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Introduction

The study of linear series on curves, surfaces and other algebraic varieties has
always been central 10 algedbraic geometry. Broadly speaking, the goal is 0 understand
how avariety X can map (o projective space. To begin with, one can ask for the
dimensions and numerical invariants of linear series on X; this is the question
addressed by the Riemann-Roch theorem, and when X is a curve it is the subject of
Brili-Noether theory. Or again, it is natural 10 study the equations defining a given
projective embedding of X, typical results here being the theorems of Noether and
Enriques-Babbage-Petri concerning canonical curves. And when X has dimension two
or more, il is already important simply to determine whether or not a particular linear
system is base-point free or very ample: Lefschetz’s theorems on abelian varieties,
and Bombieri’s results on pluri-canonical mappings of surfaces, are cases in point.

Interest in classical questions of this sort conlinues (o the present day, but in
recent years work in this area has started (0 take a new turn. Namely, vecior bundies
of ranks two and highet have emerged as impoctant tools in the study of linear series.
Geometrical data are encoded into a vecior bundie living on the variety under study,
and the desired conclusions are obtained by anslyzing the cohomology or sub-bundies
or moduli of the bundie so constructed. At the moment these methods constitute a
point of view more than a systematic theory, but they have already proved quite
powverful The purpose of these notes is Lo survey some of these vecior bundie
techniques, and the results (o which they lead.

The present exposilion focuses on four groups of theorems. In S1 we discuss
some work of Green [Gr] concerning the syzygies of curves of large degree. The idea
bere is that classical results on the equations defining algebraic curves can be gen-
eralized in a very natural way (o higher syzygies. Thus let L be a very ample line
bundie on a curve X, defining an embedding

X CP = PHYL).
It is well known that if deg(L) 2 2g+2, then the homogeneous ideal [x/p of X is

generated by quadrics. Green shows that if deg(L) 2 2g + 3, then the module of
syzygies among quadratic geoerators Q; € [y/p is spanned by relations of the form

ILQi=0

where the Li are limear polynomials; if degi(l) > 2g + 4, then the reistions among
the L; again have linear coefficients; and 30 on. The syzygies of a curve X are
governed cobomologically by a vectior bundie My, on X canoaically associated to the
fine bundie L. Under the hypotheses of the theorem one can control the required
cobomology groups by constructing filtrations of My, . These bundles carry a great
deal of information about the pair (X, L), and at least conjecturaily there is & very
closs connection between the geometry and the syzygiesof X .

Section 2 is devoled 10 a discussion of some results from [GL1) which extend and
unify a number of theorems concerning the normal generation of line bundies on a
curve X. Specifically, we show that if L is a very ample line bundie on X, with

degll) > 2g + 1 - 2:b\(L) - QUIF(X),

then L defines a projectively normal embedding of X. The Clifford index QlLff(X)
appearing here is an integer which roughly speaking measures how general X isin
the sense of moduli. In the relevant range of degrees, the failure of projective
normalily translates into the existence of rank two vector bundles E on X, with
det E = wy ., having an unusually large number of sections. By studying sub-bundles
of E, one finds that the presence of such bundies has implications for the inirinsic
geometry of X.

In §3 we explain results of [L1], the theme being that curves generating the
Picard group of 8 K3 surface X with Pic(X) = Z behave generically from the point of
view of Brill-Noether theory. The idea here is very simple: given acurve CC X, and
a linebundie A on C, under mild hypotheses one can associate (o the pair (C, A) a
vector bundle Fc, on X. Furthermore, this bundie has only trivial endomorphisms
provided that the linear series {C| does not contain any reducible curves. This leads
10 a connection between the Brili-Noether theory of the curves on X and the
geometry of the moduli spaces of simpie bundies on X. In particular, we will see that
the Gieseker- Petri theorem on special divisors follows from a result of Mukai to the
effect that these moduli spaces are always smooth. We attempt o emphasize the
geometrical ideas behind the results, and we have contented ourseives at crucisl
points in §3 with plausibility arguments, referring to (Li] for careful prools.




Finally, $4 is devoted 1o an exposition of some of Reider’s work [R], in which
rank two bundles lead lo very quick proofs of some of the basic theorems concerning
linear series on surfaces. Given a line bundie L. on a surface X, one wishes to
understand when Ky®L is base-point free or very ample. The failure of either of
these properties iransiates via Grothendieck duality and a well-known construction of
Serre’s into the existence of a certain rank two vectior bundle on X. Under suitable
hypotheses on L, Bogomolov’s theorem shows that these bundles are unstable, and
Reider’s resuits are obtained by analyzing geametrically what this instability means.
We have also reproduced in S4 Miysoka’s simple proof {Myk] of Bogomoiov’s theorem
(aithough we use a somewhat stronger form of this theorem than that which we
prove.)

As the title of these notes suggests, there are several other resulls that might
well have been surveyed here, but which had to be omitted due 1o limitations of space
and time. For instance, vector bundies have been applied in several ways (o prove
Casteinuovo-type bounds on the regularity of incomplete linear series (c.I. |GP1], [GLP),
(P), {L2)). Or sgain, Mukai [Muk3) has obtained some very beautiful and precise results
concerning the structure of K3 surfaces and Fano varieties by studying the maps to
Geassmannisns determined by suitable bundies. In spite of these omissions, we hope
that these notes will convey something of the flavor and scope of vector bundle
techniques.

At the risk of occasionalty sacrificing brevity, | have tried to keep the exposition
fairly elementary and seif contained, and the experis won't find anything in the way
of new results here. At the same time, there are a number of open problems -- some
wetl known -- reiated to this circle of ideas. These occur throughout the manuscript,
but most notably in S1.5 snd §2.4. The notes at the end of each section summarire
work reiated (o the material discussed.

1d like to take this opportunity to express my gratitude to W. Barth, L. Ein, W.
Pulton, M. Green, D. Morrison, S. Mori, S. Mukai, C. Peskine, H. Pinkham and Z Ran for
encouragement and advice.

$0. Notatioa aad Coaveations.
{0.1). We work exclusively with varieties defined over the complez numbers C.

(0.2). If V is a complex vector space, we denote by P(V) the projective space of
one-dimensional quotients of V. so that HXP(V), Op(y)(1)) = V. We follow the
analogous convention for the projective bundie P(E) associated to a vector bundie B.

(0.3). If F is a coberent sheaf on a projective variety X, we write Hi(F) in place of
Hi(X , F) if no confusion seems likely 10 result. As usual, hi(F) = dim Hi(F). If V isa
complex vector space, V 8¢ Oy is the trivial vector bundle oa X with fibres V; we
sometimes abbreviate this simply by V @ 6.

Sl. Syzygies of Curves of Large Degree.

In this section we will discuss a theorem from [Ge] concerning the syzygies of a curve
embedded in projeclive space by a very ample linear system of large degree. Our
focus will be on the geometric background of the resuits, and the role that vector
bundles play in their proof. We refer to Mark Green’s lectures at this conference for a
general discussion of syzygies and other applications of Koszul cohomology.

S1... Backgrousd. Let X be a smooth irreducible projective curve of genus g, and
fet L be an ample line bundie on X, generated by its global sections. Thus L deter-
mines a morphism

#L:X > P(RYL) = P,

where r = r{l) = h%L) - 1. It is an elementary consequence of Riemann-Roch that
L is very ample, ie. that ¥, is an embedding, as soon as deg(L)2 2g +1. [t is then
natural 1o study the equations defining X in P(HXL)).

There are two classical results in this direction. First, a theorem of Casteinuovo
{Cast], Mattuck [Mat] and Mumford [Mfd3] states that if deg(L) 2 2g + 1, then the nat-
ural maps



Pm : Sym® HO(L) > H(L®m )

are surjective for all m > 0. 1o other words, #|, embeds X as a projectively normaj
variety. The importance of this condition is that it reduces the problem of computing
the number of hypersurfaces of degree m passing through X | = dim( ker py) ) to
Riemann-Roch. The second theorem -- due to Fujita [Fjt] and St. Donat [S1.-D2] ,
sirengihening earlier work of Mumford [Mfd3] ~- deals with line bundies of slightly
larger degree. it asserts that if deg(L) 2 2g + 2, then the homogeneous ideal Iy,/pr
is generated by quadrics.

These results hint that as the degree of L grows, the equations defining the
embedding X C PXH(L)) display increasingly regular algebraic behavior. But in spite
of the classical nature of the question, it is only quite recently that a precise meaning
has been given (o this philosophy. The basic insight is that one should focus on the
whole chain of syzygies associated Lo a line bundle.

§1.2. Syzygies of Curves. With X and L as above, denote by S the symmetric
sigebra Sym' HYL) on H%L). Thus S is the homogeneous coordinate ring of the pro-
jective space P(HO(L)). Consider now the graded ring

R =RWL) = : (X L=)

associsted to L. Then R isin the natural way a finitely generated module over S,
and %0 has a migimal graded free resolution B =E(L):

0.2
0 —> B} —> Bp-2—>...—>E—> Eg—>R—>0

whece asabove r = r(L) = b%L)-1. Here each E; is a direct sum of twists of §:
Bi-..s(-.“) .

and hence in particular the maps in (1.2.1) are given by matrices of homogeneous
forms. Minimality in the present conlext means that none of the enlries in Lhese ma-
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irices are non-zero constants. In peinciple, (1.2.1) is constructed by first using gener-
ators of R to define Ey—> R, then picking generators of ker(E,—>R) 10 con-
struct  E;—> Eg, and 30 oa. Note that the resolution stops after r-1=

codim(X , PY) sieps; this reflects the happy fact that R(L) is automaticaily a Coben~
Macsulay module when X is a smooth curve.

Example 1.2.2. Let CC P3 denote the twisted cubic curve, i.e. the image of the em-
bedding P'—> P3 defined by the line bundle L =Opi(3) oa P. If T,,...,T;
denote homogeneous coordinates on P3, then ooe has the classical description of C
as the locus where the 2 x 3 matrix

2.3 I, I, T,
T, Ty

has rank I. Thus C is cut out by the three quadrics
gy = T, (TR Bgz =TTy -TT,  and  Qp=TT-(T12.

In fact, these generaie the homogeneous ideal | = Ic/p3 of C and furthermore

R = S/1 thanks to the fact that CC P3 is projectively normsl Now by repesting
either row of (1.2.3) and expanding lhe resulting determinant, one finds two reiations
among the Ajj:

Tob-Tidgz +T280 =0  aad  TAp-ToAg + T340 = 0.

One can show moreover thal any other relation among the by is a consequence of
these. Hence the minimal resolution of R = R(L) has the form

To Ti
- -T2

T, Ty (B, Doz . Agn )
0—>S(-32 —— > §(-2 —— —>Ss—>Rr—>0.

We remark that this is a simple special case of the Eagon-Northoott resolution of the
locus defined by the vanishing of the mazimal minors of a matrix (or of a vector bun-
die map). See [Szpc] or [GP3] for details.
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Exagple 1.2.4. Let BC P3 be an elliptic curve embedded in P3 by a line bundle L
of degree 4. Then E is the complete intersection of two quadrics Q) and Q,. As
sbave E is projectively normal, and now R =R(L) has a Kosruj resolution:

2]

6 —>5(-4) ————>5(-2 ————— > S ——>R—>0.

Remark. 1t is very exceptional to be abie to consteuct the whole resolution (1.2.1) ex-
plicitly. let alone to be sble to do 30 by hand!

The way to generalize the classical results stated in S1.1 ia to ask when the first

few terms of the resolution (1.2.1) are as simple as possible. Specifically, one makes
the following

Definition 1,2.5. Fix an integer p 2 0. We say that the line bundie L on X satisfies
Property (Np) if

EflL)=S and EflL)= @S(-i-1) forall 15i<p .
(The second requirement means that if one writes Ej=@5(-sj), then all 8;;=i+1)

Note that if Ej =S, then B determines a resolution of the homogeneous ideal

I=Iypr of X in PHYL)). Thus (1.2.5) may be summarized very concretely as
follows:

L satisfies (Ny) & § embeds X asa projectively normal curve;

L satisfies (N, & (Ny) holds for L, and the homogeneous ideal
1of X is geperated by quadrics;

L satisfies (N,) e  (Ny) and (N)) hoid for X, and the module of
syzygies among quadratic gemerators Q;el is
spanned by relations of the form

LLi0i=0,
where the L; sre lipear polynomials;

and so on. Properties (Ng) and (N) are what Mumford [Mfd3] calls respectively
pormaj generation and pormal presentation.

Example 1.2.6. The twisted cubic CC P3 of (1.2.2) satisfies (N;). The eiliptic quartic
ECP3 satisfies (Ny) but not (N,).

The result we are aiming for, which extends and clarifies the theorems
summarizred in SL1, is due to M. Green:

Iheorem 1.2.7. (iGe) Let L bealinebundieon X of degree 2g + 1 + p, defining
an embedding X C P(HXL)) = Pe*i*s, Jhen L satisfies property (Np).

So for instance one recovers the well known facts that a rational normal curve C C Pf
satisfies (Ne—q), While an eiliptic normal curve E C Pf satisfies (Nr-2). Examples
show that this result i in general optimal (See Remark 1.4.2 below).

To prove the theorem, we sttach 10 L a vector bundle M|, on X. The syzygies
of 1. are computed cohomologically in lerms of this bundie, and the theorems are

reduced 10 proving the vanishings of certain cobomology groups.

S1.3. The Vector Bundie My . As before, jet X bennoothproicclivewrve.of
genus g. and et L be an ample line bundie on X. generated by its global sections.
Then there is a surjective evaluation map of vector bundies

q‘:m).t ox >Lo
and we put

My, = kerep,.

Thus My, is a vector bundieon X of rank r=r(L), and by construction one has the
basic exact sequence

1.3.) (] > ML, > HO(L) o¢ 61 >L >0 .
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Note that (1.3.1) is the pull-back vis 8= 8 of a twist of the Euler sequence on
P(HYL)); in particular, ML, = #*(Qpdl) ).

Example 1.3.2. If X=P' and L = Gpilk), then M is isomorphic to the direct sum
of k copiesof Op!(-1). By conirasy, if g(X)2 2, and deg(L) 2 2g+1, then My, is
stable.

The basic point for us is that M, governs the syzygiesof X in P(HYL)):

Proposition 1.3.3. Assume thal L is pon-special. ie. that H'L) = 0. Tbep L satisfies
property (Np) if and calv if

A(X,A"'Mp@L)=0 forall k21.

Remark. The Proposition is particularly iransparent when p = 0. In fact to proveitin
this case, just twist (1.3.1) by LY and take cohomology: one finds that the map

HO(L) @ HO(LY) > HYLY*!) is surjective if and only if HY(Mp @ L¥) = 0. This ar-
gument is closely related (o the classical "base-point free pencil trick™ (c.f. [ACGH)).

Proof of (1.3.3). The case p = 0 having just been lreated, we assume henceforth that
P2l

Step (i). Referring 10 (1.2.1), we claim first that L satisfies (Np) if and oaly if
™) Ep(L) has no generators of degrees 2 p + 2.

1n fact, let nj [ resp. Nj | denote the minimum [resp. the maximum] of the degrees
of the generators of Ei(L). Then the sequences { nj) and { Nj) are both strictly in-
creasing in i; this is clear in the first case and follows in the second from the fact that
(E.)* gives (after twisting) a minimal resojution of the module ® HXwy ® LB). On the
other hand, since ¥ does not map X inlo any hyperplane in P(H%(L)), ooe has
Ni2 022, and hence Nj2n;j 21 +1. But (") means that Np =np = p+l, and this
now forces Nj=n; =i+] foralll SiSp.
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Step (ii). Keeping the notation of §1.2, let € denote the residue field of S at the ir-
relevant mazimal ideal @ =(Tp....,Ty), and consider the graded modules
Torj(R(L), €) . These are finite dimensional vector spaces which may be computed
from a minimal resojution of R(L). Since all the maps in (L.2.1) have entries in m . it
is evident that

dim Torj(R,Q)y =  number of generatarsof Ei(L) of
degree & .

Hence L satisfies (Np) ilmdonlyil T“p(l.opok =0 for k22.

On the other hand, ane may just as well compute these Tor’s by resolving €.
Explicitly, let V =5, =H%L). Tensoring the Koszul resolution

0—> AW @ S(-t-1) —> ...—> AV 05(-2) —> V @ $(-)) —>§ —>  —>0

by R(L) and taking graded pieces, one finds that Torp (R.C)p+k is isomorphic 1o the
homology at the middie term of the Koszul-type complex

1349
AP HYL) @ HO(LS-!) —> APHO(L) @ HHLY) —> AP 'HO(L) @ HO(LE*Y)

So we are reduced 10 proving the exactness of (1.3.4) for k 2 2.

Step (iii). 1t remains oaly 10 interpret (1.3.4) in terms of My . Coasider 10 this end
the diagram (1.3.5) on the following page, in which the vertical and horizontal exact
sequences are obtained by taking exterior powers in (1.3.1) and twisting by suitable
powers of L. The compilex (1.3.4) arises by taking global sections in the indicated
diagonal sequence of homomorphisms. Observe that H(L™) = 0 for all m 2 | thanks
10 the fact that L is non-special. Chasing through (1.3.5), one then finds that for

k2 2,(1.3.4) isexactif andoaly if H( A*'M oL*!)=0.8

Remarks. (1). The crux of this argument is that one can compute syzygies as the co-
homology of the Koszul complex (1.3.4). We again refer 10 [Ge] and 10 Green's lectures
al this conference for a systemalic development of this point of view.
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APy oLt

|

A" HYL)eL ¢! 0

| > |

0——> APMLO Lt —> APHOL)OLEt ——> AP @ LY —> 0

| ™~

0 A" IHYL)oL k!

Disgram (1.3.5)

{2). A variant of the proposition remains valid if H(L) = 0. Speciically, the proof
sbove shows that L satisfies property (Np) if and oaly if the natural maps

A"THOL) @ HHLE-!) —> HYAP My oLY)

are suciecti

$1.4. Proof of Gresa’s Theorom. Touincontmloverlhemho-olugyarwps ap-
pearing in Proposition 1.3.3, the ides is 1o produce a fiftration of My with line bundile
qmulnmnmmuaumnmwedhwmdaﬂqd secant
planes to X C P(HYL)) (c1.[GL2, 52]). However here we oaly need the simpiest of
these filirations. As above, L is an ample line bundie on X which is generated by its
global sections.

lemma L4l Let 1),...,29 € X be distingt points such that:
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L(-Zx;) is geperated by its global sections,
and
BMLL-Sx)) = hML).

Ihen one has ap exact sequence

0—> My(-z1)) > ML, > i. ox(-1;) >0

of vecior bundleson X.

Proof. Put D=Zx;, and let Wp = HXLI/HL(-D)), s0 that P(Wp) C P(HUL)) is the
piane spanned by D. Then the inclusion D C P(Wp) determines in the natural way a
sheaf homomorphism

up : Wpeg 6y >Le8p.

Note that for each x €D, the composition of up with the canoaical quotient
LeOp —>Le0(y) yieids a susjective map

Wpe 6y >L®8().

This homomorphism is characterized by the fact that it yieids on global sections the
one-dimensional quotient Wp—> HX LeO(y}) corresponding to the point

x€DC P(Wp). Now the hypotheses on L{(-D) imply that D consists of n linearly
independent points in P(Wp) = P8-1_ It follows thst Wp is canoaically the direct
sum of the one-dimensional vector spaces W; = HXL)/HY(L(-x;)), and that up
decomposes a3 the direct sum of the natural maps vj: W;—> L @ 8(y}. In particular,

]
kerup = Okerv; = @ Oxl-x)).
)=t

On the other hand, recalling that L(-D) is generated by its global sections, cne
has the exact commutative disgram:
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0 ——> HYL(-D) @ O > HoL) @ Oy >Wpe Oy >0
0 > U-D > 1L > LeSp—>0 .
0 0 0

The desired exact sequence then follows by laking kernels of the vertical maps. §

Green’s theorea is now an easy consequence of Proposition 13.3:

Proof of Theorem 1.2.7, We show that HY X, A**'M[ @ L) = 0, the vanishing of
HY(A**'ML @ L) for Kk 2 2 being similar but simpler. To this end, nole that the hy-
potheses of Lomma 1.4.1 are satisfied by r -1=g + p general points Kl aeooyXp] €
X.Put D=1y +...+x-) . Then BHL(-D)) = 2, 30 My(-D) =L"(D) and one has the
exact sequence

0 ——> L*D)—> My, —>E——> 0,

where T =0 0x(-xj). Taking (p+1)St exterior powers, and twisting by L, one gets:

0 > A*Z @ Ox(D)

> AN oL >A*”izelL

>0.

The term on the right is a direct sum of Line bundies of degrees (2g+1+p)-(p+l) = 2g.
and hence H'( AP*!E@ L) =0. As for the term on the left, it is a direct sum of line
bundies of the form

ox(xi.h..*xi”_') .

But
t-l-p=@+p-p=3g.
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and a general effective line bundie of degree 2 g is non-special. Hence by choosing
the x; sufficiently generally, we can assume that HI(APE@0 x(D)) = 0 and the theo-
fem follows. 8

Remark 1.4.2. Theorem (1.2.7) is in general optimal. In fact, a more sophisticated
argument wilh the bundie My Yields a classification of the borderline examples:

Ihcorem (IGL4]) Assume that g(X)=g 22, and et L be a line bundie of degree
28 +p oo X, defining ao embeddiog X C P$*? . Then (Np) failsfor L if and oply if
gither:

X -
#, embeds X withs (p+2)-gecant p-plane.

When p =0, the assertion in (b) shouid be interpreted (0 mean that #; is not, in fact,
an embedding. The theorem implies for example that if X C Ps*! is a non-hyperel-
liptic curve of degree 2g+l, then the homogeneous ideal of X is generated by
quadrics unless X has a tri-secant line. This theorem gives s first indicatson of the
fact that the syzygies of a curve are closely connected 10 its geometry. We will return
1o this \heme in S2.4 below.

$1.5. A Comjecture for Abelina Varieties. Classical work on the equations defin-
ing algebraic curves has traditionally been complemented by analogous results for
abelian varieties. Thus let X be an sbelian variety of dimension g. and let L be an
ample line bundle on X. A classical theorem of Lefschetz asserts that LOK is very
ample for k 2 3, defining an embedding X C P(HXLOK)) = Poik) | Koirumi [Koiz) and
Sekiguchi [Sek| -- generalizing eaclier work of Mumford [Mfdl, M{d3] -~ have shown
that LOK s normally generated for k 2 3. When k 2 4, Mumford [Mfd3) proves
ihat X c Polk) js scheme-theoretically cut out by quadrics.

By analogy wilh Green’s theorem, one expects such results Lo extend to higher
syzygies. In particular, the obvious stalement to hope for is:
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k2p+3, then LOK (Np) o

Note that if X is an efliptic curve, then the conjecture is just a restatement of (1.2.7).
Kempf {Kmf2] has Iatety made very subsiantial progress on this problem: he shows
hatif p21, then L9 satisfies (Np) provided that k > 2p + 2. In particular, if
k 2 4 then |y is generated by quadrics.

$1.6. Notes.

(1.6.1) The reistionship between Xoszul cohomology and syzygies implicit in the
proof of (L.3.3) is classical. The connection with the vector bundle My, is then
immediate, and well-known 10 those who have thought about these questions.
However, Green's original proof of (1.2.7) does not make explicit use of this bundle.

(1.6.2). In the spirit of [S1.D2). one can deduce Theorem 1.2.7 from a statement on
the syzygies of finite subsets of projective space. Specifically, it is shown in (GL4) that
if SCPC consistsof 2r+1-p points in linear general position, then X satisfies
property (Np) (svitsbly defined). This immediately implies (1.2.7) by taking a generic
hyperplane section of the embedding X C P$*!*? _ Conversely, it turns out that this
result oa finile sets can be given a proof via vector bundles very much in the spirit of
the argument in S1.4.

(16.3). The bundie MQ corresponding 10 the canonical line bundie Q = Wy ona
curve X has been considered by several authors. (Equivalently, MQ is the conormal
bundie to X in its jacobian.) The motivation here is a beautiful conjecture of Green
concerning the syrygies of canonical curves (see S2.6 below.) In [GL2], methods aloag
the lines of S1.4 are used 10 give a very simpje proof of Petri’s theorem on canonical
curves. These techniques have been exiended by Voisin [Vsal, who studies the
syzygies among the quadrics defining a canonical curve.

Paranjape and Ramanan [PR] study the stability of MQ; in particular, they
show that this bundie is stable for noa-hyperelliptic X. As they observe, this leads to
A very interesting question (which had oocurred independently to Green and the au-
thor). Namely, assume that X is non-hyperelliptic, and fix a line bundle A on X
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such that A%!=Q. Then MQ® A is a stable bundle with trivial determinant, and
hence corresponds 10 a unitary representation

PA : T{X) > SU(g-1).

(The dependence on A is minor, since replacing A by another (g-1)5L root of the
canonical bundle changes p, by a character of order g-1.) Thus there exists a
caponical projective representstion of (X). The problem is to construct this repre—~
sentation explicitly, for example by transcendental methods.

(1.6.4). If V C H%L) is a base-point free linear series on a curve (or higher dimen-
sional variety) X, then one can define a vecior bundle M by the exact sequence

At jeast for curves this bundie is again connected (0 the equations defining X, but for
incomplete series the relationship is not as direct as in SL.3. (cf. [GLP, S1]). When

X = P!, the geometrical information encoded in these bundles is studied by Ascenzi
(Ascl

$2. Projective Normality of Algebraic Curves.

In the previous section, we saw how classical results on the equations defining
aigebraic curves generalize (o statements sbout higher syzygies. Here we discuss a
theorem from [GL!) which extends some of these classical statements in a different
direction: we stick to projective normality, but des! with embeddings defined by line
bundies L of lower degree. Interestingly, now the geometry of the pair (X, L) plays
8 really fundamental role.

$2.1. Backgrouad and Exampies. Throughout this section, X denotes a smooth
irreducibie curve of genus g 2 2, and L is an ampie line bundle on X defining a
morphism #, : X > P(HYL)) = PC. Recall that L is pormally geperated if the
patural maps Sym® HO(L) > HY(LOR) are surjective for sll m 2 0.
Equivalently, L is normally generated if and oaly if L is very ample, and
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HYPT, $x/prim) ) = 0 for every m 2 0, where $x/pr is the ideal sheaf of X in
P(HO(L)). As indicated in SL1, projectively normal embeddings are usually the
easiest to deal with from the point of view of postulation. So it is of interest to have
criteris which guarantee that a given line bundie be normally generated.

There are a number of classical and more recent results along these lines.
Probably the most famous is Noether’s theorem (cf. [MTd3]) that the canoaical bundie
wy is normally generated if X is non-hypereiliptic. The theocem of Castelnuovo
[Cast], Mattuck {Mat), snd Mumford [Mfd3] recalled in SI asserts that L is normaily
generated when deg(L) 2 2g + |. Lange and Mariens {LM) have have extended this
result by showing that a general line bundle of degree 2g on a non-hyperelliptic
curve is nocmally geoerated. In & similar vein, Arbareilo, Cornalba, Griffiths and
Harris [ACGH) observed that on a geperal curve X, a general line bundie of degree
2 {(3g+4)/2 | defines a projectively normal embedding.

The diversity of these results leads one 10 ask whether one can obtain a unified
and strengthened theorem by laking inlo account in some quantitative way the
intrinsic geometry of X. In order 1o get a picture of what type of statement o expect,
it is instructive 10 see how examples of very ample non-special bundles L which fail
10 be normally generated can arise as scon as deg(L) < 2g.

Exaqple 2.11. Let X be a hyperelliptic curve, and let L be any very ample line
bundie of degree 2g, so that L defines an embedding X C Ps. Then X lieson a
rational ruied surface S C P8 swepl out by the hypereiliplic pencil. But S in turn is
on enough quadrics (o force HI( $x/pe(2) ) = . Note that the theorem quoted at the
end of S1.4 implies these are the only examples of very ampie bul not normalty
generated line bundies of degree 2g.

Ezample 2.1.2. For deg(L) = 2g - 1, the possibilities are more varied:
(a). If X is hyperelliptic, then just as ashove L is never normally generated.
(b). If X is trigonal, then there exist line bundies L of degree 2 - | with the

property that #; embeds X witha 4 - secant line. But for reasons of Casteinuovo-
Mumford regularity (cf. {Mfd2]), a projectively normal non- special curve is always
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cut out by quadrics and cubics. Hence such a line bundie cannot be normaily
generated.

(c). Finally, suppose that X C P2 is a smooth quintic. Pick 4 points x;,...,14€X,
with no three collinear, and consider the linesr system cut on X by cubics through the
1. 1t defines an embedding X C P5 of degree eleven in Which X lies on a Del Pexzo
surface. As in Example 2.1.1, this puts X on too many quadrics to be projectively
normal. We remark that these curves have a one dimensional family of six- secant
conics in PS5 (arising from the pencil of conics in P? through the x;).

Again it turns oul thatl these are Lhe only examples that occur.

The pattern thal emerges from these examples is thal as the degree of L
becomes smaller, very ample line bundies which fail 10 be normally generated can
ezist on more and more curves. To give a more precise quantilative statement, the
cruciat invariant is the Clifford index of X .

§2.2. The Clifford Index and Projective Normality. Given a line bundie A on
acurve X, recall that the Cliffocd index of A is the integer

CLff(A) = deg(A) - 2-r(A),
where r(A) = h%(A) - 1. The Qlifford index of X itself is taken to be
QUff(X) = min [ CLfI(A) | hO(A) 2 2, h{A)2 2).

We say that a line bundle A contributes to the Clifford index of X if it satisfies the
inequalities in the definition of ClLff(X); it computes the Qifford index of X if in
addition CHff(A) = QLI1(X).

The Clifford index gives a rough measure, from the point of view of special
linear series, of how general X is in the sense of moduli. Thus Qifford’s theorem
states that CLff(X) > 0 with equality if and only if X is hyperelliptic. Similarly, cne
can prove that CLff(X) =1 if and only if X is either trigonal or a smooth plane
quintic. At the other extreme, it follows from Brill-Noether theory that if X isa
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genera] curve of genus g, then CHIT(X) = { (g-1)/2] ], and in any event CIff(X) <
ig-n72} .

Rewmarks. (1). It follows from Riemann-Roch that foc any line bundie A on X,
Giff(A) = Qiff(wy ® A®) . Hence by Serre duality, coe may alternatively define

CHIM(X) = min { CLT(A) | R%A) 2 2, deg(A) < g-1).

(2). The previous remark shows that the definition of Clff(X) presupposes the exis-
tence of a pencil of degree <g-1 on X, and hence implicitly assumes that

g = 8(X) 2 4. All of the results that follow remain valid if ope takes Clff(X) =0 for X
of genus 2 or hyperelliptic of geaus 3, and Qiff(X) = | for X non- hypereiliptic of
geaus 3.

(3). G. Martens [M1] has shown that if X is a curve of Clifford index e and genus
g>(e+3Me+2)/2 then X carries a pencil of degree e+2, 30 that in this case the
Clifford index depends only on the “gonality” of the curve. But when g is relatively
small compared to the Clifford index, the picture is not currently as weil understood.
For instance, Ballico [Bal] has oaly quite recently shown that there even exist curves of
arbitrary Qifford index 0 <e < [(g-1)/2 ] for a given genus g . However, if one
defines the Clifford dimension of X to be the least dimension of a linear secies
compuling the Clifford index of X, then recent work of Eisenbud, Lange, Martens and
Schreyer [ELMS) suggests that it might be possibie to classify all curves of given
Qifford dimension. Specifically, they coajecture that besides curves of Clifford
dimension | and smooth plane curves (which have Qlifford dimension 2), there is for
each r 2 3 exnactly one numerical family of curves of Clifford dimension r.

The following result, which applies when h'(L) <1, generalizes the various
theorems stated in §2.1 above:

Iheorem 2.2.1 (IGLI) Thm. 1) Let L bea verv ampie line bundle on X, with
(2.2.2) deg(L) > 2g +1- 2-h¥L) - QifK(X)

{snd hence 'h¥L) <1). Then L is pormallv gepecated.
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Exampie 2.2.3. To see how the numerology works, take L = wy. and assume that X
is non-hypereiliptic. Then CQlff(X) > 1, and %0

deglwy) = 28-2 2 2g + 1 - 2:1) - Qfr(X).

Hence the theorem implies Noether’s result. Similarly, if X is a geperal curve of genus
8. then CLff(X) = [(g-1//2 ], and (2.2.1) yieids the result of Arbsrelio ¢t al.

Example 2.2 4, It follows from the theorem that if X carries a very ampie line bundie
of degree 2g-1 which fails to be normally generated, then Ciff(X) <1, ie. X is
hyperelliptic, trigonal, or a smooth plane quintic. Conversely, Exampie 2.1.2 shows
that every curve of Qlifford index <1 does in fact carry such & bundie.

Remark 2.2.5. Note that (2.2.2) is equivalent o the inequality
(2.2.6) qiff(L) < aifn(x) .

Infact, if N is a line bundie of degree 2g+1-e¢. then CULff(N) = e-1-2-h'(N). It
follows that (2.2.2) can only hold if h'(L) < 1. For by definition the inequality (2.2.6)
is only possible if L does not contribute to the Clifford index of X; but in the
situation of Theorem 2.2.1 one has h%L) 2 2 since L is very ample, and hence
(2.2.2) implies that h'(L) < 1.

$2.3. Proof of Theorem 2.2.1 Via Rask Two Vector Buadies. We present here
the approach to Theorem 2.2.1 which appears in [GL1). The idea is quite simple:
assuming that L fails to be normally generated, we must show in view of (2.2.6) that
QLX) < QUIT(L). Now the failure of L 10 1o be normally generated transiates into the
existence of a rank two vector bundie on X having a large number of sections. The
desired inequality then pops out from the existence of a line sub-bundie of suitably
large degree. (Compare Reider’s arguments in S4).

We start vith two elementary lemmas:

Lemma 2,31, Let A besnylinebundieon X. Then



n%A) + hO%wy @ A*) = g(X) + | - CUff(A).

Proof. In fact, suppose that h%A) =r +1. Then 2'(A) =g - d + ¢ by Riemann- Roch,
and the assertion follows from Serre duality. @

Lemma 2.3.2. Let L mm_mnlﬂins_unﬂk_gﬂ ng[mm_m_enmm
X ¢ P(HY(L)) = PF, and let D be a non-zero effective divisor oa X which spans &
plage ApC Pf wilh dim Ap=n. Jhea

Cf(L(-D)) < Qiff(L) & degD) 2 2n+2.
Furthermore. if these conditions boid. and i n > I, then bYL(-D)2 2.
Proof. Since D spans an n-plane in P(HYL)) one has cfL(-D) =rL)-n-1|,

and the first assertion follows from the definition of the Qifford index. The second is
clear from the first. @

Proof of Theorem 2.2.1, Suppose 1o the contrary that L satisfies (2.2.2) -- and hence
in particular deg(L) > 2g-1-((g-1//2] -- but that L fails o be normally generated.
Note to begin with that the multiplication maps

i HOL) @ HOL®) ——> HOL™*Y)

are sucjective for all m 2 3. This may be verified by using the techaiques of §1 to
show that H{ M @ L® ) =0 for m2 2 in the degree range at hand (or see [Gr],
Thm. 4.c.1). Hence p, -- which we call simply p -- cannot be surjective.
Bquivalently, its transpose

p* ;- HYL2)®

> HOL)* @ HXL)"
has a non-zero kernel.

On the other hand, via Serre duality HO(L2)* = Ext'(L,wy®L") classifies
extensions of L by wyeL". Furthermore, $i* is identified with the natural map

ExtL , wyoL*) —> Hom{ HYL) , HwyeL") )

which takes an exiension to Lhe connecting homomorphisa it determines. But by
assumplion p* fails 10 be injective, and hence there exists a non-split extension

2.3.3) 0

> wy oL > B > L >0
which is exact on global sections. Observe that det B = wy, and that
(2.34) hOE) = g +1- CLfr(L)

thanks 1o (2.3.1).

The pext step is (o invoke a classical theorem of Segre which asserts that a rank
two vector bundie F of degree d on X has a line sub-bundie A CF of degree

2 [(d-g+1)/2 ] (L. {N]) or [MS] for a simple proof). Applying this to the bundie B,
We arfive al an exact sequence

0 >A >E > oy ® A" >0,

where A is a line bundie of degree 2 [ (g-1)/2 ] . Taking cohomology and once
again using (2.3.1), one gets

h%B) < h%A) + hXwY@A®) = g+1-Qi(A).
Hence

2.3.5) Qift{A) < QiffiL)
by virtue of (2.3.4).

We now show that A contributes to the Clifford index of X. This will complete
the proof, since then

Qiff(X) s Qiff(A) < Quff(L),
which in view of (2.2.6) coairadicts the numerical hypothesis of the theorem. To begin

with, note that the inequality h%A) 2 2 is immediate. In fact the ower bound on
deg(A) together with (2.2.6) and (2.3.3) imply:




524
Qiff(A) s Qfr(L) < Qif(X) < ((g-1/2] < deg(A).

But since CIT(A) = deg(A) - 2-r(A), this forces r{A) 2 1. It remains only to show
that h¥(A) 2 2. To this end, consider the following disgram:

A
ol
ﬂ\
0—> wyelL" >B >L >0 .

We claim that the indicated map o : A—> L is non-zero, and heace A = L(-D) for
some effective divisor D on X. In fact, recall that (2.2.2) can only hold when
deg(L) 2 2g-1-1(g-1)/2], and this implies that deg(wY®L") < deg(A) thanks to the
lower bound on deg(A). Now D= 0, or else the inclusion A C E would split (2.3.3).
Thus we are in the situation of Lemma 2.3.2, and it suffices 10 show that the span
Ap C P(HYL)) of D is at least a line. But deg(D) 2 2-dim(Ap) + 2, and so if
dim(Ap) =0 then L is not very ampie. u

Remsrk . One can deduce Theorem 2.2.1 from a more general statement Lo the effect

that the failure of a very ample line bundle L of degree roughly 3g/2 or greater to

be normally generated is “explained” by the existence of a special secant plane. in fact,

ooe has the following

Iheorem (IGLIL Thm. 3) Let L be a very amoie line bundie on X. with
deg{L)=2g+1-k.

Assume that 2k +1 <g jf h'(L)=0, orthat 2k - 3 <g if h'(L)=0, and consider
ihe embedding

X ¢ P(HO(L)) = PP

0

ML. ML A LY_BCHSCE §36¢ i LR RS © ' LRy
integer 1< n < r-2, and ap effective divisor D on X of degree > 2n + 2, such
that

). HLA-DN=0;
and
(ii). D spansan n-plage Ap< Pf jn which D fails to impose
independ ” X

The condition in (b) is that HY $p/A(2) ) 20, where $p/, is the ideal sheaf of D in
Ap. Whea n=1, sothat Ap isa 4-secant line, this is automatic. However, when
n 22, itis not sufficient that X simply have a (2n + 2)-secant n-plane. (Compare
Exampie 2.1.2.(c) sbove.) In fact, a closer analysis shows that the divisor D
constructed in the proof above has the required properties.

52.4. Conjectures for Higher Syxygies. [t is very interesting 10 ask whether the

results of this section extend 10 higher syzygies. The natural thing 10 hope {or here is:

Conjecture 2.4.1 (IGL1], $3). Let L be a very ampie line bundie an X. wilh
deg(L) 2 2g + 1+ p - 2-h¥L) - CLfI(X).

Then L satisfies peoperty (Np) of SL2 uniess ¥ embeds X wilhg (p+2)-secant
P- plage.

In fact, one would hope for & more precise statement ajong the lines of the theorem
quoted at the end of the previous section. When p =1, ooe can prove & somewhat
weaker result using the techniques of §2.3. Specifically:

Proposition 2.4.2. (with M. Green) Let L be a very smole line bundle with

deg(L) 2 2g + 2 - 2-hML) - CUMMN),
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defining an embedding X C P(HYL)) = Pf. Then X is scheme-theoretically cut out
Sketch of Proof. We show that X C P¢ inet-memeﬁcnlly cut out by quadrics; the
mmammumummwmmmm X fails to be
scheme-theoretically cut out by quadrics at X € X, then L(-1) fails io be normaily
generated. To this end, let us say thal an extension

*) 0

> WY oL > B >L >0

has ragk oge if the connecting homomorphism HHL) —> H{wy®L*) = HYL)" it
determines does. Bvery curve possesses rank one extensions: pick any point X € X,
and take (*) 10 be Lhe extension given by the one-dimensional subspace of HO(L2)* =
Ext'(L , wy ® L*) corresponding to HL2(-x)) C HHL?). Let us call these "insig-
pificant” extensions. The point now is that the existence of & “significant” rank-one
extension is equivalent 1o the failure of X C P(HYL)) to be set-thearetically cut out by
quadrics. And starting from such a2 rank ope extension, one can argue much as in §2.3
that the inequalily in the proposition cannol hold unless X has a tri-secant line. 8

A particularly interesting case of (2.4.1) is when L = wy. Then the conjecture
asserts that the canonical bundie satisfies (Np) if p < CLff(X). On the other hand, it
was proved with Green in the appendix to [Gr] that (Np) fails for wy if p2 Cufr(x) .
Hence (2.4.1) contains as a special case Green’s conjecture on the syzygies of canonical
curves:

Coniecture 2.4.3, (IGr]). The Clifford index of X is equal 10 the least inieger p [of
which property (Np) fails for the canonical bundie.

So for instance the conjecture would generalize Petri’s theorem [St.-Di] that the
homogeneous ideal of a non-hyperelliptic canonical curve X C Pe! s generated by
quadrics unless X is trigonal or a smooth plane quintic, i.e. unless CLfN(X) < L. We
remark that as a simple consequence of dualily one can show that the least integer p
for which (Np) fails for wY determines completely the grading of the resolution of
the canonical ring of X.
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Green’s conjecture has aiready sparked a considerable amount of work. It was
verified for g < 8 by Schreyer [Schi] who in fact worked out all possible canoaical
resolutions in low genera. He also observes that the conjecture fails for the generic
curve of genus seven in characteristic two. The bundie Mq governing the syzygies of
the canonical curve (cf. S1.3) has been studied by Paranjape and Ramanan {PR}; in
particular, they observe that the Qifford index is reflected in stability properties of
this bundie. The most striking progress (o date is due to Schreyer [Sch2] who has
recently used standard basis techniques 4 la Petri 1o prove the case p = 2 of the
conjecture (and even more); the same resuit for curves X of genus > 11 is established
by C. Voisin [Vsa] using some of the methods of [GL2].

Recall that if X is a general curve of genus g, then CLN(X) = {(g-1)/2].
Hence as a limiting case of (2.4.3) one obtains;

Coniecture 2,44, (Ge))  If X has general moduli. then its canonical bundie satisfies
(Np) for p <l(g-1/2].

Drawing on some ideas of Chang and Ran, Ein [En] has proven (2.4.4) for p < 3 via an
inductive degenerational argument. Interestingly enough, in order to get the induction
going, Ein relies on computer-assisted calculations made by Bayer and Stiliman in low
geners. The idea here -- due Lo K. 0°Grady -- is that the tangent developabie surface
S C P8 1o the rational normal curve CC P8 of degree g should have the same
syzygies as the general canonical curve. (The hyperplane sections of S are curves of
degree 28 -2 wilh g cusps and hence -- according to a philosophy of Eisenbud and
Harris -- should behave like general canonical curves.) But the syzygiesof S canbe
computed by machine for small g§. Amazingly, it is oot yet known in general that the
syzygies of S are what one would expect.

Finailly, we mention that another result connected to (2.4.3) is described in §3.6
below.

§2.5. Notes.

(2.5.1).  Koh and Stiliman [KS] have given a different -- purety algebraic -- proof of
Theorem 2.2.1. Baltico and Ellia study the normal generation of general line buadies on
a general curve in 1BE), and at least for non-special curves, they obtain optimal resuits.
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(2.5.2)  The connection between the bundies constructed in §2.3 and projective
normality is certainly not new -- it was used eg. by Lange and Narasimhan [LN} 1o
study rank two bundies on curves. The main novelty of the approach presented sbove
lies in reversing the process, ie. in using the bundies 10 study the algebra.

£3. Brill-Noether Theory and Vector Buadies oa a K3 Surface

In this section we explain following [L1) how the analysis of certain vector
bundies on a K3 surface leads 10 a simple proof of some of the basic resuits of Brill-
Noether theory. At the expense of substituting plausibility arguments for careful
proofs, we will attempt to emphasize more clearly than in [L1] the geometrical
underpinnings of the results. In particular, we will indicate how a theorem of Mukai
on the moduli spaces of vector bundies on a K3 plays a central role.

£3.1. Petri’s Condition. We start with a brief review of Brill-Noether theory. Our
purpose is mainly 10 establish notation and set the stage, and we refer to [ACGH] for a
detailed account.

Throughout this section, C denotes a smooth irreducible projective curve of
genus g > 2. We are interested in the yarieties of special divisors on C, Le. the loci

W(C) CPicd(C) defined by
WS(C) = ( line bundies A | deg(A) =d , h%A) 2 r+l }.
These are determinantal subvarieties of Pi:‘(C).i.e.loclllydefined by the vanishing
of the minors of a svitable matrix. The postulated dimension of W(C) was atready
known in the last century; it is given by the Brill-Noether aumber
= plr,dg) = g-(e+)g-d+r).

Elementary results sbout determinantal varieties apply in the case at hand 10 show
that the actusl dimension of WY(C) is 2 pir.d.g) provided that W5(C) = & .

The basic facts about these varieties fall into two ciasses. First, one has two
global results that hold for an arbiirary curve C. Namety, a theorem of Kempf {Kmf1)
and Kieiman-Laksov (KL} states that W3(C) is non-empty as soon as pir,d.g) 2 0.
This existence theorem is compiemented by a result from (FL] that W§(C) is
connected when plr.d.g) 2 1.

The second class of theorems deals with the local geometry of W§ on curves of
general moduli. It was assumed classically that if C is a general curve of genus g,
then WJ(C) behaves like a generic determinantal variety, and it has recently been
proved that this is effectively the case. Specificaily, Brill and Noether asserted, and
Griffiths and Harris (GH1) proved:

(3.11)  If C has general moduli, then dim W(C) = pir,d.g) for every r and d.
This includes the assertion that if A is any line bundie on a general curve C, then
plA) =44 8 - BYA)MBYA) 2 O,

ie that WJ(C) = @ when plr,d,g) < 0. Gieseker (Gies] then proved the funde-
mental fact

(312)  For C sufficiently geperal. WJ(C) is smooth sway from W'gXC).

We note that (3.1.2) and the connectedness theorem mentioned shove imply that if C
is general, then WJ(C) is irreducible when plr.d.g) 2 1.

It is technically convenient to avoid working directly with the geometric
ststements (3.1.1) and (3.1.2), and to focus instead on the so-calied Petri homo-
morphisa

BA : HYA) @ HYwcOA™) > Hwg)

defined for a given line bundie A by multiplication of sections. As explained for
instance in [ACGH] , the deformation theory of line bundles with sections shows that
both (3.1.1) and (3.1.2) are implied by
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3.1.3) For every line bundie A on C, the homomorphism pa

Gieseker’s theorem in [Gies] is sctuslly that (3.1.3) bholds for the general curve of genus
g. This had been asserted in passing by Petri, and we will say that C satisfies Petri’s
condition if (3.1.3) -- and hence (3.L1) and (3.1.2) -- hoid for C.

The difficully in establishing Petri’s assertion is that one has to find a way to
use the hypotbesis that C is general. It would suffice for each genus g 10 exhibil any
one curve for which the Brill-Noether-Petri package holds; but in large genera no ex-
plicit examples are known! lostead, the technique of [GHi) and [Gies] -- which goes
back 10 classical ideas of Severi and Castelauovo -~ is to study degenerations of C. The
idea is 10 argue that (3.1.1) and (3.1.3) cannol fail identically for one-parameter
families of curves degenerating (o a suilable singular limil. This line of attack involves
same cather involved combinatorics.

A different approach 10 these questions -- one not involving any degenerations
-- was suggested in [L1). The idea is to study the Brili-Noether theory of curves on &
K3 sucface. As we will see, it turns out that on a “sufficiently general” K3 sucfsce,
there must exist curves for which (3.1.3) hoids.

$3.2. Brill-Noether Theory oa K3 Surfaces. We henceforth let X denote a K3
surface, i.e. 8 compact complez surface with H'(X ,0x) =0 and wy=0Yy. The main
result for which we are aiming in this section is:

Theorem 3.2.). (IL1D) Let CCX be a smooth irreducible curve of genus 822 on
the X3 surface X. Assume that every divisor in the linear series ICl is reduced agd
irreducibie. Then:

G). For every linebundie A on C. onchas p(A)20;
and
C elCL
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Observe that the irreducibilily condition on the linear series (C! holds in particular
when Pic{X) is infinile cyclic, generated by the class of C. On the other hand, it is a
well-known consequence of the Hodge-theory of K3 surfaces that for any genus

8 2 2 one can find a 19-dimensionsl family of algebraic K3 surfaces X with
Pic(X) = Z-[C] for CCX acurve of genus g. Hence the theorem implies Gieseker’s
result that some -- and hence the general -- curve of genus g does indeed satis(y
Petri’s condition.

Ezample 3.2.2. The statement of the theorem may very well fail if the linear series
ICl contains reducible or multiple members. In fact, suppose that D C X is a curve of
genus 2 2, and that CeinDl for some integer n 2 2. Then D determines a line
bundie A = Ox(D)IC on C, and one checks that

plA) = g(C) - h%A)-0YA) < 0.
In other words, the Brill-Noether theorem (3.1.1) fails for A.

Example 3.2.3. One does not expect Petri’s condition to hold for every curve C €(Cl.
For example, suppose that X C P* is the compiete intersection of a smooth quadric Q
and a cubic hypersurface F. Let L C P4 be a three-plane tangent 10 Q at some point
qe Q- X, and consider the canonical curve C= XNL C P3. Then evidently C lies
on a singular quadricin P3, and it is well-known that this means that Petri fails for
C. On the other hand, thanks 1o the theorem of Noethec-Lefschetz one can certainly
arrange that Pic(X) = Z-[CL.

The proof of Theorem 3.2.1 revolves around the study of certain vector bundies
Fc A on X. Heuristically speaking, the role of these bundies is to encode information
about the Brill-Noether theory of a given curve CC X into a geometric object that
exists globaily on the K3 surface.

$3.3. The Vector Bundies F¢ ,. Asabove C is a smooth irreducible curve on a
K3 surfsce X. It will be convenient to define V4(C) C Picd(C) 1o be the open subset
of Wi(C) consisting of line bundies A oa C such that:

. n%A)=r+1, deg(A)=d: and




(ii). Both A and wC® A" sre generated by their global
sections.

Fix now a line bundle A € V4(C). We associate 10 the pair (C.A) a vector
bundie FC A on X of rank r+l, asfollows. Thinking of A as a sheafl on X, there is
4 canoaical surjective evaluation map

ecs: H{A)og Oy —>> A

of ©y-modules. Take
FCA <eut kereg,

1o be its kernel. To see that Fc 5 is indeed a vector bundie, one can work locally, and
suppose that A = Oc. Then locally e, splits as the direct sum of the canonical map
Ox—> O plus r copies of the 2eromap Oy ——> 0. And since the kernel of
8y —> O¢ isalinebundie on X, Fc p is locally free.

Our first task is to determine the elementary properties of these bundies.
jetting F = FC 5 one has by construction the exact sequence

(33.0 0

> F—> HYA) 8¢ Oy >A >0
o sheaves on X. Since wy=0Y), dualiring (3.3.1) gives:
(33.2) ] > YA 0gOy —> F* > wCO® A" >0.

aama 333, Opehas

(. fF) = -IC), cfF) = deg(A) =d;

(ii). F* is geperated by its global sections;
ind

Gid). RYF) = HA(F") = 0

H(P =1'F)=0

hOF*) = BO(A) + bY(A).

et ———— m——
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Proof. (i). The vector bundie map F——> 6+ in (3.3.1) drops rank slong C, and
hence det(F) = Ox(-C). Let 3¢ HA) be a generic section, with divisor D, and let
W = HX(A)/C-s. Then (3.3.1) determines a vector bundie map F—> W o¢ 8y
which drops rank exactly along the finite subscheme D C X. Hence c(F)=(D]

(ii). This follows from (3.3.2). In fact, clearly F* is globally generated away from C.
But wc @ A™ is generated by its global sections by assumption, and every section of
wC ® A* 1ifts to a section of P thanks to the fact that HXX ,8y)=0.

(iii). 1t follows from the construction of Fc A that HXF) =0, and that (3.3.0) is is
surjective on global sections. Since H'(X , ®x) = 0, this latter fact implies that

HYF) = 0. Hence H2(F*) = H'(F") = 0 by Serre duality, and the last asserlion is read off
from (33.2). @

Example 3.3.4. After possibly twisting by a negative line bundie, any vector bundie F
of rank r+l on X is of the form FC A for some curve CC X and some line bundie
A on C. In fact, suppose that HO(F) = H'(F) = 0, and that P™ is generated by its
global sections. If V C HXF") is a general subspace of dimension r + [, then the
canonicat map ey :V og¢ Oy —> F* will drop rank glong a smooth curve C, and
coker ey will be a line bundie on C, which we take tobe wC® A™.

It will turn out to be very important to be sbie to control the endomorphisms of
FC,A- We conclude this section with a numerical lemma in this direction:
Lemma 3.3.5. Writing F=Fc A 23 sbove, ope has
X(FOF*) = 2.0%FO F*) - h{FO P*) = 2 - 2-p(A),
where p(A) = g(C) - hOAMY(A).
Proof. The first equality follows from Serre duality. If E is a vector bundie of rank ¢
on X, Riemann-Roch gives X(E® E*) = (e-1)-c{E) ~ 20-C,(E) + 2¢2. The stated

formula now follows by an explicit computation. 8

Remark . It would be interesting to have a conceptual proof of 3.3.5.
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$3.4. Irreducible Linear Systems, and the Proof of Theorem 3.2.1.(i). The
presence or absence of reducible curves in the linear series ICl comes into play via
the following elementacy but crucial:

Propesition 3.4.1. Fix acurve CC X, and a line bundle A € V4(C), and set F=FCA.
If F has non-\rivial endomorphisms, i.e. if h%F @ F*) 2 2, then the linear series ICI
contains a reducible or multiple divisor.

Proof, Set E=F*. Since h%(E® E™) 2 2, there exists by a standard argument a non-
zero endomorphism v : B > B which drops rank everywhere on X. In fact, take
any endomorphism w of E, w = (constHl, and set v=w - A, where A is an
eigenvalue of w(x) for some x¢€X. Then

detlv) € HY det{E) @ det(E) ) = H%Oy)
vanishes sl ¥, and hence is identically zero.
Fiting such an endomorphism, let
N=imv, M=cokerv,

and assume for simplicity that these are locally free. (The general case is only slightty
more involved -- see [L], SiL) Then one has an exact sequence

0 >N >B > M >0,
and %0

Q) = cfB) = ¢N) + (M)

in the Chow group A{X) = Pic(X). Thus it is enough to show that c{N) and c(M) are
represented by non-zero effective curves. But N and M are quotients of E, and
hence are generated by their global sections thanks to (3.3.3)ii). This already implies
that c,(N) and c{M) sre effective (or zero). Furthermore, since HE) =0, neither of
these can be trivial vector bundies. But if U is a giobally generated vector bundie on
8 projective variety, then it follows easily from Porteous’ formula that ¢{U)=0 if and
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only if U is trivial. Hence c{N) and c{M) must be represented by non-zero curves,
and the lemma is proved. B

We now present two proofs of the first statement of Theorem 3.2.1. The first -~
which appears in [L1] -- is very quick, but perhaps a bit unmotivated. The second,
while longer, may sirike the reader as more geometric. We siart by recording the
elementary

Lemma 3.4.2. Let A be abase-point free line bundieocn acurve C, and jet A be
the divisor of base-pointsof wc® A™. Then A(A) is aiso base-point [ree. @

First Proof of Theorem 3.2.1.(). Suppose to the contrary that A isa line bundie on C
with p{A) < 0. If A is the divisor of base-points of A, then p(A(-A)) < p(A).
Hence replacing A by A(-A), we may suppose first of all that A is base-point free.
Then, removing base-points from we ® A%, it follows from (3.4.2) that we may
assume that wC @ A™ is base-point free as weil. Thus the vector bundie F = F( p is
defined. Since p(A) <0, Lemma 3.2.5 yields

20%FOF") 2 2-2p(A) 2 4,

Thus F has non-trivial endomorphisms, and it then follows from Proposition 3.4.1
that the linear series ICl contains a reducible or multiple divisor. But this contradicts
the hypotheses of ithe theorem 8

The second proof revolves around studying the family of all pairs (C, A) for
which Fc, is isomorphic 10 a given vector bundle F. Thusiet F be the vector
bundle F=Fcya, for some curve CoC X and some line bundle Ag € V(Co).
(Equivalently, as in Example 3.3.4 one could take F to be any bundie satisfying the
conclusions of Lemma 3.3.3.) Put E = F". Then the exact sequence (3.3.2):

*) >Ho{Ag)"ec@y —>E

> Wy @ Ag” >0

realizes H%(Ag)" as an (r+1)-dimensional subspace of H(E). The ides now is 10 vary
this subspace.




We start by establishing some notstion. Let
¥ =((C,A)I CelCyl asmooth curve, Ae V(C) )
be the global family of V§'s over the linear series |Col= PS, and denote by
n:V] —> IG
the natural projection. Next, let
G = Grassir+1, H(E))
be the Grassmannian of (r+1)-dimensional subspaces of H°(E). Given a subspace
V C HXE) of dimension r+| = rk(E), denote by ey :V ég Oy >E the
homomorphism of vector bundies determined by evatuation of the sections in V.
Since B is generated by its global sections, for general VC HXE) it will be the case
that ey drops rank along & smooth curve Cy, and that coker(ey) is a line bundie on

Cy. Let U C G denote the Zariski-open subset of all such subspaces V. Then there is
a morphism

(3.43) p: U > Y]
defined by sending V C HY(E) to the pair (Cy, wCy®@coker(e y)* ). The point of all
this is that if A denotes the line bundie wC®coker(ey)” on C=Cy determined by
p( V), then one has the familisr exact sequence

*) 0 > H{A)*e¢Oy —> E > WwCO A" >0

of Oy- modules.

Finally, we wish 1o study this construction infinitesimally. To this end, let

f:U > ICl

denote the composition { = rtep, Thus { maps a given subspace V C HOE) 1o the
curve C=Cy ={ det(ey)=0}, and if A = wc®coker(e y)*, then V = HXA)". The
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derivative of { at V now has a very simple interpretation. Namely, there is a
canonical identification

Ty G = TyU = HYA)@ HYEWVHYA)* = HYA) @ Hwc® A®),

and one easily checks that

(3.44) dfy : TyG = HOA)® Hwc ® A™) > Tc il = H%wo)

is just the Petri homomorphism is. Having said all this, we now give the

Second Proof of Theorem 3.2.1.(i). As in the first prool, we assume (o the coptrary
that there exists a line bundle A € V5(C) with pir,d.g) < 0. The strategy is to argue
geomeirically that the vector bundle E=(Fc A)* has non-irivial endomorphisms. To
this end, consider the disgram

P
i} v]

N/

of maps introduced sbove. We claim that the fibres of the map p must have sirictly
positive dimension. In fact, pick a general point V € U, giving rise (o a curve DeiCl
and a line bundie Be V(D) [ie. assume that p(V)=(D,B)L Set Z=f1(f(V)), and
denote by § the codimension in HNwp) of the image of the Petri map up. Thea it
follows from (3.4.4) that

dimZ = dmU-g+6 = -p(B) + §.
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On the other hand, im(jip) is the cotangent space at B 1o W4(D), and hence
dim n-1D) <& . But piB) = p(A) < 0, and hence dim Z > dim n~1(D), which implies
that p cannot be generically finite near V.

It foliows that there are infinitely many subspaces V C HXE) such that
coker ey = wp @ B* ; equivalently, dim Hom(E , ©D®B™) 2 2. Butif one fizes s
“reference” sequence

> HYB)" e¢ Oy

>E

> wp ® B* >0,
one sees that every homomorphism E——> wp® B* lifts 10 an endomocphism of E.
Hence dim End(E) 2 2, and as in the first proof this contradicts Proposition 3.4.1. ®

§3.5. Mukai‘s Theorem and the Proof of Brill-Noether-Petri. In this section,
we show how the second statement of Theorem 3.2.1 foliows (at least moralty
speaking) from a theorem of Mukai. The argument is similar to that occurring in the
second proof of statement (i} of (3.2.1), except that now one has to let the bundie Fc 5
vary.

Mukai’s Theorem, As above, X is a complex projective K3 surface. Recall that a
vector bundie E on X is simple if E has only trivial endomorphisms, i.e. if

Hoa(E, E) = €. The isomorphism classes of simple bundles with given rank and Chern
classes are parametrized by a quasi-projective variety M(r,c¢,,c,;), and Mukai’s
theorem is:

Theorem 3.5.1 ((Muki, Muk2]) . The moduli space M(r,c,.c,) of simple bundies og
the K3 surface X is smooth.

Remark. Actually, Mukai proves much more: he shows that the same statement is true
for the moduli space of simple sheaves, and he also proves that these moduli spaces
are sympiectic, ie. carry a nowhere-degenerate 2-form [deduced from the pairing
Ext'(E , E)  ENE , E) —> EN2(E, E) = € arising from Serre duality}. Furthermore, be
shows that when it has dimension two, M(r, ¢, . ¢)) is again a K3 surface. and --

remarkably -- is able to compute the periods of this surface in terms of the periods of
X.
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Sketch the proof of (3.5.1} The idea is to show that the abstructions to the smoothness
of Ml(r, c;,c;) vanish. To this end, fix a simple vecior bundie E on X. The trace
gives rise to a canonical splil surjection

) E*QE

>0x'
and the simplicity of E implies via Serre duality that

(**)  Themsp HXX,E*@E)—> HX,0y) = € determined by
(*) is bijective.

Fix now a local artinian C-aigebra R, let [ C R be a one-dimensional square- rero
ideal, set S = R/l and suppose given an infinilesimal deformation 8 of B
parametrized by Spec(S), i.e. a vector bundie & on X = Spec(S) restricting to E on
the closed fibre. The obstruclion o extending & to a deformation over Spec(R) is
given by an element ogf) € H2(X, BOE") . On the other hand, laking determinants
yieids a deformation det & of det E over Spec(S), and one has a corresponding
obstruction class o(ger) € H2(X , Ox). Furthermore, oF) Maps 10 O(gey) Under the
homomarphism determined by (*). But Pic(X) is smooth, and hence o(get)=0.
Therefore ogf) = 0 thanks to (**), and this proves Mukai’s theorem.

Proof of Theorem 3.2.1 We now give at least a “physicist’s proofl” of the second
statement (i) of Theorem 3.2.1. We refer the resder to (L1] for a possibly more
convincing but less geometric formulation of the argument.

We suppase that the linear series | C| contains no reducible curves, and we
will argue that the general moember C’ €{C| satisfies Petri’s condition. As above, let

Vi = ({C,A°M CelCl a smooth curve, A’ €V(O) ),

and denote by w = ny: V§
is that it suffices to prove

>|Cl the natural map. The first point to cbserve

(3.5.2) For every r and d, the variety ¥ is smooth of the
expected dimension g + plr,d.g).
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Indeed, it follows from (3.5.2) by the theorem on generic smouthness that if C €ICl is
8 general curve, then V5(C') is smooth of the expected dimension pir.d.g) for every
¢ and d. This implies that the Petri homomorphism 15/ i3 injective for every line
bundie A’ on C suchthatboth A’ and wC-® A" are generated by Lheir global
sections. A small argument using Lemma 3.4.2 then shows that C" satisfies (3.1.3).
{To make the connection between smoothness of V(C') and the Petri homomorphism
strictly correct, one should define and deal With suitable scheme siructures on V5(C’)
and V§; we will ignore this point.]

The pian is to deduce (3.5.2) from Mukai’s theorem. To this end, consider pairs
(E. V), where E is a simple vector bundle of rank r+1 on X, with c{E) =(C},
cz{E) = d, and V C HO(E) a subspace of dimension r+l. Let § denote the (amily of all
such pairs; then there is a natural map

n:g > M =g Mir+1,IC], d)

which realizes § as a Grassmannian bundle over M. [Absent a universal bundie
over the moduli spsce M, the existence of § and the nature of the map 1 is

somewhat suspect, but we will ignore this point tco.)] By Mukai’s theorem § is
smooth, snd it follows from (3.3.3) and (3.3.5) that

dim § = 2-plr.d.g) + (r+1Mg-d+r) = g + plr.d.g).

To complete the proof, we will show that one can realize V] a3 an open subset

of §.Tothisend, let U C § denote the open 3¢t consisting of ail pairs (E, V) such
that:

(i). Eis generated by its global sections, and HYE) = HX(E) = 0;

{ii. The natural map ey:V 6¢ Oy —> B determined by V drops rank on a
smooth curve Cy , and coker(ey) is a line bundie on Cy.

Given (B, V)€, let Ay = coker(e}), 50 that one has exact sequences
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*) 0—>E*—>V"e8y—> Ay——>0

(**) 0—> Vedy—> E—> wc o (Ay)" >0.

Then Ay € V5(Cy) thanks to (*), and 50 there is & morphise

f:4 >yi via (B,V)= (Cy. Ayl

By the same token one has a nstural map

8: Vg >4 via (C,A)w (ECA. HHAM),

where Ec A =(FC,A)* . and HY(A)* C HEC,A) is the canonical subspace arising from
3.3.2. (Note 1hat we are using here Proposition 3.4.1 and the irreducibility hypothesis
on ICl 10 know that the bundles EC,A sre simple.) Then evidently feg = id. To
show that gof = id, it is enough in view of (**) (o check that dim Hom(E , wC ®AY) =
1. But this follows from the simplicity of E using (**) and (3.3.3Niii). Thus V: =q
is an open subset of G, as ciaimed, and this completes the prool. 8

$3.6. Notes.

(3.6.1).  The construction of the bundies Fc s makes sense for a base-point free
line bundle A on & curve C on any aigebraic surface X. It had been used for
Whyﬂuwmwmﬁwummdbmuummmmwm
lnsbeenlotpplytbebnndmlouudytbemu.l‘iurinlﬁr]mnymmebundm
FQA--innmvlmdiﬂmlsuho--innmgmnlennmt.lkuln;ivun
third proof of Theorem 3.2.1(i) which uses the symplectic structure on the Hilbert
scheme of points on a K3.

(3.6.2). For line bundles A with t(A) = 1, stiatement (i) of Theorem 3.2.1 had been
proven independently by Donagi-Morrison and Reid [Rd1] using very different
mhﬂquMquthmmwtdmammmumd
and generalize their resull.



642

(3.6.3). By further arguments using the bundles F A one can prove the following

Theorem. (IGL3D.Let CC X be a smooth irreducibie curve of genus §. Then
CLfr(C) = CLfF(C’) for ali smooth curves C in the linear series |CL Furthermore if
QIf(C) js strictly less than the generic value {(g-1) / 2] then there exists a line
bundie L on X whose resiriction 1o every smooth curve C € Ci computes the
Cliffocd indeg of C'.

The first statement had been conjectured by Mumford, Harris and Green, and it was
observed in [Gr] that the st2*~ment would follow immediately from Green’s conjecture
(2.4.3) on the syzygies of canonical curves. So the theorem may be seen as added
evidence for that conjecture. Using similar methods Donsgi and Morrison [DM] prove a
somewhat stronger result starting from a line buadle A with r{(A)=1.

$4. Linear Series on Surfaces: Reider’s Method.

1gor Reider (R] has shown that many of the basic theorems about linear series
on surfaces can be oblained as elementary consequences of the Bogomolov instability
theorem. This section is devoted to an exposition of Reider’s work. Miysoka [Myk] has
recently given a very simple proofl of Bogomoiov’s theorem. His argument deserves o
be better known than it is, 30 we reproduce it in $4.3. (However, we will use a slightly
stronger form of Bogomolov’s theorem than what we prove here.)

§4.1. Reider’s theorem and some of its applicatioas. Throughout this section,
X denotes a smooth projective surface and L a linebundieon X. Recalithat L is
numerically effective (nef) if cfL)-C 2 0 for every effective curve CC X.

Reider’s main technical resuit deals with the linear series associated (o the line
bundie Ky®L, where K = Ky denotes as usual the canonical bundie on X. Under
mild positivity hypotheses on L, it states that the failure of this adjoint series to be
base-point free or very ample is accounted for by the existence of an effective divisor
D C X with special properties:

Theorem 4.L1 (Reider [R]) Let L be a numerically effective line bundie on X.

. I cfL)225, andif peX jsabasepointof Ky®L, then thereezisisan
effective divisor D C X passing through p such that either:

(a). ¢{L)-D=0 gnd D?=-1
(). ¢{L)-D=1 and D?=0

). Jf cfL 210, andif p.q€X are two points (possibly infinitely near) which
fail to be separated by ihe lipear serics associated 10 KyeL ., then there
eXists an effective divisor DC X passing ihrough p and q such that either:

(2). cfL)-D=0 gnd D*=-1or -2
®). cfL)-D=1 spd DP=-1or O
(¢). cfL)-D=2 snd D?=0.

Example 4.1.2. The example X = P2 and L = Op2(2) shows that one cant in general
improve on the numerical hypotheses of statement (i). Typical examples of a divisor D
as dexcribed in (i) may be oblained by taking D to be an exceplional curve of the first
kind (for (a)), or as the fibre of a ruied surface (for (b)).

Reider’s thearem has a surprisingly wide range of applications. To give some
feel the power of (4.1.1), we sketch two of these here following [R]. The reader should
consult [R] for details and aumerous other corollaries.

Pluricanonical Mappings. When X is a surface of general type, one is interested in
understanding the pluricanonical rational mappings

8 =gy : X------ > P(HYmK)).

defined by multiples of the canonical bundle. Here Reider is able to give an exiremely
quick proofl of some fundamental resulls of Bombieri.

Iheorem 4.1.3. (Bombieri, {Bmbl). Let X be a minimal surface of general type, Then

(). #g isa morphism (ic. the linear series ImKl is base-point free) il
m24ocif m23 and K222,




(). ®q is ag embedding away from(-2)-curvesif m> S, orif m 24 and
K222, orif m2>3 apd K22 3.

Remark 4.1.4. The meaning of the statement ia (b) is that $m is one-to-one and
unramified sway from a divisor D C X consisting of smooth rational curves with self-
intersection number -2. Reider in fact indicates & proof of the mre precise result that
under the stated hypotheses |mK| is very ample on the canonicat modei of X
obtained by blowing down D, and he also recovers a result of Francia concerning the
structuce of .z.

Proof of (4,1.3). When X is & minimal surface of general type, the canonical bundie
Kx on X is nef (cf. [BVP, p. 73]). So we may apply Theorem 4.1.1 with L = (m-1Ky
the conditions on m and K? being exactly what is required to guarantee that the
numerical hypotheses in that theorem are fulfilled. Thus if imKyl has a base-point,
there exists an effective divisor D on X such that either (m-1)K-D =1 or eise
(m-1X-D =0 and D? = -1. Thefirst possibility is evidently excluded by the
assumption that (m-1) 2 2. As for the second, if K-D=0 then D? = D-(D+K) = 0
(mod 2) by adjunction, contradicting D? = -1. This proves statement (i) of the
theorem.

A similar argument shows that if mky fails to be very ample, 30 that there
exists an effective divisor DC X satisfying one of the conditions of (4.1.1Xii), then the
only possibilily is that K-D=0 and D2=-2. But in this case & standard argument
shows that each irreducible component of D is & smooth rational curve with self-
intersection -2. [In fact, write D= £D;. Since K isnef, K-D=0 = K-Dj=0 foralli.
But then since K2 >0 the index theorem yields (Dj)? = (K + Dy)- Dj < 0, which implies
the siated resuit.] @

Mm_q_mm_ams»pmmmt X is a minimal surface with
X(X) = 0. Them Ky is a torsion line bundle, and %0 by adjunction the intersection form
on X iseven, ie. D2 » 0 (mod 2) for every divisor D on X. Recall that an elliptic
Cycle on X is by definition a 1-connected effective divisor D C X with paD) =1
{or equivalently, since K is numerically trivial, D?= 0.)

Iheorem 415, (Beauville). Let L be 3 pumerically effective line bundie on X.
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(). Assume that cfLP2 6. If Ky ®L fails to be base-point free, then X
) lintic cvete .

(). I cfL) 210, and if the mapping #xel [ails to be an embedding

outside of (-2)- curves, then X contains sp elliptic cycle D with
ciL)-D=1 or 2.

Remark, Reider shows that the converses of these statements aiso hoid.

Sketch of proof of (4.1.5). We content oursetves with outlining an argument for (i).
Assume that KOL has a base-point. Bearing in mind that the intersection form on X
is even, Reider’s theorem (4.1.1) yields an effective divisor D such that

D-cfL)=1 and D?=0.
To complete the prool, it remains only to show that D is |-connected. in fact,
suppose to the contrary that D =D, + D, for some non-zero effective divisors D; with
Dy'D; < 0. Then

(*). 0 = D2 = (D)2 +2D,-D, + (D)2 < (D2 + (D)2,

Now since L is nef and c{L)-D =1, we can assume that

cl)-D,=1 and ¢(L)-D,=0.
The index theorem then implies that (D;)2 < 0, and so (D)? > 0 thanks to (*). Now
fet d =cfL)?26. Then (cfL) - dDy)-c{L) =0 and s0 (c(dL) - dDy)2 < 0 by the index

theorem again. Recalling that ¢({L)-D, =1 it follows that d(D)? <1, which is
impoasible. ®

$4.2. Stable buadies and Bogomolov’s Theorem. In this section we review
some of the basic facts required concerning slable and unstable vector bundies.



We start by recalling the definitions in the one dimensional case. Thus let C be
a smooth irreducible projective curve over C, and let E be a vector bundie on C of
rank e. The giope of E is the rational aumber

BE) = deg(E) / ck(E).

One ssys that E is siable [resp. semisiable] if for every non-zero coherent subsheaf
F CE with rk(F) < rk(E) one has the inequality

pF) < p(E) [resp. p(F) < pE L
E is ypstable if it is neither stable nor semisiable. (The concept of stability -- which
was introduced by Mumford -- arises when ane tries Lo coastruct moduli spaces for
vector bundies; it is only by restricling to semistable bundies that one gets a
reasonabie theory. It turns out that stability aiso has a natural differential geometric
interpretation. The reader may consull for instance [New] or {Kob] for 8 fuller
discussion.) Among the basic properties of stability, we shall need the following:

(4.2.3) (i). Stability and semi-stabilily are invariant under twisting by line
bundies and under replacing E by its dual E*.

(ii). If B is semistable, and deg(E) < 0, then HO(E)=0.

’(iii). If B is semistable then 30 is its symmetric power SA(E) for
every n2 |

Facts (i) and (ii) are immediate; for (iii), see {Myk]l

Now suppose that E is a vectior bundie on an projective algebraic surface X.
We fix an ample divisor H on X, and define the H-3jope of E o be

pPlB) = cfB)- H / ck(B) .

(The siope of an arbitrary torsion-free subsheaf is defined analogously.) One says that
E is H-pable lresp. H - somistable) if
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pylF) < pdB)  [resp. py(F) < pl®) |

for every lorsion-free subsheaf FCE with ck(F) <ck(E); B is H-ynstable if it is
neither stable nor semistable. The connection with siabilily on curves is given by a
result of Mumford, Mehta and Ramanathan:

(4.2.2) Let E bean H-semistable bundie on X. Then for all sufficiently
large integers m >> 0, and for all sufficiently general smooth divisors
DelmH |, the restriction EID of E to the curve D is a semistable
buadieon D.

See [MR] for details.

The basic result for which we are aiming is a theorem of Bogomolov which gives
8 numerical crilerion for insiability:

Theorem 4.2.3 (Bogomolov]). Let E be abundie of rank e onasucface X. If

B > T B

then E js H-unstable with respect to any ampie divisor H og X.
Remark 4.2.4. For future reference, let us spell oul explicitly what this says when
ck(E) = 2. Let H be any ample divisor on X, and suppose that
cER > 4-cyE) .
Then there exists a rank one torsion-free subsheal A CE with
*) 2¢dA)-H < ¢fB)-H.
Possibly replacing A by its double dual A™*, we may suppose firstof allthat A isa

line bundle. Then if necessary replacing A by A(A) for some effective divisor A,
we may suppose that the bundie homomorphism A —> B determined by inclusion
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of sheaves vanishes oaly on a finite subscheme Z C X. Pulling B=L @ A" we finally
obtain an exact sequence

(4.2.5) 0 > A >E

where $7/ is the ideal sheaf of Z in X. Note that then (*) is equivalent to the
inequality

(4.2.6) {c{A)-c{B))-R > 0.

1n fact, more is true: Bogomolov proves that one can find A and B so that
(4.2.6) hoids simulianeousty for every ampie H, and that

(42.7) (cdA) -cfB) 2 > 0

. | (see [R]). In other words, the divisor class c{(A) - ¢{(B) is in the positive cope of the
Neron Severi group NS(X)R . iesitis-a-limit-of-amplodimivsss. [t is in this stronger

form that we will use Bogomolov's theorem. See [Rd2] for a nice discussion and a proof.

$4.3. Miysoka’s proof of Bogomolov’s theorem. The idea -- which goes back to
Bogomolov -- is to study for n 21 the auxiliary bundie

P = SP°(E) @ (detE")®0 .

lemama 431 (). detFy = Oy

(0e)®" o

G). X(X,Pp) = pporT™

l— olBR - cAE)) + Pln),

where P(n) is a polynomialin n of degree < e.
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Proof, (i). To avoid s calculation, one can for instance argue that it suffices to prove
this under the assumplion that det E = L®¢ for some line bundie L on X. But in this
case the assertion is clesr, since then SPE(E) @ (detE*)®® = SPS(EoL"), and EOL"
has trivial determinant.
(ii). Consider the line bundie

A = Op()le) ® 1™ delE)"
on the projectivization 1t: P(E)—> X of B, and let

L=c{OpE)) and cj=n(c(B) .

Then

X(X,Fg) = XUPE), A®D) ,

while by Riemann-Roch

X(P(E) , A®D) = —( " (el -1 + 00® .

But using the relation £* - ¢y £ + c,-{*2= 0, one finds that
bet o %2
(L -7 20 ¢ 2.

and the result follows. @
Proof of Theorem 4.2.3. (Miyaoka). Fix an ample divisor H on X, and let E bea
bundie of rank e. Note first off that it suffices to prove:

(4.3.2). If E is H-semistable then one has the bounds

hO(X .Fg) <Qin) and h3X,Fg) SR() ,



where Q(n) and R(n) are polynomials of degree < e-1 in n.
In fact, if the inequality in the statement of Bogomoiov’s theorem holds, then it follows
from the previous lemma that X(X , Fy) grows like n*! . But this is inconsistent
with (4.3.2), and hence B cannot be semi-stable. Next, observe that (4.3.2) is in turn
a consequence of

(4.3.3). If E is H-semistable, then for any line bundle L on X one has

B%X ,Fq @ L) <Qu(n),

where Qu(n) is a polynomial of degree < e-1 in n depending on L.

Indeed, this obviously implies the first bound in (4.3.2), while by Serre duality
b2(X , Fg) = h%X ,Fp" @ wy ).

But since we are in characteristic zero,

(Fg)* = SD®(E) @ (detE)®D

and 0 the required bound on H? follows by applying (4.3.3) to the H-semistable
bundie E*.

So it remains only to prove (4.3.3). To this end we start by proving the
analogous statement for bundies on a curve:

(4.3.4) Let C be a smooth irreducible projective curve, let E be a semistable
bundieof rank ¢ on C, and let Fp = SP®(E) @ (detE"/®2. Then for
any line bundie L on C one has h%C, Fp @ L) < Qy (n), for some
polynomial Q(n) of degree <e -1 in n.

1n fact, choose an effective divisor D C C of degree d > deg(L), and consider the
e1act sequence:

0—> (Fa® LX-D)——>Fa@L——> (Fg®L)ID—>0 .
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Then (Fp ® LX-D) is a semistable bundie of negative degroe (since deg Fq = 0), and
hence has no global sections. Thus

nete-1
ho(c.Fn.L)<ho(D.(Fn.Lmn)=d( ) )

as claimed. .

Returning to the situation of (4.3.3), we invoke the theorem (4.2.2) of Mumford,
Mehta and Ramansthan to conclude that for all sufficiently large integors m and all
sufficiently general curves Ce¢|mH |, the restriction EIC of E 1o C is semistable.
Then FqiC is also semistable thanks 1o (4.2.1iii), and by taking @ >> 0 we may
assume that L(-mH) is a negative line buadie, and hence thst

c{(Fp @ LX-mH)) - mH <0

for all n. 1t then follows from (4.2.10ii) that HYC, (Fa®LX-C) ® O¢) = 0. But this
bolds for the general element Ce {mH|, and therefore HX(X , (Fa®LX-C)) = 0. Hence

%X, Fa®L) < h%C , (Fa@LHC ),

and the required bouad on h%(X , Fa®L) now follows from (4.3.4). @

§4.4. Proot of Reider’s Thoorem. We will focus on statement (i) of (4.1.1). The
first step in Reider’s argument is 10 use an old coastruction of Serre’s Lo pass from the
hypotheses of the theorem to the existence of a suitable rank two vecilor bundie E on
X. (See for instance [0SS] or (GHZ] for a general descriplion of Serre’s consiruction.)
Specifically, suppose that pcX isabase-poiat of Ky® L. Then p determines in the
natural way a non-zero cohomology class op € H' (X, $,0KYOL) mapping to zero in
HYX.L), where $p denotes the ideal sheaf of p. On the other hand, Grothendieck
duality yields an isomorphism

i) ’p.lx.lo). = ml(’p.l. . 8x),
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and it follows that the evident map T : Ext{L , Ox)—> Ext'($p0L ,Oy) is not
surjective. Choose an element ¢ ¢ Ext'($o0L , Oy) not lying in the image of 7. Then
e defines a pon-split extension

]
4.4 0 > 0y >E > §poL >0,

and the bypothesis on ¢ implies that the sheaf E appesring in (4.4.1) is locally [ree,
In short, we have produced a rank two vector bundle E oa X, with detE=L,

having s section s € HXX.E) vanishing precisely on p.
Note that
¢fE) =cfl) and c)fE) = 1.
Bul then the hypotbesis cdL)? 2 5 means that c{E} - 4-c,(E) > 0, and hence E is
unsiable with respect 10 any ample divisor H thanks 1o Bogomoiov’s theorem (4.2.3).

Using the version of that theorem stated in (4.2.4), we conclude the exisience of a
disgram

(4.4.2) 0——> 06y

=
53

v
Ct— @ ¢ B &—— > O
v
("
h-]
[
-
v
(-]

where ZC X is s finile set, $7 its ideal shesf, and where A and B are line bundles
such that

A®B=L,
and cfA) - c(B) is in the positive cone of NS(X)R, Le

{cdA) - cdB))-H > O for every ample H,
and

{cdA) - ¢{BR > 0.

We claim that the maps t (and hence also t°) appearing in the diagram (4.4.2) are
non-zero. For otherwise there would exist s non-ero homomorphism L —> B, but
¢fB) - ¢fL) = -cfA) cannot be represented by an effective divisor since 2cf{A)-H >
cL)-H 20 for any smple H. Let D C X be the effective divisor defined by the
vanishing of t [or equivalently of ('L Then D passes through p thanks to the fact
that the section 3 ¢ HXE) in (4.1.1) vanishes at p, and one has

B = oxiD) and A = L(-D).

The point now is 1o show that D satisfies the numerical coaditions in tbe statement of
the theorem.

To this end, we claim lirst that:
(4.4.3). 0< D-(cfL)-D) 5 1.
In fact, let D; be an irreducible component of D, and coasider the restriction of the
disgram (4.4.2) to D;. Since the map t vanishes on Dj, one obtains an injective
homomor phism of sheaves 0 —> Gp;——> L(-D) @ Op, . But this implies that

Dj-(cdL) - D) 2 0, and it follows that D-(c{L) - D) 2 0. For the other inequality,
computing from the vertical sequence in (4.4.2) yields

1= ¢;{E) = D-(cdL) - D) + deg(),
and (4.4.3) follows.

The next point to observe is

>»

Nl Argre a fulloss Lemn, b ioff LB (EF <)
= BE-F>0 (LExg (F30, tee HT)

L(—‘ZD» “ P (Bre => ‘(L(—‘ZD\) % = h(L(‘D)) ‘&)
w0 nh 4.?

AN A PO
”
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(4.4.9). D <o.

In fact, the inequality L) = (c{L(-D)) + D)2 25 pius the upper bound on
¢fL(-D))-D given in (4.4.3) implies

*) D2+ c.(u-D)P 23

On the other hand, c¢{L(-2D)) = c¢fA) - c{(B) «ul—u in the posmve cone of NS(XIR --
- timit-of-smpiealivisacs, and L is nef. Consequently

cil)-¢{L(-2D) = {cdL(-D)) + D}{cAL{-D) -D) 2 O,
or equivalently c{L(-D))? 2 D?. Plugging this into (*) yieids
) clL(-D)? 2 2
But now apply the Hodge index theorem and (4.4.3):
GL-DIR-D2 < (clL-DDDR < 1.
The desired inequality (4.4.4) then follows immediately from (**).

Reider’s theorem now follows easily. Indeed, since L is nef and D is effective
we have c{L)-D 2 0. Then (4.4.3) yields -D? <D-(c{L) - D) <1, and hence

D2 =0 o -l

thanks 1o (4.4.4). We consider these two cases separately. Suppose first that D? = 0.
Then 0 < D-¢fL) 1 by (4.4.3). But the index theorem rules out the possibility

D? = D-(c,(L) = 0, 30CAL)-D = 1, as claimed. Finailly, suppose that D2 = -1. Recalling
that cfL)- D 2 0 it follows immediately from (4.4.2) that ¢{L)- D =1, and this
completes the proofl of statement (i) of Reider’s theorem.

The proof of part (ii) of the theorem is similar. Assuming that Ky®L is
generated by its global sections but fails 1o separate (wo points p.qcX, one
constructs a rank two vector bundie E as an extension

0 >0y >E ”(p.q]‘l-

>0.

One has c(E) = ¢L) and c(E) =2, so E is unsiable as soon as ¢(L)22 9. Just as
above this leads to the existence of an effective divisor D C X, and arguments as
above show that D has the required properties. (The hypothesis ¢/(L)2 2 9 is used to

rule out the possibility that D2 = and L =Ox(3D). } We refer 10 Reider s paper [R]
for details. 8

§4.5. Notes.

(4.5.1). Reider’s mcthod has its antecedents in a proof of the Ramanujan vanishing
theorem given by Mumford, and reproduced in [Rd2). Specifically, given a numerically
effective line bundie L on a surface X, with ¢{L)2 > 0, one wants to show that
HY(X,L*) = 0. If not, there exisis a non-split extension

and the hypothesis ¢{L)2 = ¢{E) - 4-c,{E) > 0 yields the instability of E. An
argument with the Hodge index theorem now yields a contradiction.

(4.5.2). Sakaij [Sk) has recently shown that one can prove Reider’s result using a
vanishing theorem of Miyaoka. In fact, be recovers (4.1.1) as a consequence of a
theorem stating that if L with litaka-Kodaira dimension x(X,L) = 2 [i.e. L is "big")
and ¢{L)2 >0, and if H{X, L") >0, then there exisis a non-2ero effective divisor D
on X such that D-(c{L) - D) <0, and L(-2D) is again a big line bundie.

(4.5.3). As Mukai remarks, Reider’s theorem suggests that on a surface X, the
adjoint bundles Ky®L with L suitably posilive have good properties analogous to
line bundies of degree greater than 2g + € (€ a small posilive integer) on a curve.
This leads Mukai to raise the very interesting question of whether there are resulls on
the syzygies of the bundies Ky®L, analogous 1o 1o Lhe theorem of Green for curves
discussed in Si. To begin with, one can ask whether there are any useful conditions on
L that imply the normal generation of Ky®L (possibty with a few exceptions).
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