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What is the Schottky problem?

Schottky problem is the following question:

Which principally polarized abelian varieties
are Jacobians of curves?

Mg moduli space of curves C of genus g
Ag moduli space of g -dimensional abelian varieties

(A,Θ) (complex principally polarized)
Jac :Mg ↪→ Ag Torelli map
Jg := Jac(Mg ) locus of Jacobians

(Recall that A is a projective variety with a group structure; Θ is an

ample divisor on A with h0(A,Θ) = 1; Jac(C ) = Picg−1(C ) ' Pic0(C ))

Schottky problem.

Describe/characterize Jg ⊂ Ag .
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Why might we care about the Schottky problem?

Relates two important moduli spaces. Lots of beautiful
geometry arises in this study. A “good” answer could help
relate the geometry of Mg and Ag .

Could have applications to problems about curves easily
stated in terms of the Jacobian:

Coleman’s conjecture

For g sufficiently large there are finitely many curves of genus g
such that their Jacobians have complex multiplication.

Stronger conjecture (+ Andre-Oort =⇒ Coleman).

There do not exist any complex geodesics for the natural metric on
Ag that are contained in Jg (and intersect Jg ).
[Work on this by Möller-Viehweg-Zuo; Hain, Toledo...]

(Super)string scattering amplitudes [D’Hoker-Phong], . . .
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Dimension counts

g dimMg dimAg

1 1 = 1

2 3 = 3 Mg = Aindecomposable
g

3 6 = 6

4 9 +1 = 10 Schottky′s original equation

5 12 +3 = 15 Partial results

g 3g − 3 + (g−3)(g−2)
2 = g(g+1)

2 “weak” solutions
(up to extra components)
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Classical (Riemann-Schottky) approach

Embed Ag into PN and write equations for the image of Jg .

Hg := Siegel upper half-space of dimension g
= {τ ∈ Matg×g (C) | τ t = τ, Imτ > 0}.

Given τ ∈ Hg , have Aτ := Cg/(τZg + Zg ) ∈ Ag .

For γ =

(
A B
C D

)
∈ Sp(2g ,Z) let γ ◦ τ := (Cτ + D)−1(Aτ + B).

Claim: Ag = Hg/Sp(2g ,Z).

Definition

A modular form of weight k with respect to Γ ⊂ Sp(2g ,Z) is a
function F : Hg → C such that

F (γ ◦ τ) = det(Cτ + D)kF (τ) ∀γ ∈ Γ,∀τ ∈ Hg
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Definition

For ε, δ ∈ 1
nZg/Zg the theta function with characteristic ε, δ is

θ

[
ε
δ

]
(τ, z) :=

∑
N∈Zg

exp
[
πi(N + ε, τ(N + ε)) + 2πi(N + ε, z + δ)

]

As a function of z , θm(τ, z) is a section of tmΘ
(tm =translate by m) on Aτ , so θm(τ, z)n is a section of nΘ.

For n = 2, θm(τ, z) is even/odd in z depending on whether
4ε · δ is even/odd. For m odd θm(τ, 0) ≡ 0.

Definition

For ε ∈ 1
2Zg/Zg the theta function of the second order is

Θ[ε](τ, z) := θ

[
ε
0

]
(2τ, 2z).

Theta functions of the second order generate H0(Aτ , 2Θ).
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Theta constants θm(τ, 0) are modular forms of weight 1/2 for
a certain finite index normal subgroup Γ(2n, 4n) ⊂ Sp(2g ,Z).

Theta constants of the second order Θ[ε](τ, 0) are modular
forms of weight 1/2 for Γ(2, 4).

Theorem (Igusa, Mumford, Salvati Manni)

For any n ≥ 2 theta constants embed

Ag (2n, 4n) := Hg/Γ(2n, 4n) ↪→ Pn2g−1

τ 7→
{
θ

[
ε
δ

]
(τ)

}
all ε,δ∈ 1

n
Zg/Zg

Theta constants of the second order define a generically
injective Th : Ag (2, 4)→ P2g−1 (conjecturally an embedding).

Classical Riemann-Schottky problem

Write the defining equations for

Th(Jg (2, 4)) ⊂ Th(Ag (2, 4)) ⊂ P2g−1.
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g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16

4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is



g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16
4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is



g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16
4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is

F4(τ) := 24
∑

ε,δ∈ 1
2
Zg/Zg

θ

[
ε
δ

]
(τ)16 −

 ∑
ε,δ∈ 1

2
Zg/Zg

θ

[
ε
δ

]
(τ)8


2

.



g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16
4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is

F4 := 24
∑

m∈A[2]

θ16
m (τ)−

 ∑
m∈A[2]

θ8
m(τ)

2



g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16
4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is

F4 := 24
∑

m∈A[2]

θ16
m (τ)−

 ∑
m∈A[2]

θ8
m(τ)

2

Exercise. Check if there exist A4-geodesics lying in M4.



g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 = 1
2 1 = 1
3 16 = 16
4 208896 = 16· 13056

Theorem (Schottky, Igusa)

The defining equation for J4 ⊂ A4 is

F4 := 24
∑

m∈A[2]

θ16
m (τ)−

 ∑
m∈A[2]

θ8
m(τ)

2

Open Problem

Construct all geodesics for the metric on A4 contained in M4.



In terms of lattice theta functions,∑
θ16
m (τ) = θD+

16
(τ),

∑
θ8
m(τ) = θE8(τ).
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so θD+

16
' θE8×E8 , and thus

Fg := 2g
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θ16
m −

(∑
θ8
m

)2

vanishes on Jg for any g (this is true for g ≤ 4).

Theorem (G.-Salvati Manni)

This conjecture is false for any g ≥ 5.

In fact the zero locus of F5 on M5 is the divisor of trigonal curves.
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g deg Th(Jg (2, 4)) deg Th(Ag (2, 4))

1 1 1
2 1 1
3 16 16
4 208896 13056
5 282654670848 1234714624
6 23303354757572198400 25653961176383488
7 87534047502300588892024209408 197972857997555419746140160

These are the top self-intersection numbers of λ1/2 onMg and Ag

times the degree of Ag (2, 4)→ Ag . (G., using Faber’s algorithm)

Corollary

Th(Jg (2, 4)) ⊂ Th(Ag (2, 4)) is not a complete intersection for
g = 5, 6, 7. (previously proven by Faber)

Challenge

Write at least one modular form vanishing on J5.
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g = 5, 6, 7. (previously proven by Faber)

Challenge
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The hyperelliptic Schottky problem

Theorem (Mumford, Poor)

For any g there exist sets of characteristics
S1, . . . ,SN ⊂ 1

2Z2g/Z2g such that τ ∈ Ag is the period matrix of a
hyperelliptic Jacobian (τ ∈ Hypg ) if and only if for some 1 ≤ i ≤ N

∀m {θm(τ) = 0⇐⇒ m ∈ Si}
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Schottky-Jung approach (H. Farkas-Rauch)

Definition

The Prym variety for an étale double cover C̃ → C of C ∈Mg

(given by a point η ∈ Jac(C )[2] \ {0}) is

Prym(C , η) := Ker0(Jac(C̃ )→ Jac(C ))

Denote Pg ⊂ Ag the Prym locus.

Theorem (Schottky-Jung, Farkas-Rauch proportionality)

Let τ be the period matrix of C and let π be the period matrix of
the Prym (for the simplest choice of η). Then

θ

[
ε
δ

]
(π)2 = const θ

[
0 ε
0 δ

]
(τ) · θ

[
0 ε
1 δ

]
(τ) ∀ε, δ ∈ 1

2
Zg−1/Zg−1

Using this allows us to get some equations for Th(Jg (2, 4)) from
equations for Th(Ag−1(2, 4)).
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Theorem (van Geemen)

The locus Jg is an irreducible component of the Schottky-Jung
locus — the locus obtained by taking the ideal of equations
defining Th(Ag−1(2, 4)) and applying the proportionality for all
double covers η.

Conjecture

J5 is equal to the Schottky-Jung locus in genus 5.

The locus of intermediate Jacobians of cubic threefolds is
contained in the “big” (if we take just one η) Schottky-Jung
locus in genus 5.

For g ≥ 7, Pg−1 ( Ag−1, so may have more equations ⇒
need to solve the Prym Schottky problem if the above is not
enough.
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Theorem (van Geemen / Donagi)

The locus Jg is an irreducible component of the small / big
Schottky-Jung locus — the locus obtained by taking the ideal of
equations defining Th(Ag−1(2, 4)) and applying the proportionality
for all / for just one double cover(s) η.

Conjecture

J5 is equal to the“small” (i.e., if we take all η) Schottky-Jung
locus in genus 5.

The locus of intermediate Jacobians of cubic threefolds is
contained in the “big” (if we take just one η) Schottky-Jung
locus in genus 5.

For g ≥ 7, Pg−1 ( Ag−1, so may have more equations ⇒
need to solve the Prym Schottky problem if the above is not
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Equations for theta constants: recap

+ We get explicit algebraic equations for theta constants.

We do get the one defining equation for J4.

Get 8 conjectural defining equations for J5 [Accola]
that involve lots of combinatorics, unlike the defining equation
F4 for J4.

− We do not really know Th(Ag−1(2, 4)) entirely (though we do
know many elements of the ideal).

This is so far a “weak” (i.e., up to extra components) solution
to the Schottky problem.

Boundary degeneration of Pryms is hard
[Alexeev-Birkenhake-Hulek]
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Singularities of the theta divisor approach

For C ∈ Hypg have dim(Sing ΘJac(C)) = g − 3.
For C ∈Mg \ Hypg have dim(Sing ΘJac(C)) = g − 4.
(By Riemann’s theta singularity theorem)

Definition (Andreotti-Mayer loci)

Nk :=
{

(A,Θ) ∈ Ag | dim Sing Θ ≥ k
}

Theorem (Andreotti-Mayer)

Hypg is an irreducible component of Ng−3.
Jg is an irreducible component of Ng−4.

Theorem (Debarre)

Pg is an irreducible component of Ng−6.
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Andreotti-Mayer divisor N0

N0 ( Ag [Andreotti-Mayer]

N0 is a divisor in Ag [Beauville]

N0 = 2N ′0 ∪ θnull, two irreducible components [Debarre]

Definition (Theta-null divisor)

θnull : =

τ |
∏

ε,δ∈ 1
2
Zg/Zg even

θ

[
ε
δ

]
(τ) = 0


=
{

(A,Θ) ∈ Ag | A[2]even ∩Θ 6= ∅
}

N1 ( N0, codimAg N1 ≥ 2 [Mumford]

codimAg N1 ≥ 3 [Ciliberto-van der Geer]
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Conjecture (Beauville, Debarre, ...)

Ng−3 = Hypg ; Ng−4 \ Jg ⊂ θnull within Aindec
g

Thus interested in Jg ∩ θnull.
For genus 4 have N0 = J4 ∪ θnull, so J4 \ θnull = N0 \ θnull.

Conjecture (H. Farkas)
Theorem (G.-Salvati Manni; Smith-Varley)

J4 ∩ θnull =

{
∃m ∈ A[2]even θ(τ,m) = det

i ,j
∂zi∂zj θ(τ,m) = 0

}
= ∃m ∈ A[2]even ∩Θ; TCmΘ has rank ≤ 3

=: θ3
null

Theorem (G.-Salvati Manni, Smith-Varley + Debarre)

(Jg ∩ θnull) ⊂ θ3
null ⊂ θg−1

null ⊂ (θnull ∩ N ′0) ⊂ Sing N0
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More questions on Nk

Note that ΘA1×A2 = (ΘA1 × A2) ∪ (A1 ×ΘA2).
Thus Sing(ΘA1×A2) ⊃ ΘA1 ×ΘA2 .

Conjecture (Arbarello-De Concini)
Theorem (Ein-Lazarsfeld)

Ng−2 = Adecomposable
g

Conjecture (Ciliberto-van der Geer)

codimAindec
g

Nk ≥
(k + 1)(k + 2)

2

Question

Is it possible that Nk = Nk+1 for some k?
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Multiplicity of the theta divisor

Theorem (Kollár)

For any (A,Θ) ∈ Ag , any z ∈ A we have multzΘ ≤ g.

Theorem (Smith-Varley)

If multzΘ = g, then A = E1 × · · · × Eg .

Conjecture

For A ∈ Aindec
g and any z ∈ A, multzΘ ≤

⌊
g+1

2

⌋
.

The bound holds and is achieved for Jacobians [Riemann]

The bound holds and is achieved for Pryms
[Mumford, Smith-Varley, Casalaina-Martin]

Thus the conjecture is true for g ≤ 5 (P5 = A5)
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Andreotti-Mayer approach: recap

+ Geometric conditions for an abelian variety to be a Jacobian.

Geometric solution in genus 4.

− dim Sing Θτ hard to compute for an explicitly given τ ∈ Hg .

Only a weak solution (at least so far) in higher genera.
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Curves of small homology class

For Jacobians have the Abel-Jacobi curve C ↪→ Jac(C ).

Theorem (Matsusaka-Ran)

If ∃C ⊂ A of “minimal” class Θg−1

(g−1)! , then A = Jac(C )

For Pryms the Abel-Prym curve C̃ ↪→ Jac(C̃ )→ Prym(C̃ → C ).

Theorem (Welters)

If ∃C ⊂ A of homology class 2 Θg−1

(g−1)! , then A is a Prym (or a

degeneration, technical details, . . . )

Here we start with a curve and solve an easier version of Schottky:
Given C ⊂ A, is A = Jac(C )?
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Geometry of the Kummer variety

Definition

The Kummer variety is the image of

Kum := |2Θ| : Aτ/± 1 ↪→ P2g−1

z →
{

Θ[ε](τ, z)
}

all ε∈ 1
2
Zg/Zg ,

Trisecant formula (Fay, Gunning)

∀p, p1, p2, p3 ∈ C ⊂ Jac(C ) = Pic0(C ) the following are collinear:

Kum(p+p1−p2−p3),Kum(p+p2−p1−p3),Kum(p+p3−p1−p2) (∗)

Theorem (Gunning)

If for some A ∈ Aindec
g there exist infinitely many p such that (∗)

(pi fixed, in general position), then A ∈ Jg .

This is a solution to the Schottky problem, already given a curve.
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“Getting rid” of the points of secancy

“Multi”secant formula (Gunning)

For any 1 ≤ k ≤ g and for any
p1, . . . , pk+2, q1, . . . , qk ∈ C ⊂ Jac(C ) the k + 2 points

Kum(2pj +
k∑

i=1

qi −
k+2∑
i=1

pi ), j = 1 . . . k + 2

are linearly dependent.

Note Symg C � Jac(C ), use k = g above. The converse is

Conjecture (Buchstaber-Krichever)
Theorem (G., Pareschi-Popa)

Given A ∈ Aindec
g and p1, . . . , pg+2 ∈ A in general position, if

∀z ∈ A {Kum(2pi + z)}i=1...g+2 ⊂ P2g−1

are linearly dependent, then A ∈ Jg .
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“Getting rid” of the points of secancy
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Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or

Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or

Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or

Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or
Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or
Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Trisecant Conjecture (Welters)
Theorem (Krichever)

If Kum(A) has a trisecant, for A ∈ Aindec
g , then A ∈ Jg .

No general position assumption: only that the points of
secancy are not in A[2], so that Kum(A) is smooth at them.

Also true for degenerate trisecants, i.e., the existence of a

Semidegenerate trisecant: a line tangent to Kum(A) at a point
not in A[2] intersecting Kum(A) at another point

or
Flex line: a line tangent to Kum(A) at a point not in A[2] with
multiplicity 3

implies that A is a Jacobian.



Kummer images of Prym varieties

Theorem (Fay, Beauville-Debarre)

For any p, p1, p2, p3 ∈ C̃ → Prym(C̃ → C ) the points

Kum(p + p1 + p2 + p3), Kum(p + p1 − p2 − p3),
Kum(p + p2 − p1 − p3), Kum(p + p3 − p1 − p2)

(∗∗)

lie on a 2-plane in P2g−1.

Example (Beauville-Debarre)

There exists A ∈ Ag \ Pg such that Kum(A) has a quadrisecant.

Theorem (G.-Krichever)

For A ∈ Aindec
g and p, p1, p2, p3 ∈ A, if (∗∗), and (∗∗) also holds

for −p, p1, p2, p3, then A ∈ Pg .
(Characterization by a symmetric pair of quadrisecants)
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Secants of the Kummer variety: recap

+ A “strong” solution to Schottky and Prym-Schottky (no extra
components).

Finite amount of data involved, no curves or infinitesimal
structure.

− The points of the tri(quadri)secancy enter in the equations,
i.e., we do not directly get algebraic equations for theta
constants.

Challenge

Use these characterizations to approach Coleman’s conjecture, or
solve the Torelli problem for Pryms (period map generically
injective — conjecturally the non-injectivity is due only to the
tetragonal construction), or . . .
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Theorem (Buser, Sarnak)

The upper bound for the length of the shortest period for
Jacobians is (much) less than the upper bound for the length of
the shortest period for abelian varieties.

Theorem (Lazarsfeld, also work by Bauer, Nakamaye)

The Seshadri constant for a generic Jacobian is much smaller than
for a generic abelian variety.

+ Gives a way to tell that some abelian varieties are not Jacobians.
− Does not possibly give a way to show that a given abelian
variety is a Jacobian

, or does it?

Can characterize Hypg by the value of their Seshadri constant, if
the Γ00 conjecture holds [Debarre, Lazarsfeld]
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Γ00 conjecture

Definition

Γ00 = {f ∈ H0(A, 2Θ) | mult0f ≥ 4}

Theorem (set-theoretically: Welters, scheme-theoretically:
Izadi)

For g ≥ 5 on Jac(C ) we have Bs(Γ00) = C − C .

Conjecture (van Geemen-van der Geer)

For A ∈ Aindec
g if Bs(Γ00) 6= {0}, then A ∈ Jg .

Holds for g = 4. [Izadi]

Holds for a generic Prym for g ≥ 8. [Izadi]

Holds for a generic abelian variety for g = 5 or g ≥ 14.
[Beauville-Debarre-Donagi-van der Geer]
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Even functions Θ[ε](τ, z) generate H0(A, 2Θ).

Thus z ∈ Bs(Γ00)

m
Kum(z) ∈

〈
Kum(0), ∂zi∂zj Kum(0)

〉
linear span

m
Kum(z) = cKum(0) +

∑
cij∂zi∂zj Kum(0) (†)

for some c , cij ∈ C

Similar to a semidegenerate trisecant tangent at Kum(0).

For p, q ∈ C ⊂ Jac(C ) in fact rk(cij) = 1 [∼Frobenius]

Theorem (G.)

For A ∈ Aindec
g if (†) holds with rk(cij) = 1, then A ∈ Jg .

Idea (Mu~noz-Porras)

If Γ00 conjecture holds, then Jg =small Schottky-Jung locus
(methods to prove this by degenerating to the boundary).
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Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:
Use integrable systems.

. . . and neither are integrable systems.



Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:
Use integrable systems.

. . . and neither are integrable systems.



Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:
Use integrable systems.

. . . and neither are integrable systems.



Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:

Use integrable systems.

. . . and neither are integrable systems.



Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:
Use integrable systems.

. . . and neither are integrable systems.



Proofs

For the results on Schottky’s form and theta divisors:

Theta functions are not a spectator sport. . .

--- Lipman Bers

For the characterization of Pryms by pairs of quadrisecants:
Use integrable systems.
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Kadomtsev-Petviashvili (KP) equation is the condition for the
existence of a 1-jet of a family of degenerate trisecants (flex
lines of the Kummer).

KP hierarchy of PDEs is the hierarchy of the conditions for
the existence of n-jets of a family of flex lines, for each n ∈ N.

The existence of an n-jet of a family of flexes for any n gives a
formal one-dimensional family of flexes.

Such a formal family comes from an actual geometric family.

Thus if the KP hierarchy is satisfied by the theta function, the
abelian variety is a Jacobian.

Shiota proved that the KP equation suffices to recover the
hierarchy.

Krichever showed that the obstruction for extending one flex
to a family of flexes vanishes in Taylor series.

For Pryms, G.-Krichever needed a new hierarchy, etc.
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