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Moduli spaces of differentials

Definition

An abelian differential is a pair (X , ω) where X is a Riemann
surface of genus g and ω a holomorphic 1-form on X .

H is the moduli space of Abelian differentials up to isomorphism,
also called a stratum.

An alternate description of H

H = {Abelian differentials}
↔

{polygons in the plane with parallel sides identified}
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Constructing holomorphic differentials
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X = {polygon}/(parallel sides identified by translation)

z 7→ z + c is holomorphic ⇒ X is a Riemann surface

d(z + c) = dz ⇒
dz descends to a holomorphic differential on X
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Strata as spaces of polygons

H = {holomorphic differentials}
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{polygons in the plane with parallel sides identified}

Consequences
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Strata as spaces of polygons

H = {holomorphic differentials}
↔

{polygons in the plane with parallel sides identified}

Consequences

SL(2,R) acts on H
H has distinguished local coordinates given by the complex
lengths of the polygon, so called period coordinates.
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The SL(2,R)-action

SL(2,R) acts on the space of polygons

the action keeps parallel sides parallel
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The SL(2,R)-action

⇒ SL(2,R) acts on the stratum H
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Period coordinates

Fix a point (X , ω) in a stratum and choose a polygonal
representation P.

P

”Fact”

The complex lengths of the edges of P give local coordinate charts
near (X , ω), called period coordinates. Furthermore, the transition
functions are linear transformations.
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Magic Wand and Algebraicity

Theorem (Eskin-Mirzakhani-Mohammadi 2013, Filip 2013)

Orbit closures SL(2,R) · (X , ω) are algebraic varieties which, in
period coordinates, are given by linear equations with real
coefficients.

Fact

Orbit closures are never compact.

Goal

Find a suitable compactification.
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Compactifying strata

Theorem (Bainbridge-Chen-Gendron-Grushevsky-Möller 2019)

There exists a compactification Ξ of the stratum H such that

Ξ is smooth

the boundary ∂Ξ = Ξ \ H consists of nodal Riemann surfaces
equipped with meromorphic differentials

the boundary Ξ \ H has distinguished period coordinates

A nodal Riemann surface
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The closure of orbit closures

To compactify orbit closures we can now take the closure inside Ξ.

Theorem (B. 2020)

Let M ⊆ H be an orbit closure for the SL(2,R)-action. Then the
boundary ∂M ⊆ Ξ is, locally in the period coordinates of the
boundary, given by linear equations with real coefficients.

Further directions

Classification of orbit closures
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