Cohomology of compact hyper-Kähler manifolds and the bound on their second Betti number

Yoon-Joo Kim

Stony Brook University Advisor: Radu Laza

April 2, 2020

Compact hyper-Kähler manifold

Definition

A compact Kähler manifold X = (M, I) is called hyper-Kähler (HK) if:

- *X* is simply connected.
- \exists unique holomorphic symplectic 2-form σ on X. (up to constant)

Dimension 2: K3 surface

- K3 surface = compact HK manifold of dimension 2.
- Intensively studied over decades.
- Hodge structure of $H^*(K3, \mathbb{Q})$ is well understood.

Dimension 2: K3 surface

- K3 surface = compact HK manifold of dimension 2.
- Intensively studied over decades.
- Hodge structure of $H^*(K3, \mathbb{Q})$ is well understood.

Example. Hodge diamond of K3:

$$\begin{array}{ccc} & 1 & \\ 0 & 0 & \\ 1 & 20 & 1 \\ & 0 & 0 \\ & & 1 & \end{array}$$

Higher dimensions

Currently, the only known examples of HK are:

Higher dimensions

Currently, the only known examples of HK are:

• (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n.

Higher dimensions

Currently, the only known examples of HK are:

- (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n.
- (Beauville '83) Generalized Kummer variety
 Kum_n. Dimension 2n.

Higher dimensions

Currently, the only known examples of HK are:

- (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n.
- (Beauville '83) Generalized Kummer variety
 Kum_n. Dimension 2n.
- (O'Grady '99 '03) Sporadic examples
 OG6, OG10. Dimension 6 and 10.

Goal

Ultimate goal

Understand the cohomology $H^*(X,\mathbb{Q})$ of a HK manifold X.

Theorem (Göttsche–Soergel '93)

There is an explicit formula for Hodge structures of $H^*(K3^{[n]}, \mathbb{Q})$ and $H^*(Kum_n, \mathbb{Q})$.

Theorem (Göttsche–Soergel '93)

There is an explicit formula for Hodge structures of $H^*(K3^{[n]}, \mathbb{Q})$ and $H^*(Kum_n, \mathbb{Q})$.

Example. Hodge diamond of K3^[2] and Kum₂:

```
Theorem (Mongardi–Rapagnetta–Saccà '18, de Cataldo–Rapagnetta–Saccà '19)
```

- (MRS '18) Computed Hodge diamond of OG6.
- (dCRS '19) Computed Hodge diamond of OG10.

```
Theorem (Mongardi–Rapagnetta–Saccà '18,
de Cataldo–Rapagnetta–Saccà '19)
```

- (MRS '18) Computed Hodge diamond of OG6.
- (dCRS '19) Computed Hodge diamond of OG10.

Example. Hodge diamond of OG10 (1st quadrant, no odd cohom):

```
1 22 1 254 22 1 2299 276 23 1 16490 2531 276 22 1 88024 16490 2299 254 22 1
```

Meanwhile, more refined structure (than Hodge structure) was discovered:

Meanwhile, more refined structure (than Hodge structure) was discovered:

Theorem (Verbitsky '95, Looijenga–Lunts '97)

 $H^*(X,\mathbb{Q})$ admits a \mathfrak{g} -module structure, where \mathfrak{g} is a Lie algebra.

Here g-module structure means:

$$H^*(X,\mathbb{Q})=\bigoplus_{\mu}m_{\mu}V_{\mu}$$

where μ : Young diagram (collection of boxes).

Meanwhile, more refined structure (than Hodge structure) was discovered:

Theorem (Verbitsky '95, Looijenga–Lunts '97)

 $H^*(X,\mathbb{Q})$ admits a \mathfrak{g} -module structure, where \mathfrak{g} is a Lie algebra.

Here g-module structure means:

$$H^*(X,\mathbb{Q}) = \bigoplus_{\mu} m_{\mu} V_{\mu}$$

where μ : Young diagram (collection of boxes).

Example. (Markman '03)
$$H^*(K3^{[3]}, \mathbb{Q}) = V_{\square \square} \oplus V_{\square}$$
.

Main Theorem

Main Theorem (Green-K-Laza-Robles '19)

- There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$.
- g-module structures for OG6 and OG10 are:

$$H^*(\mathsf{OG6},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$
 $H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$

Main Theorem

Main Theorem (Green-K-Laza-Robles '19)

- There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$.
- g-module structures for OG6 and OG10 are:

$$H^*(\mathsf{OG6}, \mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$
 $H^*(\mathsf{OG10}, \mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$

Example.

- $\bullet \ H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$
- $H^*(Kum_2, \mathbb{Q}) = V_{\square} \oplus 80\mathbb{Q} \pmod{\oplus \text{odd cohom}}$.

Main Theorem

Main Theorem (Green-K-Laza-Robles '19)

- There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$.
- g-module structures for OG6 and OG10 are:

$$H^*(\mathsf{OG6}, \mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$
 $H^*(\mathsf{OG10}, \mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$

Example.

- $\bullet \ H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$
- $H^*(Kum_2, \mathbb{Q}) = V_{\square} \oplus 80\mathbb{Q} \pmod{\oplus \text{odd cohom}}$.

Moral: We know the most refined cohomology structure for all known examples of HK.

Conjecture (Nagai '08)

Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact,

$$\nu_{2k}=k\cdot\nu_2.$$

Conjecture (Nagai '08)

Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact,

$$\nu_{2k} = k \cdot \nu_2$$
.

Partial results: Nagai '08, Kollár–Laza–Saccà–Voisin '17.

Conjecture (Nagai '08)

Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact,

$$\nu_{2k} = k \cdot \nu_2$$
.

Partial results: Nagai '08, Kollár–Laza–Saccà–Voisin '17.

Theorem (Green-K-Laza-Robles '19)

Nagai's conjecture \Leftrightarrow Knowing what Young diagrams appear in $H^*(X, \mathbb{Q})$.

Corollary (Green-K-Laza-Robles '19)

Nagai's conjecture holds for all known examples of HK.

Corollary (Green–K–Laza–Robles '19)

Nagai's conjecture holds for all known examples of HK.

Proof. We understand $H^*(X, \mathbb{Q})$ for all known examples of HK. Hence we know what Young diagram appears!

Corollary (Green–K–Laza–Robles '19)

Nagai's conjecture holds for all known examples of HK.

Proof. We understand $H^*(X, \mathbb{Q})$ for all known examples of HK. Hence we know what Young diagram appears!

Example.
$$H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$$
 Young diagrams $\square \square$, \square , \varnothing .

 \Rightarrow Nagai's conjecture holds for K3^[4].

Application 2: Second Betti number of HK

We highly suspect the following (stronger than Nagai's conjecture):

Conjecture (Green–K–Laza–Robles '19)

For all HK,

(size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$.

Application 2: Second Betti number of HK

We highly suspect the following (stronger than Nagai's conjecture):

Conjecture (Green-K-Laza-Robles '19)

For all HK,

(size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$.

Example. $H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square}$.

Young diagrams \square \square \Rightarrow the Conjecture holds for OG10.

Application 2: Second Betti number of HK

We highly suspect the following (stronger than Nagai's conjecture):

Conjecture (Green-K-Laza-Robles '19)

For all HK,

(size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$.

Example.
$$H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square}$$

Young diagrams $\square\square\square$, \square \Rightarrow the $\overline{\text{Conjecture holds for OG10}}$.

The conjecture implies:

Theorem (K–Laza '19)

If the Conjecture holds, then \exists explicit bound on b_2 for HK.

								≥ 16
$b_2(X) \leq$	22	23	23	24	25	26	27	$2 \dim X - 1$

Thank you!