measures p1, = > xDj(n)r—nmg.
Pass to a subsequence with a limit. Get a limit (probability) measure p,

supported on the Cantor dust (let's call it K).
We show that, for every generation n, and z € supp(u)

r
i K(z —~ &)du(©)]< /™.
n(z)\D(n+1)(z) rn
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Consider probability measures p, = %ZJ xD(n)%mg.
j n

Pass to a subsequence with a limit. Get a limit (probability) measure p,
supported on the Cantor dust (let's call it K).
We show that, for every generation n, and z € supp(u)

r
i K(z —~ &)du(©)]< /™.
n(z)\D(n+l)(z) rn

Then the T(1)-theorem ensures that the CZO associated to K is bounded
in L2(p), provided that >°° | /™ < ..

rn

Ben Jaye (Kent State) Reflectionless Measures April 2, 2016 9/11



Slide 4

Construction of the measure

Consider probability measures p, = %ZJ xD(n)%mg.
j n

Pass to a subsequence with a limit. Get a limit (probability) measure p,
supported on the Cantor dust (let's call it K).
We show that, for every generation n, and z € supp(u)

r
i K(z —~ &)du(©)]< /™.
n(z)\D(n+l)(z) rn

Then the T(1)-theorem ensures that the CZO associated to K is bounded
in L2(p), provided that >°° | /™ < ..

rn

For our dust K, H}(K NT) = 0 for any rectifiable curve I (just density
considerations).
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Remark 1. For the Cantor dust measure , the limit

lim / zw)zdu(w)

0 Je\B(z,) (2 —w

fails to exist for p-almost every z € C. (That is, principal values fail to
exist almost everywhere.)
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Remark 1. For the Cantor dust measure , the limit
zZ — W
Iim/ ——du(w
e=0 Jo\B(z,r) (2 — W)? )

fails to exist for p-almost every z € C. (That is, principal values fail to
exist almost everywhere.)

Remarks!

Open Problem 1. Does there exist an AD-regular measure p (this should
satisfy, for some constant C > 0, %r < w(B(x,r)) < Cr for all

x € supp(p) and small r > 0) supported on an unrectifiable set K for
which the three revolutions singular integral operator is bounded in L?(y)?

v
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The End
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