Cohomology of compact hyper-Kähler manifolds and the bound on their second Betti number Yoon-Joo Kim Stony Brook University Advisor: Radu Laza April 2, 2020 # Compact hyper-Kähler manifold #### Definition A compact Kähler manifold X = (M, I) is called hyper-Kähler (HK) if: - *X* is simply connected. - \exists unique holomorphic symplectic 2-form σ on X. (up to constant) #### Dimension 2: K3 surface - K3 surface = compact HK manifold of dimension 2. - Intensively studied over decades. - Hodge structure of $H^*(K3, \mathbb{Q})$ is well understood. #### Dimension 2: K3 surface - K3 surface = compact HK manifold of dimension 2. - Intensively studied over decades. - Hodge structure of $H^*(K3, \mathbb{Q})$ is well understood. #### Example. Hodge diamond of K3: $$\begin{array}{ccc} & 1 & \\ 0 & 0 & \\ 1 & 20 & 1 \\ & 0 & 0 \\ & & 1 & \end{array}$$ #### Higher dimensions Currently, the only known examples of HK are: #### Higher dimensions Currently, the only known examples of HK are: • (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n. #### Higher dimensions Currently, the only known examples of HK are: - (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n. - (Beauville '83) Generalized Kummer variety Kum_n. Dimension 2n. #### Higher dimensions Currently, the only known examples of HK are: - (Beauville '83) Hilbert scheme of n points on a K3 surface $K3^{[n]}$. Dimension 2n. - (Beauville '83) Generalized Kummer variety Kum_n. Dimension 2n. - (O'Grady '99 '03) Sporadic examples OG6, OG10. Dimension 6 and 10. #### Goal #### Ultimate goal Understand the cohomology $H^*(X,\mathbb{Q})$ of a HK manifold X. #### Theorem (Göttsche–Soergel '93) There is an explicit formula for Hodge structures of $H^*(K3^{[n]}, \mathbb{Q})$ and $H^*(Kum_n, \mathbb{Q})$. #### Theorem (Göttsche–Soergel '93) There is an explicit formula for Hodge structures of $H^*(K3^{[n]}, \mathbb{Q})$ and $H^*(Kum_n, \mathbb{Q})$. Example. Hodge diamond of K3^[2] and Kum₂: ``` Theorem (Mongardi–Rapagnetta–Saccà '18, de Cataldo–Rapagnetta–Saccà '19) ``` - (MRS '18) Computed Hodge diamond of OG6. - (dCRS '19) Computed Hodge diamond of OG10. ``` Theorem (Mongardi–Rapagnetta–Saccà '18, de Cataldo–Rapagnetta–Saccà '19) ``` - (MRS '18) Computed Hodge diamond of OG6. - (dCRS '19) Computed Hodge diamond of OG10. Example. Hodge diamond of OG10 (1st quadrant, no odd cohom): ``` 1 22 1 254 22 1 2299 276 23 1 16490 2531 276 22 1 88024 16490 2299 254 22 1 ``` Meanwhile, more refined structure (than Hodge structure) was discovered: Meanwhile, more refined structure (than Hodge structure) was discovered: ### Theorem (Verbitsky '95, Looijenga–Lunts '97) $H^*(X,\mathbb{Q})$ admits a \mathfrak{g} -module structure, where \mathfrak{g} is a Lie algebra. Here g-module structure means: $$H^*(X,\mathbb{Q})=\bigoplus_{\mu}m_{\mu}V_{\mu}$$ where μ : Young diagram (collection of boxes). Meanwhile, more refined structure (than Hodge structure) was discovered: ### Theorem (Verbitsky '95, Looijenga–Lunts '97) $H^*(X,\mathbb{Q})$ admits a \mathfrak{g} -module structure, where \mathfrak{g} is a Lie algebra. Here g-module structure means: $$H^*(X,\mathbb{Q}) = \bigoplus_{\mu} m_{\mu} V_{\mu}$$ where μ : Young diagram (collection of boxes). Example. (Markman '03) $$H^*(K3^{[3]}, \mathbb{Q}) = V_{\square \square} \oplus V_{\square}$$. #### Main Theorem #### Main Theorem (Green-K-Laza-Robles '19) - There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$. - g-module structures for OG6 and OG10 are: $$H^*(\mathsf{OG6},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$ $H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$ #### Main Theorem #### Main Theorem (Green-K-Laza-Robles '19) - There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$. - g-module structures for OG6 and OG10 are: $$H^*(\mathsf{OG6}, \mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$ $H^*(\mathsf{OG10}, \mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$ #### Example. - $\bullet \ H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$ - $H^*(Kum_2, \mathbb{Q}) = V_{\square} \oplus 80\mathbb{Q} \pmod{\oplus \text{odd cohom}}$. #### Main Theorem #### Main Theorem (Green-K-Laza-Robles '19) - There is an explicit formula for \mathfrak{g} -module structures of $H^*(\mathsf{K3}^{[n]},\mathbb{Q})$ and $H^*(\mathsf{Kum}_n,\mathbb{Q})$. - g-module structures for OG6 and OG10 are: $$H^*(\mathsf{OG6}, \mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus 135V_{\square} \oplus 240\mathbb{Q},$$ $H^*(\mathsf{OG10}, \mathbb{Q}) = V_{\square\square\square\square} \oplus V_{\square}.$ #### Example. - $\bullet \ H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square\square\square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$ - $H^*(Kum_2, \mathbb{Q}) = V_{\square} \oplus 80\mathbb{Q} \pmod{\oplus \text{odd cohom}}$. Moral: We know the most refined cohomology structure for all known examples of HK. #### Conjecture (Nagai '08) Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact, $$\nu_{2k}=k\cdot\nu_2.$$ #### Conjecture (Nagai '08) Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact, $$\nu_{2k} = k \cdot \nu_2$$. Partial results: Nagai '08, Kollár–Laza–Saccà–Voisin '17. #### Conjecture (Nagai '08) Let \mathfrak{X}/Δ : degenerating family of HK and ν_{2k} : monodromy index on $H^{2k}(X,\mathbb{Q})$. Then in fact, $$\nu_{2k} = k \cdot \nu_2$$. Partial results: Nagai '08, Kollár–Laza–Saccà–Voisin '17. #### Theorem (Green-K-Laza-Robles '19) Nagai's conjecture \Leftrightarrow Knowing what Young diagrams appear in $H^*(X, \mathbb{Q})$. ### Corollary (Green-K-Laza-Robles '19) Nagai's conjecture holds for all known examples of HK. ## Corollary (Green–K–Laza–Robles '19) Nagai's conjecture holds for all known examples of HK. *Proof.* We understand $H^*(X, \mathbb{Q})$ for all known examples of HK. Hence we know what Young diagram appears! #### Corollary (Green–K–Laza–Robles '19) Nagai's conjecture holds for all known examples of HK. *Proof.* We understand $H^*(X, \mathbb{Q})$ for all known examples of HK. Hence we know what Young diagram appears! Example. $$H^*(\mathsf{K3}^{[4]},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square} \oplus V_{\square} \oplus \mathbb{Q}.$$ Young diagrams $\square \square$, \square , \varnothing . \Rightarrow Nagai's conjecture holds for K3^[4]. ## Application 2: Second Betti number of HK We highly suspect the following (stronger than Nagai's conjecture): ## Conjecture (Green–K–Laza–Robles '19) For all HK, (size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$. ## Application 2: Second Betti number of HK We highly suspect the following (stronger than Nagai's conjecture): ## Conjecture (Green-K-Laza-Robles '19) For all HK, (size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$. Example. $H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square}$. Young diagrams \square \square \Rightarrow the Conjecture holds for OG10. ## Application 2: Second Betti number of HK We highly suspect the following (stronger than Nagai's conjecture): ### Conjecture (Green-K-Laza-Robles '19) For all HK, (size of each Young diagrams in $H^*(X, \mathbb{Q})$) $\leq \frac{1}{2} \dim X$. Example. $$H^*(\mathsf{OG10},\mathbb{Q}) = V_{\square \square \square} \oplus V_{\square}$$ Young diagrams $\square\square\square$, \square \Rightarrow the $\overline{\text{Conjecture holds for OG10}}$. The conjecture implies: #### Theorem (K–Laza '19) If the Conjecture holds, then \exists explicit bound on b_2 for HK. | | | | | | | | | ≥ 16 | |---------------|----|----|----|----|----|----|----|----------------| | $b_2(X) \leq$ | 22 | 23 | 23 | 24 | 25 | 26 | 27 | $2 \dim X - 1$ | # Thank you!