Harmonic Measure and 2-phase problems

Jonas Azzam Universitat Autònoma de Barcelona

Joint with Mihalis Mourgoglou and Xavier Tolsa

March 20, 2016

Harmonic Measure in higher dimensions

Let $\Omega \subseteq \mathbb{R}^{n+1}$ be a domain. If the boundary of Ω is "regular," then we may always solve the **Dirichlet problem:** Given $f \in C(\partial\Omega)$, we may find $u_f \in C^2(\Omega) \cap C(\overline{\Omega})$ so that

- 1. $\triangle u_f = 0$ in Ω (i.e. u_f is **harmonic**)
- 2. $u_f(x) = f(x)$ for $x \in \partial \Omega$.

For $x \in \Omega$, the map $f \mapsto u_f(x)$ is a linear functional and defines a measure ω_{Ω}^x by the Riesz representation theorem.

$$u_f(x) = \int_{\partial\Omega} f d\omega_{\Omega}^{x}.$$

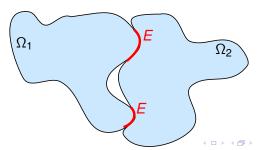
This agrees with the previous definition when we are in the complex plane.

General Question

Suppose Ω^1 and $\Omega^2=(\overline{\Omega^1})^c$ are domains with harmonic measures ω^1 and ω^2 . What geometric information can we get from knowing the relationship between ω^1 and ω^2 ?

Theorem (Bishop, Carleson, Garnett, Jones, '88)

Suppose $\Omega_1,\Omega_2\subseteq\mathbb{C}$ are simply connected Jordan domains and ω^i their harmonic measures. Let $E\subseteq\partial\Omega_1\cap\partial\Omega_2$. Then $\omega^1|_E\perp\omega^2|_E$ if and only if E contains no 1-rectifiable set.



Tangent Measures

$$T_{\xi,r}(x) = \frac{x-\xi}{r}$$
, so $T_{\xi,r}(B(\xi,r)) = B(0,1)$.

Let μ be a measure in \mathbb{R}^n and $\xi \in \operatorname{supp} \mu$.

$$T_{\xi,r}[\mu](A) = \mu(rA + \xi)$$

$$\operatorname{Tan}(\mu,\xi) = \left\{ \lim_{i \to \infty} c_i T_{\xi,r_i}[\mu] : c_i > 0, \quad r_i \downarrow 0 \right\}.$$

Example: If $\mu = \mathscr{H}^d|_M$, M a smooth d-manifold and $\xi \in M$, then $\operatorname{Tan}(\mu, \xi) = \{c\mathscr{H}^d|_V : c > 0\}$ where V is the tangent plane to M at ξ .

Theorem (O'Neil, '95)

There is a Radon measure μ so that, for μ a.e. $\xi \in \mathbb{R}^n$, $Tan(\mu, \xi)$ is all nonzero Radon measures.

Kenig-Toro

Theorem (Kenig, Preiss, Toro, '09)

Let Ω_1 and $\Omega_2 = (\Omega_1)^c$ be two NTA domains in \mathbb{R}^{n+1} , $n \geq 2$, and $\omega^i = \omega_{\Omega_i}^{x_i}$ their harmonic measures with poles at $x_i \in \Omega_i$. If $\omega^1 \ll \omega^2 \ll \omega^1$, then for a.e. $x \in \partial \Omega_1$,

$$\operatorname{Tan}(\omega^1,\xi)\subseteq \{c\mathscr{H}^n|_V:c>0,V\ a\ d\text{-plane}\}.$$

Theorem (Kenig, Toro, '06; Badger, '11; Badger, Engelstein, Toro, '15)

Let $\Omega_1 \subseteq \mathbb{R}^{n+1}$ and $\Omega_2 = (\overline{\Omega_1})^c$ be NTA. If $\log \frac{d\omega^2}{d\omega^1} \in VMO(d\omega^1)$, then there is $1 \leq d < n+1$ s.t. the boundary $\partial \Omega^1 = \Gamma_1 \cup \cdots \cup \Gamma_d$ where

$$\Gamma_k = \{ \xi \in \partial \Omega^1 : \operatorname{Tan}(\omega^1, \xi) \subseteq \mathscr{F}_k \}.$$

More is true than discussed here, e.g. Γ_1 is open in $\partial \Omega^1$.

Idea of proof for Kenig-Toro

For a domain Ω and $x, y \in \Omega$, define the **Green function**

$$G_{\Omega}(x,y) = c_n|x-y|^{1-n} - \int_{\partial\Omega} c_d|x-\xi|^{1-n}d\omega_{\Omega}^y(\xi)$$

and $G_{\Omega}(x,y)=0$ if x or $y\notin\Omega$. Then for $\phi\in C_{\mathcal{C}}^{\infty}(\mathbb{R}^n)$,

$$\int_{\partial\Omega}\phi d\omega_{\Omega}^{x}=\int_{\Omega}\triangle\phi G_{\Omega}(x,y)dy.$$

Let $\Omega^i \subseteq \mathbb{R}^{n+1}$ be NTA. Let $\xi \in \partial \Omega^1$, $r_j \downarrow 0$, $\Omega^1_j = T_{\xi,r_j}(\Omega^1)$.

Pass to a subsequence s.t. $\Omega_j^1 \to \Omega_{\infty}^1$,

$$\omega(B(\xi, r_j))^{-1} T_{\xi, r_j}[\omega^1] \to \omega_\infty^1 \in \operatorname{Tan}(\omega^1, \xi)$$

and there is u_{∞}^{1} (zero off of Ω_{∞}^{1}) so that

$$\int \phi d\omega_{\infty}^1 = \int_{\Omega_{\infty}^1} riangle \phi u_{\infty}^1(y) dy$$

Idea of Proof for Kenig-Toro

We can pass to a subsequence such that the same holds for ω^2 . $\log \frac{d\omega^2}{d\omega^1} \in VMO$ implies $\omega_{\infty}^1 = \omega_{\infty}^2$.

For
$$\phi \in C_c^{\infty}(\mathbb{R}^n)$$
, if $u_{\infty} = u_{\infty}^1 - u_{\infty}^2$,

$$\int_{\mathbb{R}^n} \triangle \phi u_{\infty} = \int_{\Omega^1} \triangle \phi u_{\infty}^1 - \int_{\Omega^2} \triangle \phi u_{\infty}^2 = \int \phi d\omega_{\infty}^1 - \int \phi d\omega_{\infty}^2 = 0$$

Thus, u_{∞} is harmonic, and $\omega_{\infty}^1 = \omega_{u_{\infty}} = \frac{du_{\infty}}{d\nu}|_{u_{\infty}=0}$.

A bit more work shows that $Tan(\omega^1, \xi) \subseteq \mathscr{P}_k$ with k depending on n and the NTA constants.

Theorem (Badger, '11)

If $\Omega \subseteq \mathbb{R}^{n+1}$ is NTA, $\xi \in \partial \Omega$, and $\operatorname{Tan}(\omega, \xi) \subseteq \mathscr{P}_k$, then $\operatorname{Tan}(\omega, \xi) \subseteq \mathscr{F}_\ell$ for some $\ell \leq k$.

Theorem (A., Mourgoglou, '16)

Same holds, but ω is any Radon measure.

Main Result

Definition

A domain $\Omega \subseteq \mathbb{R}^{n+1}$ is Δ -regular if there is R > 0 so that

$$\sup_{\xi\in\partial\Omega}\sup_{x\in\partial B(\xi,r/2)\cap\Omega}\omega_{B\cap\Omega}^{x}(B(\xi,r)\cap\partial\Omega)\geq\beta>0 \text{ for } r\in(0,R).$$

We say Ω is 2-sided Δ -regular if $\operatorname{ext}(\Omega) := (\overline{\Omega})^c$ is also a connected Δ -regular domain.

Theorem (A., Mourgoglou, Tolsa, '16)

Let $\Omega^1=(\Omega^2)_{ext}\subseteq\mathbb{R}^{n+1}$ be 2-sided Δ -regular domains. Let $\omega^i=\omega^{x_i}_{\Omega^i},\,x_i\in\Omega_i$. Then $\omega^1\perp\omega^2$ if and only if $\partial\Omega_1$ contains no n-rectifiable subset of positive n-measure.

Main Blackbox

Theorem (Girela-Sarrión, Tolsa, '16)

Let μ be Radon in \mathbb{R}^{n+1} , $B \subset \mathbb{R}^{n+1}$, s.t. $\mu(B) = r(B)^n$, and

- (a) $\int_{B^c} |x y|^{-n-1} d\mu \le C_0$ and $\mu(B(x, r)) \le C_0 r^n$ for all $x \in B$ and $0 < r \le r(B)$.
- (b) \exists an n-plane L passing through the center of B s.t. $\beta_{\mu,1}^L(B) \leq \delta$.
- (c) $\mathcal{R}_{\mu|_B}$ is bounded in $L^2(\mu|_B)$ with $\|\mathcal{R}_{\mu|_B}\|_{L^2(\mu|_B) \to L^2(\mu|_B)} \le C_1$.
- (d) For some constant $0 < \tau \ll 1$,

$$\int_{\mathcal{B}} \left| \mathcal{R}\mu(\mathbf{x}) - \int_{\mathcal{B}} (\mathcal{R}\mu) d\mu \right| |^{2} d\mu(\mathbf{x}) \leq \tau.$$

If $0 < \delta, \tau \ll 1$ (depending on C_0 and C_1), there is an n-rectifiable set $\Gamma \subset \mathbb{R}^{n+1}$ s.t.

$$\mu(B \cap \Gamma) \gtrsim_{\delta,\tau} \mu(B)$$
.

Idea of Proof

Assume $\omega^1 \ll \omega^2 \ll \omega^1$.

- The ideas of Kenig and Toro extend to 2-sided Δ-regular domains (though not as nicely).
- In particular, if $\omega^1 \ll \omega^2 \ll \omega^1$, then ω^1 -a.e., $\mathrm{Tan}(\omega^1, \xi)$ consists of flat measures, so in particular, $\beta_{\mu,1}(\mathcal{B}(\xi,r)) \to 0$.
- For almost every ξ , we can find a shrinking sequence of balls centered at ξ where we can apply the theorem of Girela-Sarrión and Tolsa with $\mu = \omega^1$.

Theorem

Let Ω^1 be a 2-sided Δ -regular domain in \mathbb{R}^{n+1} and let $\Omega^2:=ext(\Omega^1)$ be its exterior. Let ω^i denote the harmonic measure of Ω^i with pole at some $x^i\in\Omega^i$. Assume ω^i are mutually absolutely continuous and set $f=\frac{d\omega^2}{d\omega^1}$. Let $\xi\in\operatorname{supp}\omega^1$ and assume

$$\lim_{r\to 0} \left(\oint_{B(\xi,r)} f d\omega^1 \right) \exp\left(-\oint_{B(\xi,r)} \log f d\omega^1 \right) = 1.$$

If $Tan(\omega^1, \xi) \neq \emptyset$, then $Tan(\omega^1, \xi) \subseteq \mathscr{F}_k$ for some k and

$$\limsup_{r\to 0}\frac{\omega^1(B(\xi,2r))}{\omega^1(B(\xi,r))}<\infty,$$

Thank you!