The boundary of orbit closures

Frederik Benirschke

Graduate Student Recitals Stony Brook, March 31

Moduli spaces of differentials

Definition

An abelian differential is a pair (X, ω) where X is a Riemann surface of genus g and ω a holomorphic 1-form on X.

Moduli spaces of differentials

Definition

An abelian differential is a pair (X, ω) where X is a Riemann surface of genus g and ω a holomorphic 1-form on X.

 ${\cal H}$ is the moduli space of Abelian differentials up to isomorphism, also called a stratum.

Moduli spaces of differentials

Definition

An abelian differential is a pair (X, ω) where X is a Riemann surface of genus g and ω a holomorphic 1-form on X.

 \mathcal{H} is the moduli space of Abelian differentials up to isomorphism, also called a stratum.

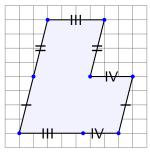
An alternate description of ${\cal H}$

 $\mathcal{H} = \{Abelian differentials\}$

 \leftrightarrow

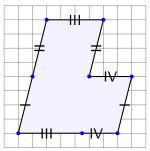
{polygons in the plane with parallel sides identified}

Constructing holomorphic differentials



 $X = \{polygon\}/(parallel sides identified by translation)$

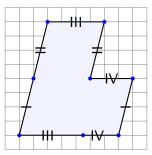
Constructing holomorphic differentials



 $X = \{polygon\}/(parallel sides identified by translation)$

• $z \mapsto z + c$ is holomorphic $\Rightarrow X$ is a Riemann surface

Constructing holomorphic differentials



 $X = \{polygon\}/(parallel sides identified by translation)$

- $z \mapsto z + c$ is holomorphic $\Rightarrow X$ is a Riemann surface
- $d(z+c) = dz \Rightarrow$ dz descends to a holomorphic differential on X


```
\mathcal{H} = \{ \text{holomorphic differentials} \} \leftrightarrow \{ \text{polygons in the plane with parallel sides identified} \}
```

```
\mathcal{H} = \{\text{holomorphic differentials}\}
\leftrightarrow
```

 $\{ polygons \ in \ the \ plane \ with \ parallel \ sides \ identified \}$

Consequences

$$\mathcal{H} = \{\text{holomorphic differentials}\}\$$

{polygons in the plane with parallel sides identified}

Consequences

ullet SL(2, $\mathbb R$) acts on $\mathcal H$

```
\mathcal{H} = \{ \text{holomorphic differentials} \}
\leftrightarrow
\{ \text{polygons in the plane with parallel sides identified} \}
```

Consequences

- $\mathsf{SL}(2,\mathbb{R})$ acts on \mathcal{H}
- H has distinguished local coordinates given by the complex lengths of the polygon, so called period coordinates.

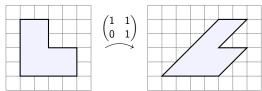
ullet SL $(2,\mathbb{R})$ acts on $\mathbb{C}\simeq\mathbb{R}^2$

ullet SL(2, $\mathbb R$) acts on the space of polygons

- $SL(2,\mathbb{R})$ acts on the space of polygons
- the action keeps parallel sides parallel

• \Rightarrow SL(2, \mathbb{R}) acts on the stratum \mathcal{H}

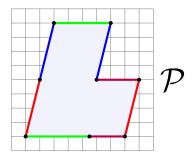
• $\mathsf{SL}(2,\mathbb{R})$ acts on the stratum \mathcal{H}



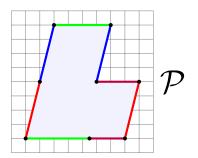
Fix a point (X, ω) in a stratum and choose a polygonal representation \mathcal{P} .

Fix a point (X, ω) in a stratum and choose a polygonal representation \mathcal{P} .

Fix a point (X, ω) in a stratum and choose a polygonal representation \mathcal{P} .



Fix a point (X, ω) in a stratum and choose a polygonal representation \mathcal{P} .



"Fact"

The complex lengths of the edges of \mathcal{P} give local coordinate charts near (X, ω) , called period coordinates. Furthermore, the transition functions are linear transformations.

Magic Wand and Algebraicity

Theorem (Eskin-Mirzakhani-Mohammadi 2013, Filip 2013)

Orbit closures $\overline{\operatorname{SL}(2,\mathbb{R})\cdot(X,\omega)}$ are algebraic varieties which, in period coordinates, are given by linear equations with real coefficients.

Magic Wand and Algebraicity

Theorem (Eskin-Mirzakhani-Mohammadi 2013, Filip 2013)

Orbit closures $\overline{\mathsf{SL}(2,\mathbb{R})\cdot(X,\omega)}$ are algebraic varieties which, in period coordinates, are given by linear equations with real coefficients.

Fact

Orbit closures are never compact.

Magic Wand and Algebraicity

Theorem (Eskin-Mirzakhani-Mohammadi 2013, Filip 2013)

Orbit closures $\overline{\mathsf{SL}(2,\mathbb{R})\cdot(X,\omega)}$ are algebraic varieties which, in period coordinates, are given by linear equations with real coefficients.

Fact

Orbit closures are never compact.

Goal

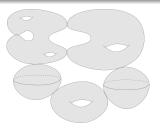
Find a suitable compactification.

Compactifying strata

Theorem (Bainbridge-Chen-Gendron-Grushevsky-Möller 2019)

There exists a compactification Ξ of the stratum \mathcal{H} such that

● **Ξ** is smooth



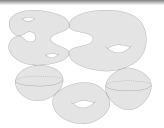
A nodal Riemann surface

Compactifying strata

Theorem (Bainbridge-Chen-Gendron-Grushevsky-Möller 2019)

There exists a compactification Ξ of the stratum \mathcal{H} such that

- **Ξ** is smooth
- the boundary $\partial \Xi = \Xi \setminus \mathcal{H}$ consists of nodal Riemann surfaces equipped with meromorphic differentials



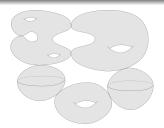
A nodal Riemann surface

Compactifying strata

Theorem (Bainbridge-Chen-Gendron-Grushevsky-Möller 2019)

There exists a compactification Ξ of the stratum \mathcal{H} such that

- **Ξ** is smooth
- the boundary $\partial \Xi = \Xi \setminus \mathcal{H}$ consists of nodal Riemann surfaces equipped with meromorphic differentials
- the boundary $\Xi \setminus \mathcal{H}$ has distinguished period coordinates



A nodal Riemann surface

The closure of orbit closures

To compactify orbit closures we can now take the closure inside Ξ .

The closure of orbit closures

To compactify orbit closures we can now take the closure inside Ξ .

Theorem (B. 2020)

Let $M \subseteq \mathcal{H}$ be an orbit closure for the $SL(2,\mathbb{R})$ -action. Then the boundary $\partial M \subseteq \Xi$ is, locally in the period coordinates of the boundary, given by linear equations with real coefficients.

The closure of orbit closures

To compactify orbit closures we can now take the closure inside Ξ .

Theorem (B. 2020)

Let $M \subseteq \mathcal{H}$ be an orbit closure for the $SL(2,\mathbb{R})$ -action. Then the boundary $\partial M \subseteq \Xi$ is, locally in the period coordinates of the boundary, given by linear equations with real coefficients.

Further directions

Classification of orbit closures