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Strata of holomorphic differentials

X ∈Mg = genus g Riemann surface

z1, . . . , zn ∈ X = distinct numbered marked points

ω ∈ H0(X ,KX ) = H1,0(X ,C) = holomorphic 1-form on X

Definition

For µ = (m1, . . . ,mn) ∈ Z≥0 the stratum is

Hg ,n(µ) := {(X , z1, . . . , zn, ω 6= 0): ordziω = mi}

and ω has no zeroes on X \ {z1, . . . , zn}.

Projectivized stratum Pg ,n(µ) := Hg ,n(µ)/C∗
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Strata of meromorphic differentials

X ∈Mg = genus g Riemann surface

z1, . . . , zn ∈ X = distinct numbered marked points

ω ∈ H0(X ,KX ) = H1,0(X ,C) = holomorphic 1-form on X

Definition

For µ = (m1, . . . ,mn) ∈ Z≥0 the stratum is
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Strata of meromorphic differentials

X ∈Mg = genus g Riemann surface

z1, . . . , zn ∈ X = distinct numbered marked points

ω ∈ H0(X ,KX +
∑

mizi ) =meromorphic 1-form on X

Definition

For µ = (m1, . . . ,mn) ∈ Z the stratum is

Hg ,n(µ) := {(X , z1, . . . , zn, ω 6= 0): ordziω = mi}

and ω has no zeroes or poles on X \ {z1, . . . , zn}.

Projectivized stratum Pg ,n(µ) := Hg ,n(µ)/C∗



Strata of meromorphic differentials

X ∈Mg = genus g Riemann surface

z1, . . . , zn ∈ X = distinct numbered marked points

ω ∈ H0(X ,KX +
∑
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Definition
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Period coordinates and GL+(2,R) action

Local coordinates on a holomorphic stratum: integrals of ω
over a basis of H1(X , {z1, . . . , zn};Z) = H1(X ,Zeroes;Z).

Local coordinates on a meromorphic stratum: integrals of ω
over a basis of H1(X \ Poles,Zeroes;Z).

GL+(2,R) action on the stratum. In local period coordinates
Hg ,n(µ) ' CN ' (R2)×N , and let GL+(2,R) act on R2.

(N = 2g + n− 1 for holomorphic, N = 2g + n− 2 for meromorphic)

Theorem (Eskin-Mirzakhani-Mohammadi)

For holomorphic strata, orbit closures are locally given in period
coordinates by linear equations with real coefficients.

(Linear equations with R coefficients are preserved by GL+(2,R))

Theorem (Filip)

For holomorphic strata, orbit closures are (quasi-projective) algebraic
varieties.
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Towards classifying GL+(2,R) orbit closures

(affine invariant manifold:=orbit closure in a holomorphic stratum)

Teichmüller curves = closed orbits; map to complex curves in
Pg ,n(µ)

Covering constructions

Upper bounds on the rank of primitive orbit closures
(Mirzakhani-Wright, Apisa-Wright, . . . )

Gothic locus and quadrilateral constructions
(McMullen-Mukamel-Wright,
Eskin-McMullen-Mukamel-Wright).

Meromorphic strata: ???

Idea:

Study orbit closures via degenerations.
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Degenerations

Hg ,n(µ) is not compact: can degenerate the Riemann surface
and/or the differential

Pg ,n(µ) is not compact: can degenerate the Riemann surface

No orbit closure in Pg ,n(µ) is compact. Can consider

lim
λ→∞

(
λ 0
0 λ−1

)
◦ (X , ω)

What about limλ→∞

(
1 λ
0 1

)
◦ (X , ω)?
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Moduli of multi-scale differentials [BCG–M]

PΞMg ,n(µ) is a compactification of Pg ,n(µ) that is algebraic,
smooth (as an orbifold), ΞMg ,n(µ)→Mg ,n, boundary
∂ΞMg ,n(µ) is a normal crossing divisor.

Points of ∂ΞMg ,n(µ) correspond to nodal Riemann surfaces, with
components ordered by “scale” (how fast the volume went to
zero), together with a meromorphic differential on each
component, plus prong-matchings and conditions.

Upshot

Locally any boundary stratum of PΞMg ,n(µ) is a product of strata
of meromorphic differentials

, satisfying some linear conditions on
residues.
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Why degenerations restrict linear equations

Hg ,n(µ) ⊃ M :=affine invariant manifold=orbit closure

F :=(local) defining equation for M near p ∈ M

Write F (X , ω) =
∫
β ω = 0 for ω ∈ H1(X , {z1, . . . , zn};C)

Suppose F (X , ω) =
∫
α ω −

∫
β ω, where α · β = 1 are

intersecting classes in H1(X : Z)

Suppose within M can pinch α to a node

“Near” such a limit point cannot distinguish β from Nα + β,
for N ∈ Z
So locally could have

∫
β ω = N

∫
α ω for any N ∈ Z

Infinitely many components, certainly non-algebraic . . .
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Vertical and horizontal vanishing cycles

M ⊂ Hg ,n(µ); closure M ⊂ ΞMg ,n(µ).

Fixed p0 ∈ ∂M.
Γ :=dual graph of X0, with level structure

Horizontal edges connect vertices of same level.
Vertical edges connect vertices of different levels.

p0 ∈ DΓ :=boundary stratum of ΞMg ,n(µ).

(fixed dual graph, no further degenerations; fixed prong-matching,

all locally in ΞMg ,n(µ))

∀p = (X , ω) ∈ M sufficiently close to p0 can be obtained by
plumbing some q ∈ DΓ.
Nodes e are opened up to seams, aka vanishing cycles
λe ∈ H1(X ,Z).
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Monodromy argument [Benirschke]

Lemma

For p0 ∈ ∂M ∩DΓ, for any p = (X , ω) ∈ M sufficiently close to p0,
let {λe} be the collection of all vanishing cycles on X .

Then for
any defining equation F for M at p, there exist ne ∈ Z such that∑

e

ne〈F , λe〉
∫
λe

ω = 0

is also a defining equation for M at p.

Proof

Let f : ∆→ M map 0 7→ p0 and 1
2 7→ p. Analytically continue

coordinates from p along a loop around zero, starting and
returning to p, and keep writing the equation F .
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Components of ∂M

Recall: codimΞMg,n(µ)DΓ =L(Γ) + H(Γ)

Theorem (BD–)

If dimM ∩ DΓ = dimM − 1, then either

L(Γ) = 1; H(Γ) = 0, or

L(Γ) = 0 and for any two horizontal vanishing cycles λ1, λ2,
there is a defining equation for M of the form c
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Proportionality of periods over horizontal vanishing cycles

Theorem (BD–)

If two horizontal vanishing cycles λ1, λ2 are M-cross-related,
then there is a defining equation for M of the form c

∫
λ1
ω =

∫
λ2
ω.

Non-Example in H3,3(1, 1, 2):

 

Then the one equation
∫
γ1
ω =

∫
γ2
ω does NOT define an affine

invariant manifold.
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Minimal holomorphic stratum Hg ,1(2g − 2)

Easier because there are no relative periods. Coordinates: H1(X ;Z)

Theorem (BD–)

For M ⊂ Hg ,1(2g − 2) affine invariant manifold, λ1, . . . , λk :=
horizontal vanishing cycles. Then

1 The space of linear relations among periods over λi is
generated by pairwise proportionalities c

∫
λi
ω =

∫
λj
ω.

2 If λi and λj are M-cross-related, then there is a defining
equation Fij that crosses only λi , λj and no other horizontal
vanishing cycles.

(1) in general holds for divisorial degenerations — here for any
DΓ

The proof crucially uses the result of Avila-Eskin-Möller that
TM ⊂ H1(X ;Z) is symplectic

For non-minimal strata, can have complicated relations among
the classes of λi in H1(X ,Zeroes;Z)
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TM ⊂ H1(X ;Z) is symplectic

For non-minimal strata, can have complicated relations among
the classes of λi in H1(X ,Zeroes;Z)



Linear subvarieties in general

Definition

A linear subvariety in a meromorphic stratum is an algebraic
variety locally near any point given by linear equations, with
arbitrary complex coefficients.

Any interesting examples in holomorphic strata?

In general not preserved by the GL+(2,R) action.

Theorem (Benirschke)

Any boundary stratum M ∩ ∂ΞMg ,n(µ) of any linear subvariety is
a product of linear subvarieties for the strata corresponding to the
components of the nodal curve.
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General structural results

Theorem (BD–)

1 For any defining equation F , the collection of periods over all
vertical vanishing cycles that cross a given level i and are
crossed by F satisfy a linear relation.

2 The space of defining equations can be generated by
equations that only cross horizontal nodes at one level, and
equations that do not cross any horizontal nodes at all.

3 Local equations for M near p0 in plumbing coordinates on
ΞMg ,n(µ) can be computed explicitly from the local linear
defining equations nearby.

4 In particular, M locally near ∂M looks like a toric variety
(possibly non-normal).
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Cylinder deformation theorem [Wright]

Definition

Parallel flat cylinders: periods of ω over circumference curves are
real multiples of each other.
M-parallel cylinders: remain parallel for all (X , ω) ∈ M.

Theorem (Wright)

Let C be a maximal collection of M-parallel cylinders, for some
(X , ω) ∈ M. Then applying GL+(2,R) to cylinders in C and
leaving the rest of X untouched gives a flat surface in M.

In a way, this says that the only relations on M among the
curves on cylinders are only with curves on M−parallel
cylinders.

BD– give a new proof, for linear subvarieties of meromorphic
strata, if all coefficients of defining equations are real.

The theorem is for smooth Riemann surfaces. Our proof is by
degeneration to nodal Riemann surfaces.
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