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Abstract
This paper begins the exploration of what we call measures of association between two
irreducible complex projective varieties of the same dimension. The idea is to study
from various points of view the minimal complexity of correspondences between
them.We extend to this setting results about degrees of irrationality for hypersurfaces,
and we study joint covering invariants for pairs of curves and hypersurfaces. We also
propose a number of conjectures and open problems.
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Introduction

The purpose of this paper is to begin the exploration of what we call—for lack of a
better term—measures of association between two irreducible projective varieties of
the same dimension. Roughly speaking, the idea is to study from various points of
view the minimal complexity of correspondences between them. Here we set up some
foundations, extend the main results of [5] to correspondences, and consider joint
covering invariants of curves and hypersurfaces. In addition we propose a number of
questions and conjectures that we hope may be of interest.

To start with the simplest invariant, fix irreducible complex projective varieties X
and Y of dimension n. Recall that a correspondence between X and Y is given by an
irreducible n-fold

Z ⊆ X × Y

that dominates both factors. One can view the product of the degrees of Z over X and
Y as a first measure of its non-triviality. We define the correspondence degree between
X and Y to be minimum of this product over all correspondences1:

corr. deg(X ,Y ) = min
Z⊆X×Y

{
deg(Z/X) · deg(Z/Y )

}
.

Thus

corr. deg(X ,Y ) = 1 ⇐⇒ X ∼birat Y .

(In fact, log(corr. deg) defines a metric on the set of birational equivalence classes
of varieties of fixed dimension: see Example 1.2.) We wish to study this integer for
natural pairs of varieties (X ,Y ).

Note to begin with that there is an evident upper bound on corr. deg(X ,Y ) in terms
of the degrees of irrationality of X and Y .2 Specifically, by taking the fibre product of
rational coverings X ��� Pn and Y ��� Pn one sees that

corr. deg(X ,Y ) ≤ irr(X) · irr(Y ). (∗)

Our intuition is that equality holding in (∗) points in the direction of X and Y being
as “birationally independent” as possible.

Suppose for instance that X and Y are very general smooth curves of genera
gX , gY ≥ 1. It is well known that then Pic(X × Y ) ∼= Pic(X) × Pic(Y ). This implies
immediately (Example 1.7) that

corr. deg(X ,Y ) = gon(X) · gon(Y ),

1 Here and below it is to be understood that the minimum is taken over subvarieties Z ⊆ X × Y as above.
2 By definition the degree of irrationalty irr(V ) of an irreducible projective variety V of dimension n is the
least degree of a rational covering V ��� Pn .
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and that moreover the minimal correspondences arise as fibre products of pencils
X → P1, Y → P1 computing the gonalities.

Our first result is an analogous independence statement for very general hypersur-
faces of large degree.

Theorem A Let X ,Y ⊆ Pn+1 be very general hypersurfaces of degrees d, e ≥ 2n+2.
Then

corr. deg(X ,Y ) = irr(X) · irr(Y ).

Moreover the minimal degree correspondences arise birationally as fibre products of
coverings of projective space.

We remark that according to [5], one has irr(X) = d − 1, irr(Y ) = e − 1. The proof
of the Theorem proceeds along the lines of [5, 23], except that a geometric argument
in those papers involving gonality is replaced by a computation with the cohomology
of hypersurfaces. We also show (Theorem 2.4) that if A is a very ample line bundle on
an arbitrary smooth projective variety M of dimension n + 1, and if Xd ∈ |d A | and
Ye ∈ |eA | are very general divisors, then corr. deg(X ,Y ) grows like de for d, e � 0.

Turning to a different line of thought, it has proven fruitful to study the geometry
of curves covering a fixed variety. Specifically, given an irreducible projective variety
V of dimension n, define:

cov. genus(V ) = min

{
g ≥ 0

∣∣∣∣
Given a general point x ∈ V , ∃ an
irreducible curve C ⊆ V through x

with pg(C) = g.

}
.

cov. gon(V ) = min

{
c > 0

∣∣∣∣
Given a general point x ∈ V , ∃ an
irreducible curve C ⊆ V through x

with gon(C) = c.

}
.

Viewed as a measure of irrationality, the covering gonality in particular has been the
focus of considerable recent activity (eg [2, 3, 5]). For a pair of varieties, it seems
natural to consider the genus or gonality of families of curves that simultaneously
cover both. Specifically, given irreducible n-folds X ,Y as above, define

cov. genus(X ,Y ) = min
Z⊆X×Y

{
cov. genus(Z)

}

cov. gon(X ,Y ) = min
Z⊆X×Y

{
cov. gon(Z)

}
.

We refer to these respectively as the joint covering genus and gonality of X and Y .
Evidently

cov. genus(X ,Y ) ≥ max
{
cov. genus(X) , cov. genus(Y )

}

cov. gon(X ,Y ) ≥ max
{
cov. gon(X) , cov. gon(Y )

}
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and equality means in effect that there is a family of curves computing the invariant
for one of the varieties that also covers the other.3 In the other direction we prove:

cov. gon(X ,Y ) ≤ cov. gon(X) · cov. gon(Y )

cov. genus(X ,Y ) � 3 · cov. genus(X) · cov. genus(Y ).

These invariants seem to be non-trivial already when X and Y are smooth curves:
in this case we are looking for the minimal genus or gonality of (the smooth model
of) a curve Z that covers both X and Y . For the joint covering genus we establish

Theorem B Assume that X and Y are very general curves of genera gX , gY ≥ 1. Then

gX gY + (linear in gX , gY ) ≤ cov. genus(X ,Y ) ≤ 5
4 · gXgY + (linear in gX , gY ).

Precise bounds will be given in the course of the proof. As for the covering gonality,
it is elementary that cov. gon(X ,Y ) � (gX gY )/4. We propose

Conjecture C There exists a number a > 0 such that if X ,Y are very general curves
as in Theorem B, then

cov. gon(X ,Y ) ≥ a · gX gY .

Unfortunately we are so far unable to establish any non-trivial lower bounds. In fact,
it is only with some difficulty that we prove:

Theorem D Let X and Y be very general hyperelliptic curves of genera gX ≥ 2 and
gY ≥ 3. Then

cov. gon(X ,Y ) = 4.

When gX = gY = 2, the joint covering gonality is either 3 or 4. We also compute the
covering gonality when one or both of the curves is elliptic.

In higher dimensions, we adapt arguments of Ein [11] and Voisin [20] to derive
essentially additive lower bounds for very general hypersurfaces:

Theorem E Let X ,Y ⊆ Pn+1 be very general hypersurfaces of degrees d and e. Then

cov. gon(X ,Y ) ≥ d + e − (3n + 2).

cov. genus(X ,Y ) ≥ d2 + e2 − 3n2

2
+ (lower order terms).

Here again a precise bound will be given in the course of the proof. We conjecture
that the joint covering gonality actually grows multiplicatively in d and e, and that the
genus comes closer to the elementary upper bound

cov. genus(X ,Y ) � de(d + e)

2
(1)

3 Strictly speaking, one shouldkeep inmind thepossibility that curves covering Z might notmapbirationally
to curves covering X or Y .
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indicated in Remark 3.5.
There are several questions and problems that come to mind about such measures

of association. In addition to those already mentioned, we discuss a few in the final
section of the paper.

Concerning organization: we start in §1with some general remarks about the invari-
ants we consider. The second section is devoted to the proof of Theorem A. In §3,
we adapt the approach of Ein and Voisin to study joint covering invariants, proving
in particular Theorems E and B. Degeneration arguments pioneered by Pirola, Alzati,
and Voisin are used to establish Theorem D in §4. Finally, §5 is devoted to some open
problems and conjectures.

We work throughout over the complex numbers C. For a smooth projective variety
V we write KV for a canonical divisor, but sometimes denote by ωV the canonical
bundle of V , so that ωV ∼= OV (KV ). As in equation (1) above, we allow ourselves
to write informally � or � to indicate that the quantity on the left is bounded by an
expression whose dominant terms appear on the right; it will generally be clear how
one could arrive at a precise statement.4 When we say that X and Y are very general
curves or hypersurfaces, we mean that the pair (X ,Y ) is a very general point in the
product of the relevant parameter spaces.

We thank Francesco Bastianelli, Nathan Chen, Ciro Ciliberto, Hannah Larson,
Giovanni Passeri, John Sheridan, David Stapleton and Ruijie Yang for valuable con-
versations and discussions. We are particularly grateful to Dima Dudko and Dennis
Sullivan for indirectly launching this project. Following a colloquium talk by the first
author on measures of irrationality, Dudko suggested that one might view the results
of [5] and related papers as measuring the “distance” between a variety and Pn , and he
asked whether the story could then be generalized to study arbitrary pairs of varieties.
It was this question, and a resulting discussion with Sullivan, that started us thinking
about the matters appearing here.

1 Measures of association

This section is devoted to some preliminary remarks about the invariants we will
consider.

Let X and Y be smooth complex projective varieties of dimension n. Modifying
slightly the terminology appearing in the Introduction, by a correspondence between
X and Y we will mean a smooth irreducible projective variety Z of dimension n
together with a morphism

u : Z −→ X × Y

4 We adopt this practice especially in situations where we don’t expect that the bounds are best possible.
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that is birational onto its image. We denote by a and b the projections from Z to X
and Y , and we assume that they are dominant:

Z
a b

X Y .

(1.1)

Note that a and b, being dominant, are generically finite. The condition that Z −→
X × Y be birational to its image guarantees that a general fibre of a (or b) is naturally
realized as a subset of Y (or X ). Observe finally that a correspondence Z between X
and Y is well-defined in the birational category: given alternative birational models
X ′ and Y ′ of X and Y , one can find Z ′ ∼bir Z sitting in the analogue of (1.1).

Correspondence degree

The general goal of the present paper is to study the “minimal complexity” of a
correspondence between fixed varieties. A first invariant in this direction involves the
degrees of a correspondence:

Definition 1.1 Let X and Y be smooth projective n-folds. The correspondence degree
between X and Y is defined to be

corr. deg(X ,Y ) = min
Z

{
deg(a) · deg(b)},

the minimum being taken over all correspondences as in (1.1).

Thus corr. deg(X ,Y ) = 1 if and only if X ∼bir Y .

Example 1.2 (Metric on birational classes) Suppose thatW is another smooth projec-
tive variety of dimension n. By taking fibre products over W , one sees that

corr. deg(X ,Y ) ≤ corr. deg(X ,W ) · corr. deg(W ,Y ).

This means that log
(
corr. deg

)
defines a metric on the birational equivalence classes

of varieties of fixed dimension.

Example 1.3 (Relation with degree of irrationality) Given a projective n-fold X , recall
that the degree of irrationality irr(X) is defined to be the least degree of a rational
covering X ��� Pn . This invariant has been the focus of considerable attention in
recent years ([4, 5, 7]). Given generically finite coverings

X −→ Pn , Y −→ Pn

with X and Y irreducible, one can arrange via post-composing with a generic auto-
morphism of Pn that X ×Pn Y is likewise irreducible ([15, 3.3.10]). It follows from



Measures of association between algebraic varieties Page 7 of 37 46

this that

corr. deg(X ,Y ) ≤ irr(X) · irr(Y ). (1.2)

As stated in the Introduction, our intuition is that equality in (1.2) indicates vaguely
speaking that X and Y are “birationally independent.” ��
Example 1.4 (Yang’s theorem) It follows from the definition or the previous remark
that

corr. deg(X ,Pn) ≤ irr(X). (1.3)

Yang [23] proves the interesting result that equality holds when X ⊆ Pn+1 is a very
general hypersurface of degree d ≥ 2n + 2. In general, the inequality (1.3) can be
strict and examples were provided by Voisin and Ottem.

As in the earlier work [4, 5, 16] on measures of irrationality, a natural strategy for
bounding this invariant is to exploit tension between the positivity properties of the
canonical bundle and vanishing statements coming from Hodge theory. We review
next the various inputs to this approach. For more details, the reader can consult the
papers just cited.

Fix a correspondence Z as in (1.1). Via the trace on holomorphic n-forms from Z
to X and Y , such a correspondence determines homomorphisms5:

Zn,0∗ = Trb ◦ a∗ : Hn,0(X) −→ Hn,0(Y )

(Z∗)n,0 = Tra ◦ b∗ : Hn,0(Y ) −→ Hn,0(X).
(1.4)

Concretely, fix a holomorphic n-form on X and a general point of y ∈ Y . Given
x ∈ b−1(y), dbx identifies Tx X with TyY , and then

Zn,0∗
(
ω

)
(y) =

∑

x∈ f −1(y)

ω(x).

In particular, if we are able to findω vanishing at all but one of the points of f −1(y) and
not at the remaining one, it will follow that Zn,0∗ (ω) �= 0. Analogous considerations
hold for (Z∗)n,0. It is at this point that birational positivity of canonical bundles enters
the picture.

Let X be an irreducible projective variety of dimension n, and let L be a line bundle
on X . We say that L birationally separates p + 1 points on X—or that it satisfies
Property (BVA)p—if the following holds:

There exists a non-empty Zariski-open subset U ⊆ X with the property
that given any p + 1 distinct pointsx0, . . . , xp ∈ U ,

there exists a section s ∈ H0
(
X , L

)
that vanishes at x1, . . . , xp but

is non-vanishing at x0.

(1.5)

5 For notational purposes only—to choose between the covariant Zn,0∗ and the contravariant (Z∗)n,0—we
break the symmetry of the setup by viewing Z as a correspondence from X to Y .
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(The definition of Property (BVA)p in [5] required that L satisfy the analogous state-
ment for subschemes of length p+ 1, but the present simplification works just as well
for our purposes.) For example, if X maps birationally to its image in a projective
space P, and if HX denotes the pullback of the hyperplane divisor fo X , thenOX (pH)

satisfies (BVA)p. More generally, we will say that a subspace V ⊆ H0
(
X , L

)
satisfies

(BVA)p if the condition is satisfied by sections s ∈ V . We refer to [5, §1] for further
details.

We may summarize the discussion so far in

Lemma 1.5 In the situation of (1.1), suppose that KX (or a subspace V ⊆ Hn,0(X))

satisfies (BVA)p. If deg(b) ≤ p + 1, then the homomorphism

Zn,0∗ : Hn,0(X) −→ Hn,0(Y )

(or the restriction Zn,0∗ |V ) is non-zero. Similarly, if KY (or a subspace W ⊆ Hn,0(Y ))

satisfies (BVA)p and deg(a) ≤ p + 1, then (Z∗)n,0 �= 0 (or (Z∗)n,0|W �= 0). ��
In [4, 5, 16], the Lemma was mainly applied in situations where Hn,0(Y ) = 0.
However as was also noted in those (and other) papers, under suitable Hodge-theoretic
independence assumptions, one can infer that Zn,0∗ or (Z∗)n,0 vanish even when the
spaces of forms involved are non-zero.

Specifically, a correspondence Z as in (1.1) gives rise to morphisms of weight n
Hodge structures

Z∗ : Hn(X) −→ Hn(Y ) , Z∗ : Hn(Y ) −→ Hn(X),

and the homomorphisms in (1.4) are the (n, 0) components of these. There are several
situations where one knows the vanishing of such morphisms in generic settings:

If X and Y are very general6 smooth curves of genera gX , gY ≥ 1, then

HomHS
(
H1(X) , H1(Y )

) = 0,

HomHS
(
H1(Y ) , H1(X)

) = 0.
(1.6)

If X , Y ⊆ Pn+1 are very general hypersurfaces of degrees d, e ≥ n + 2, then

HomHS
(
Hn(X)prim , Hn(Y )

) = 0,

HomHS
(
Hn(Y )prim , Hn(X)

) = 0.
(1.7)

(See [9] Theorem 3.1 and [18] Corollary 10.23.) Recalling that (n, 0) cohomology is
in any event primitive, we find:

Proposition 1.6 In either of the settings just described, let Z be a correspondence
between X and Y . Then the induced homomorphisms Zn,0∗ and (Z∗)n,0 in (1.4) vanish.

6 For both curves and hypersurfaces we only need Y to be very general once X is fixed.
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In §2 we will discuss a related hypothesis that accommodates very general hypersur-
faces of large degree in an arbitrary variety.

To illustrate these considerations, we conclude this subsection by spelling out what
we can say so far about very general curves and hypersurfaces.

Example 1.7 (Hodge-independent curves) Let X and Y denote curves of genera
gX , gY ≥ 1 that satisfy (1.6). Then

corr. deg(X ,Y ) = gon(X) · gon(Y ). (1.8)

In fact, (1.6) is equivalent to asking that

Pic(X × Y ) = Pic(X) × Pic(Y ).

Assuming this let Z ⊆ X × Y be the graph of a correspondence as in (1.1). Then

OX×Y (Z) = B � A

for some line bundles B and A on X and Y , and necessarily h0(B), h0(A) ≥ 2, with
B and A globally generated. Therefore

deg(Z → X) = deg(A) ≥ gon(Y ) , deg(Z → Y ) = deg(B) ≥ gon(X). (1.9)

Now assume that equality holds in (1.8) and that Z computes the correspondence
degree. Then both inequalities in (1.9) must be equalities, and therefore h0(B) =
h0(A) = 2. It follows that Z is defined in X×Y by an equation of the form s0t1−s1t0 =
0 where s0, s1 are sections of B and t0, t1 are sections of A. This implies that Z is the
fibre product of the coverings X −→ P1, Y −→ P1 defined by B and A respectively.

Example 1.8 (Very general hypersurfaces) Consider next hypersurfaces

X = Xd , Y = Ye ⊆ Pn+1

of degrees d, e ≥ n+2, and let Z be a correspondence as in (1.1). If (1.7) holds, then

deg(a) ≥ e − n , deg(b) ≥ d − n.

Indeed, should either of these inequalities fail, Proposition 1.6 would contradict
Lemma 1.5. In the next section we will show that stronger statements hold when
X and Y are very general and d, e ≥ 2n + 2. In particular, these bounds hold when X
and Y are very general hypersurfaces. ��

Joint covering invariants

Invariants of covering families of curves give interesting measures of irrationality [2,
3, 5]. The present subsection defines analogues for pairs of varieties.
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Let V be a smooth projective variety of dimension n. Recall from [5, §1] that a
covering family of curves on V consists of a smooth family

π : C −→ T

of irreducible projective curves parametrized by an irreducible variety T , together
with a dominant morphism

f : C −→ V

with the property that for a general point t ∈ T , the map

ft : Ct =def π−1(t) −→ V (1.10)

is birational to its image.We say that the family has genus g or gonality c if the general
fibre Ct has those invariants. The covering genus and covering gonality

cov. genus(V ) , cov. gon(V )

of V are defined to be the minimum gonality and minimum genus of covering families
of curves on V . Evidently we can restrict attention if we like to covering families with
dim T = n − 1, but this is not necessary.

Remark 1.9 Observe that if we start with a covering family of curves

π ′ : C′ −→ T ′ , f ′ : C′ −→ Z

that fails to satisfy the birationality condition (1.10), we can map it to one that does
by resolving the singularities of the image of C′ in Z × T ′. Since gonality and genus
do not increase under coverings, the invariants of this new family are no larger than
those of C′.

Now suppose that u : Z −→ X × Y is a correspondence between n-dimensional
varieties X and Y as in (1.1). We refer to a covering family of curves on Z as a joint
covering family of X and Y . Note that the general curve Ct in such a family maps
birationally to its image in X × Y , but it might fail to map birationally to its image in
X or Y .

Definition 1.10 The joint covering genus and joint covering gonality of X and Y are
defined to be the minimum genus or gonality of such joint families:

cov. genus(X ,Y ) = min
Z

{
cov. genus(Z)

}

cov. gon(X ,Y ) = min
Z

{
cov. gon(Z)

}
,

the minima being taken over all correspondences Z as in (1.1).
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Remark 1.11 Let π : C −→ T be a family of curves of genus g and gonality c that
admits a map f : C −→ X × Y dominating each factor and that has the property that
the generic member Ct maps finitely to its images in X and Y . Then C contributes to
the computation of the joint covering invariants in the sense that

cov. genus(X ,Y ) ≤ g , cov. gon(X ,Y ) ≤ c.

In fact, after possibly replacing T by a suitable subvariety, we can suppose first that
dim T = n − 1. Then replacing T by an open subset we can find a correspondence Z
between X and Y and a dominant map C −→ Z . Keeping in mind Remark 1.9, the
assertion follows.

Example 1.12 It follows from the definitions and Remark 1.9 that

cov. genus(X ,Y ) ≥ max
{
cov. genus(X) , cov. genus(Y )

}

cov. gon(X ,Y ) ≥ max
{
cov. gon(X) , cov. gon(Y )

}
.

When Y = Pn , equality holds:

cov. genus(X ,Pn) = cov. genus(X) , cov. gon(X ,Pn) = cov. gon(X).

��
As in Example 1.3, these invariants satisfy multiplicative upper bounds:

Proposition 1.13 (Upper Bounds) Let X and Y be smooth projective varieties of
dimension n. Then

cov. gon(X ,Y ) ≤ cov. gon(X) · cov. gon(Y ) (1.11)

cov. genus(X ,Y ) � 3 · cov. genus(X) · cov. genus(Y ). (1.12)

Denoting by gX , gY the covering genera of X and Y , the precise inequality in (1.12)
is that cov. genus(X ,Y ) ≤ 3gX gY + (gX + gY ).

Sketch of Proof of Proposition 1.13 Let C = {Ct }t∈T and D = {Ds}s∈S be covering
families of curves on X and Y respectively. After perhaps shrinking T and S, we will
specify a family of smooth irreducible curves

Et,s ⊆ Ct × Ds

of controlled gonality or genus that dominate Ct and Ds . As t ∈ T and s ∈ S vary, the
Et,s sweep out a family E of curves mapping to X ×Y , and Remark 1.11 then applies
to give the stated bounds. The Et,s in turn are to be divisors of general sections of a line
bundle on Ct × Ds of the form At � Bs where At and Bs are suitable basepoint-free
pencils bundles on Ct and Ds . What remains is to indicate the choice of At and Bs .
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For (1.11), assume that C and D compute the covering gonalities of X and Y
respectively and take At and Bs to be the minimal degree pencils on Ct and Ds .7

Then

gon(Es,t ) ≤ deg(At ) · deg(Bs),

as required. For (1.12), suppose that C andD compute the covering genera gX and gY
of X and Y . Now we take At and Bs to be general pencils of degree gX +1 and gY +1
respectively. Then the adjunction formula gives

2g(Et,s) = 6gX gY + 2(gX + gY ),

and we are done. ��
By way of example, we conclude this subsection with the case of K3 surfaces.

Recall that if S is such a surface, then

cov. genus(S) = 1 , cov. gon(S) = 2.

We show that the same statements hold for pairs of K3’s.

Proposition 1.14 (K3 surfaces) Let S1 and S2 be projective K3 surfaces. Then

cov. genus(S1, S2) = 1 , cov. gon(S1, S2) = 2.

Proof We will prove more generally that if X1 and X2 are smooth projective surfaces
covered by non-isotrivial one-dimensional families of elliptic curves, then

cov. genus(X1, X2) ≤ 1,

and therefore cov. gon(X1, X2) ≤ 2. The existence of such families on K3 surfaces is
established by Chen and Gounelas [8, Theorem A and Corollary on p. 2].

We need to construct a family of elliptic curves that jointly covers X1 and X2. To
this end let π1 : E1 −→ T1 and π2 : E2 −→ T2 be non-isotrivial families of elliptic
curves possessing dominant maps

f1 : E1 −→ X1 , f2 : E2 −→ X2.

Let E −→ M be the universal family over the moduli of elliptic curves with some
appropriate level structure. We can pass to coverings T ′

1 → T1, T ′
2 → T2 of T1 and T2

so that the resulting families E ′
1 = T ′

1 ×T1 E1 and E ′
2 = T ′

2 ×T2 E2 pull back from the
universal family E −→ M under moduli maps μ1 : T ′

1 −→ M and μ2 : T ′
2 −→ M .

Observe that these maps are dominant since dim M = 1 and our original families are

7 We allow ourselves to pass to étale neighborhoods T ′ −→ T and S′ −→ S in order to guarantee that At
and Bs are rationally defined.
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non-isotrivial. Now let T be an irreducible component of T ′
1 ×M T ′

2 that dominates
both T ′

1 and T ′
2:

T

T1 T ′
1

μ1

T ′
2

μ2

T2.

M

Then

E1 ×T1 T ∼= E ×M T ∼= E2 ×T2 T

over T , and we arrive at a common family. ��
Remark 1.15 (Abelian surfaces) As in the case of K3’s, if A is a very general abelian
surface then cov. genus(A) = 2 and cov. gon(A) = 2. However here the story for
joint covering invariants is different: we show in Remark 4.5 that the joint covering
gonality of two very general abelian surfaces is ≥ 3 (and hence the joint covering
genus is likewise ≥ 3). ��

2 The correspondence degree of very general hypersurfaces

This section contains the proof of Theorem A from the Introduction. We also establish
an asymptotic bound for the correspondence degree between two very general large
degree hypersurfaces in an arbitrary variety.

Proof of Theorem A

Much of the argument follows the line of reasoning in [5], so we will be brief.
Fix very general hypersurfaces

X = Xd , Y = Ye ⊆ Pn+1

of degrees d, e ≥ 2n+2, and let Z be a correspondence between X and Y as in (1.1):

Z
a b

X Y .

We may—and do—assume that X and Y satisfy (1.7). Therefore both of the homo-
morphisms

Zn,0∗ : Hn,0(X) −→ Hn,0(Y ) , (Z∗)n,0 : Hn,0(Y ) −→ Hn,0(X)
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vanish: in the terminology of [4], this means that Z is a null-trace correspondence in
both directions. We need to show that

deg(b) ≥ d − 1 , deg(a) ≥ e − 1,

and thanks to Example 1.8 we already know that deg(b) ≥ d − n and deg(a) ≥ e− n.
The situation being symmetric, we focus on the map b. Set

δ =def deg(b).

We assume that δ ≤ d −1, aiming for a contradiction when δ ≤ d −2 and an analysis
of the geometry when δ = d − 1.

Fix next a general point y ∈ Y . The fibre of Z over y sits naturally as a subset of
X and hence also Pn+1:

Zy =def b−1(y) ⊆ X ⊆ Pn+1.

Since δ ≤ 2d − 2n + 1, it follows from [4, Theorem 2.5] and the vanishing of Zn,0∗
that

The finite set Zy spans a line �y ⊆ Pn+1. (2.1)

(In brief, Zy ⊆ Pn+1 consists of d − n ≤ δ ≤ d − 1 points that are not separated by
OP(d − n − 2). Bastianelli-Cortini-DePoi show that this forces Zy to lie on a line.)

As in [5, 23], the idea of the proof is quite simple. Write

X · �y = Zy + Fy,

where Fy is a zero-cycle of degree d − δ. Letting y vary in Y , the Fy (or suitable
subcycles thereof) sweep out a proper subvariety S ⊆ X . The new ingredient is a
cohomological argument showing that if s ≥ 1, then S is covered by zero-cycles of
degree ≤ n that fail to impose independent conditions on Hs,0(S).8 The proof then
concludes as in [5]: computations of Ein [11] and Voisin [20] show that a very general
hypersurface X does not contain such a subvariety.

Turning to details, denote by G = G(1, n + 1) the Grassmannian parameterizing
lines in Pn+1, and let Y ′ be a smooth variety birational to Y on which the rational map

Y ��� G , y �→ �y

resolves to a morphism Y ′ −→ G. The point-line incidence correspondence over G
pulls back to a P1-bundle π : W ′ −→ Y ′ that admits a surjective map μ : W ′ −→
Pn+1. Set Z+ = μ∗(X) ⊆ W ′. Then we can write

Z+ = Z ′ + F,

8 In the setting of [5, 23] this followed for free using the rationality of Y .
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where Z ′ ⊆ W ′ is a reduced and irreducible divisor of relative degree δ over Y ′,
whose fibre over a general point y′ ∈ Y ′ is Zy′ , and F is effective of relative degree
d − δ ≤ n over Y ′. Note that Z ′ is birational to Z , and that it (or, strictly speaking, a
desingularization) represents birationally the original correspondence Z .

Fix an irreducible component V0 of F that dominates Y ′, and set

S =def μ(V0) ⊆ X , s =def dim S , k = deg(V0/Y
′).

We assert that s ≤ n − 1: for if s = n then we would get a correspondence in X × Y
dominating both factors and mapping to Y with degree d − δ ≤ n < d − n, violating
the bound of Example 1.8. Assuming for the time being that s �= 0 we will derive a
contradiction. Denote by V1 the image of V0 in S × Y ′: then

k′ =def deg(V1 → Y ′)
∣∣ k,

and the general fibre of V1 over Y sits as a subset of S. After replacing S and V1 by
suitable desingularizations, we arrive at a diagram

X S′ V ′μV ′

πV ′

Y ′.

As in [5, page 2383], a computation with relative canonical bundles shows that

k(n − s) ≤ n. (2.2)

Continuing to assume that 1 ≤ s ≤ n − 1, let T ′ ⊆ Y ′ be a general complete
intersection of n − s very ample divisors in Y , so that dim T ′ = s, and let

E ′ = π∗
V ′(T ′) ⊆ V ′.

be the inverse image of T ′ in V ′. By choosing T ′ suitably we may suppose that E ′
is non-singular, that E ′ −→ S′ is generically finite, and that we have a commutative
diagram:

S′ V ′ E ′i

�

Y ′ T ′
j

. (2.3)

Viewing E ′ as a correspondence from S′ to T ′, we assert

Claim 2.1 The homomorphism

Hs,0(S′) −→ Hs,0(T ′) (2.4)
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determined by E ′ vanishes.
Granting 2.1, it follows that (s, 0)-forms on S′ do not separate the k′ ≤ k points in
a generic fibre of E ′ −→ T ′. In particular, KS′ does not satisfy (BVA)k−1. On the
other hand, computations of Ein [11] and Voisin [20] show that if X ⊆ Pn+1 is a very
general hypersurface of degree d, and if S′ is the desingularization of a subvariety of
X having dimension s ≥ 1, then KS′ satisfies (BVA)d+s−2n−2. Thus k ≥ d + s − 2n,
and combined with (2.2) this contradicts the assumption that d ≥ 2n + 2 (compare
[5, pp. 2383–2384]).

As for the Claim, it follows from the projection formula that in the situation of (2.3)
the two morphisms

V ′∗ : Hs(S′,C
) −→ Hs(Y ′,C

)
, E ′∗ : Hs(S′,C

) −→ Hs(T ′,C
)

of Hodge structures are related in the natural way:

E ′∗ = j∗ ◦ V ′∗.

Therefore the homomorphism in (2.4) factors through Hs,0(Y ′). But Y ′ is birational to
a hypersurface Y ⊆ Pn+1 of dimension n > s, and hence Hs,0(Y ′) = Hs,0(Y ) = 0.

The only remaining possibility is that s = 0. Then S consists of a single point o ∈ X
containing all the lines �y . It follows first of all that δ = d − 1, completing the proof
that deg(b) ≥ d − 1 (and hence by symmetry that deg(a) ≥ e − 1). Moreover each
o �= x ∈ X lies on a unique line through o, so writing � = Pn for the n-dimensional
projective space parametrizing lines through o, we get a commutative diagram of
rational maps:

Z ′
a b

X

φ

Y ′

ψ

� = Pn,

(2.5)

where deg(φ) = d − 1 and ψ maps y ∈ Y to the parameter point of the line it deter-
mines. Note that deg(ψ) ≥ e − 1 thanks to [5]. Now suppose that Z has minimal
degrees e − 1 and d − 1 over X and Y . This implies that (2.5) is birationally equiv-
alent to a Cartesian square. In other words, correspondences witnessing the equality
corr. deg(X ,Y ) = irr(X) · irr(Y ) are birationally fibre products of minimal degree
coverings of Pn by X and Y . This establishes the last assertion of Theorem A.

Hypersurfaces in an arbitrary variety

Let M be a smooth projective variety of dimension n+1, let A be a very ample divisor
on M , and let X = Xd ∈ |d A | be a smooth divisor. It was noted in [5, Corollary 1.12,
Remark 3.2] that

irr(Xd) → ∞ as d → ∞.
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Wewould like to prove an analogous statement for the correspondence degree between
very general hypersurfaces Xd ∈ |d A | and Ye ∈ |eA |. However one cannot expect the
analogue of (1.7) to hold since M may produce non-vanishing primitive cohomology
in both Hn(X) and Hn(Y ). Therefore we work instead with vanishing cohomology.
The resulting bound appears as Theorem 2.4.

Continuing to assume that A is a very ample divisor on M , let D ∈ |A | be a smooth
divisor, so that dim D = n. Recall that the vanishing cohomology of D is defined to
be the kernel of the Gysin map

Hn(D)van =def ker
(
j∗ : Hn(D) −→ Hn+2(M)

)

determined by the inclusion j : D ↪→ M . (This is the space spanned by the van-
ishing cycles on D as one moves it in a Lefschetz pencil.) One has an orthogonal
decomposition of Hodge structures

Hn(D) = Hn(D)van ⊕ j∗Hn(M). (2.6)

We refer to [21, Chapter 2.3] for a nice discussion of these matters.
An important point for our purposes is that adjoint divisors contribute to Hn(D)van:

Lemma 2.2 Denote by AdjM (D) the image of the canonical map:

H0(M,OM (KM + D)
) −→ H0(D,OD(KD)

) = Hn,0(D). (∗)

Then AdjM (D) is the (n, 0) piece of the vanishing cohomology of D:

AdjM (D) = Hn,0(D)van.

Proof Poincaré residue determines a short exact sequence

0 −→ 
n+1
M −→ 
n+1

M (log D) −→ 
n
D −→ 0

of sheaves on M , and (*) comes from the corresponding long exact sequence on
cohomology. On the other hand, the connecting homomorphism

H0(D,
n
D

) −→ H1(M,
n+1
M

)

is a Hodge component of the Gysin map j∗ : Hn
(
D,C

) −→ Hn+2
(
M,C

)
. The

assertion follows. ��
Lemma 2.3 Continue to assume that A is a very ample divisor on M. If k is sufficiently
large, then for any fixed Hodge structure H of weight n, a very general divisor

X ∈ |k A |

has the property that HomHS
(
Hn(X)van, H

) = 0.
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Sketch of Proof We can assume without loss of generality that H is irreducible. A
standard argument using the irreducibility of the monodromy action on the vanishing
cohomology of divisors in aLefschetz pencil ([21, §3.2.3]) shows that as soon as k ≥ 1,
the Hodge structure on Hn(X)van for very general X is either irreducible or a direct
sum of copies of a single irreducible Hodge structure. Hence if the conclusion of the
Lemma fails, Hn(X)van is isomorphic to a sum of copies of H for generic X ∈ |k A |.
By (2.6), this implies that Hn(X) is itself a fixed Hodge structure for very general X .
But this contradicts Green’s theorem [13] that local Torelli holds for divisors in |k A |
provided that k is sufficiently large. ��
Theorem 2.4 Let A be a very ample divisor on M, and suppose that A satisfies (BVA)a.
There exists an integer b = b(M, A) ≥ 0 (depending on M and A) with the property
that if

X = Xd+b ∈ |(d + b)A |, Y = Ye+b ∈ |(e + b)A |

are very general divisors, then

corr. deg(X ,Y ) > (da) · (ea). (2.7)

Proof To begin with, choose b = b(M, A) so that bA + KM is effective and so that
the conclusion of Lemma 2.3 holds for every k ≥ b. We may then suppose that

HomHS
(
Hn(X)van, H

n(Y )
) = 0 and HomHS

(
Hn(Y )van, H

n(X)
) = 0.

Now fix a correspondence Z between X and Y . In view of Lemma 2.2, it follows that
the homomorphisms

Zn,0∗ : AdjM (X) −→ Hn,0(Y ) , (Z∗)n,0 : AdjM (Y ) −→ Hn,0(X)

arising from the restrictions of Zn,0∗ and (Z∗)n,0 to vanishing cohomology are the zero
maps. On the other hand, it is elementary that if (BVA)p holds for a line bundle L
on a variety, then mL satisfies (BVA)mp for any m ≥ 1. In our situation, this means
that KM + (m+b)A satisfies (BVA)ma , and therefore AdjM (X) birationally separates
da + 1 points on a general choice of X while AdjM (Y ) birationally separates ea + 1
points on general Y . Thus

deg(Z → X) > ea , deg(Z → Y ) > da

thanks to Lemma 1.5, and the result follows. ��
Example 2.5 (Asymptotic sharpness of Theorem 2.4) A simple construction shows
that (2.7) can be asymptotically sharp. Specifically, suppose that M = N × P1 for
some smooth n-fold N and that A has degree one on the fibres of M → N , so that
a = 1. Taking fibre products over N shows that then

corr. deg(X ,Y ) ≤ (d + b)(e + b) ≈ de
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��
Remark 2.6 (Comparison with degrees of irrationality) In view of Example 1.3, it is
interesting in the setting of the Theorem to compare corr. deg(X ,Y ) with the product
of the degrees of irrationality of Xd+b and Ye+b. While one can hope for stronger
statements, in any event

irr(X) ≤ degA(X) = (d + b) · degA(M)

and similarly for Y . Therefore

corr. deg(X ,Y )

irr(X) · irr(Y )
>

a2

4 degA(M)2

provided that d, e ≥ b(M, A). In particular, this quantity is bounded away from 0
when d, e � 0. ��

3 Joint covering invariants, I: in the spirit of Ein and Voisin

In this section we adapt the approach of Ein and Voisin to study joint covering
invariants. The idea of those authors is to combine infinitesimal calculations with
considerations of positivity to analyze subvarieties of a generic member of a family.
In the setting of (1.1), the plan is to move X and Y and consider a correspondence
Z that deforms with them. For our applications X and Y will be either curves or
hypersurfaces, but we introduce the setup agnostically.

Joint families

Suppose given smooth projective morphisms

μ : X −→ M , ν : Y −→ N

of relative dimension n, where M and N are smooth varieties of dimensions p and q
respectively. We write Xt = μ−1(t) and Ys = ν−1(s) for fibres of μ and ν. The first
point is:

Proposition 3.1 (Ein-Voisin for joint families) Suppose that Z = Zt,s is a correspon-
dence as in (1.1) between very general members X = Xt and Y = Ys of the two
families μ and ν. Then for every pair of integers i, j ≥ 0 with i + j = n, there is a
generically surjective morphism

a∗(
p+i
X | X) ⊗ b∗(
q+ j

Y | Y ) −→ 
n
Z = OZ (KZ )

of vector bundles on Z.
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Proof By a standard argument, such a correspondence Z must be the fibre of a family
of correspondences. More precisely, Z is realized as a very general fibre of a smooth
projective family λ : Z −→ U sitting in a diagram as follows:

Z (αU ,βU )

λ

XU ×U YU

U .

(3.1)

Here U −→ M × N is an étale morphism, and XU , YU are the pullbacks of X and
Y under the projections ρM : U −→ M and ρN : U −→ N . Moreover, the general
fibre Zu = λ−1(u), viewed as a correspondence between XρM (u) and YρN (u), has the
properties laid out in (1.1).

Writeα : Z −→ X ,β : Z −→ Y for the naturalmaps. Noting thatXU ×UYU −→
X×Y is étale, the derivative of themap (αU , βU ) in (3.1) determines a homomorphism

α∗
1
X ⊕ β∗
1

Y −→ 
1
Z

of vector bundles on Z . Taking �p+q+n of both sides yields

⊕
i+ j=n

α∗
p+i
X ⊗ β∗
q+ j

Y −→ 

p+q+n
Z = OZ (KZ ). (3.2)

We assert:

Claim 3.2 For any i, j ≥ 0 with i + j = n, the map

α∗
p+i
X ⊗ β∗
q+ j

Y −→ 

p+q+n
Z

appearing as a summand in (3.2) is a generically surjective morphism of bundles on
Z .

Once this is known, the Proposition follows from the observation that 

p+q+n
Z |Z =


n
Z . As for the Claim, return to the diagram (1.1) showing the restriction of (3.1) to

general fibres, and fix a point z ∈ Z at which both maps a and b are étale. A local
calculation shows that the homomorphism of bundles

a∗
i
X ⊗ b∗
 j

Y −→ 
n
Z = OZ (KZ )

is surjective at z, and hence generically surjective as a map of bundles on Z. The
assertion of the Claim is deduced from this. ��

Hypersurfaces

In this subsection we study covering invariants of hypersurfaces. The first point is to
apply Proposition 3.1 to prove the following:
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Proposition 3.3 Consider very general hypersurfaces

X , Y ⊆ Pn+1

of degrees d and e, and let Z be a correspondence between them as in (1.1). Write
HX , HY for the pullbacks to Z of the hyperplane classes on X and Y , and fix integers
i, j ≥ 0 such that i + j = n. Then9

KZ �
(
d + i − (2n + 2)

)
HX + (

e + j − (2n + 2)
)
HY .

Sketch of Proof This follows immediately from Proposition 3.1 using the arguments
and computations of Voisin [20]. In brief, we take X and Y to be very general fibres
of the universal families

μ : X −→ M , ν : Y −→ N

of hypersurfaces of degrees d and e. Voisin [20] shows that the restrictions to X and
Y of the tangent bundles to X and Y have the property that

TX |X ⊗ OX (1) and TY |Y ⊗ OY (1)

are globally generated. Noting that



p+i
X |X ∼= �n−i (TX |X ⊗ OX (1)

) ⊗ OX
(
d + i − (2n + 2)

)



q+ j
Y |Y ∼= �n− j (TY |Y ⊗ OY (1)

) ⊗ OY
(
e + j − (2n + 2)

)
,

the assertion follows from Proposition 3.1. ��
We use this calculation to deduce:

Theorem 3.4 (Joint covering invariants for hypersurfaces) Let X ,Y ⊆ Pn+1 be very
general hypersurfaces of degrees d, e ≥ 3n/2 + 2. Then

cov. gon(X ,Y ) ≥ d + e − (3n + 2). (3.3)

cov. genus(X ,Y ) ≥ d2 + e2 + 3n2

2
− (d + e)

(
5n

4
+ 1

)
+ 2n + 1. (3.4)

Remark 3.5 (Additivity of bounds) The bounds appearing in the statement are essen-
tially additive in the invariants of the individual hypersurfaces. Indeed, for fixed n and
d � 0, one has

cov. gon(Xd) ∼ d , cov. genus(Xd) ∼ d2/2,

and similarly forY . For the gonality this follows e.g. from [4], while the covering genus
is computed by a simple argument that we explain in Remark 3.7. As to upper bounds,

9 We write D � D′ to indicate that the difference D − D′ of two divisors (or divisor classes) is effective.
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it follows from Proposition 1.13 that cov. gon(X ,Y ) � de, and we conjecture that
the joint gonality should actually grow multiplicatively. Since X and Y are covered
by plane curves, cov. genus(X ,Y ) is bounded above by the genus of a divisor of type
(1, 1) on the product of two plane curves. This leads to

cov. genus(X ,Y ) � de(d + e)

2
,

and again one might expect the actual value to have approximately this shape. ��
Proof of Theorem 3.4 Returning to the situation of Proposition 3.3, consider a family
of curves

π : C −→ T , f : C −→ Z

covering Z , and write C for a general fibre. We assume that C maps birationally to
its image in X × Y , and the issue is to bound the gonality and genus of C . Denote by
hX , hY the pullbacks to C of hyperplane divisors on X and Y , and fix i, j ≥ n/2 with
i + j = n. Since KC � f ∗KZ , and since KC |C = KC , Proposition 3.3 shows that

KC �
(
d + i − (2n + 2)

)
hX + (

e + j − (2n + 2)
)
hY . (3.5)

Statement (3.3)would follow immediately ifwe knew that hX and hY satisfied (BVA)1,
but this might not be the case if C doesn’t map birationally to its image in X and Y .
We will prove an essentially combinatorial lemma to circumvent this problem.

To this end, denote by D1 −→ X and D2 −→ Y the normalizations of the images
of C in X and Y . Thus D1 and D2 map birationally to their images in Pn+1, and C
maps birationally to its image in D1 × D2. Observe that

gon(D1) ≥ d − n , gon(D2) ≥ e − n

since the covering gonalities of X and Y satisfy these inequalities. Denote by

L1 = OD1(d + i − 2n − 2) , L2 = OD2(e + j − 2n − 2)

the pullbacks to D1 and D2 of the indicated line bundles on Pn+1. Then L1 separates
d+ i−2n−1 ≥ 1 points on an open subset of D1, and L2 separates e+ j−2n−1 ≥ 1
points on an open set. Now suppose for a contradiction that C admits a covering
φ : C −→ P1 of degree< d+e−3n−2. Lemma 3.6 below asserts that then L1� L2
separates the points in a general fibre of φ. But then it follows from (3.5) that KC

separates the points in a general fibre, which is not the case. This proves (3.3).
Turning to (3.4), equation (3.5) gives a lower bound on the genus g(C) in terms of

the degrees of hX and hY . Contenting ourselves with relatively rough estimates, we
claim

deg hX ≥ d − n , deg hY ≥ e − n.
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Indeed, consider as above the curve D1 arising as (the normalization of) the image of
of C in X . Then

d − n ≤ gon(D1) ≤ degOD1(1) ≤ deg hX ,

and similarly for hY . Then (3.4) follows by taking i = j = n/2 if n is even, i =
n+1
2 = j + 1 if e ≤ d, and j = n+1

2 = i + 1 if d ≤ e in (3.5). ��
Lemma 3.6 Let D1, D2 and C be smooth projective curves, with C admitting a map

C −→ D1 × D2

that is birational onto its image and dominates each factor. Let Li be a line bundle on
Di that separates a certain number di ≥ 1 of points on a Zariski-open subset, with

di ≤ gon(Di ).

Finally, suppose given a covering φ : C −→ P1 with

d = deg(φ) < d1 + d2.

Then L1 � L2 separates the points of a general fibre of φ.

Proof We suppose to begin with that d1 ≥ 2. Denote by Ci the normalization of the
image of C under the natural map C −→ Di × P1, so that one has a factorization of
φ:

C
φpri

Di Ci
φi P1.

Put ei = deg(φi ). Observe that ei |d, and

di ≤ gon(Di ) ≤ gon(Ci ) ≤ ei .

Fixing a general point a ∈ P1, set T = φ−1(a) ⊆ D1 × D2, and write

Ti = pri (T ) ⊆ Di .

Thus #Ti = ei , and each fibre of the projection T −→ Ti consists of precisely d/ei
points.

Now choose any point (t1, t2) ∈ T . It suffices to construct sections

s1 ∈ �
(
D1, L1

)
, s2 ∈ �

(
D2, L2

)
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with the property that s1 � s2 vanishes as every point of T other than (t1, t2). To this
end, consider first the set

A1 = {
t ∈ T1 | (t, t2) ∈ T

}
.

Recalling that we are assuming d1 ≥ 2, one has

# A1 =
(
d

e2

)
≤ d1 + d2 − 1

e2
≤ d1d2

e2
≤ d1.

Expanding (if necessary) A1 to a d1-element subset A�
1 with T ⊇ A�

1 ⊇ A1, we take

s1 to be a section of L1 not vanishing at t1 but vanishing at every other point of A�
1.

Consider next the sets:

B2 = {
t ′ ∈ T2 | (t, t ′) ∈ T for t ∈ T1 − A�

1

}

B�
2 = B2 ∪ {

t ′ | (t1, t
′) ∈ T

}
.

Then

# B�
2 =

(
d

e1

) (
(e1 − d1) + 1

) = d − d(d1 − 1)

e1
≤ (d1 + d2 − 1) − (d1 − 1) = d2.

We then take s2 ∈ �(D2, L2) to be a section that does not vanish at t2 but vanishes at
every other point of B�

2.
It remains to treat the possibility that d1 = 1, so that d ≤ d2. This forces e2 = d2,

and by taking s1 to be non-vanishing on T1, we can separate points of T using sections
of L2. ��

Remark 3.7 (Covering genus of a single hypersurface) Let Xd ⊆ Pn+1 be a smooth
hypersurface of degree d and dimension n. While there has been considerable interest
in bounding the least genus of a curve on X , as far as we can tell the covering genus has
not received much attention. In any event, the asymptotic picture is very elementary:
for fixed n, as a function of d, one has:

cov. genus(Xd) ∼ d2/2.

Evidently cov. genus(X) ≤ (d−1
2

)
since X is covered by plane curves of degree d. For

the reverse inequality, one argues as in the proof of (3.4). Indeed, recall e.g. from [5]
that if C → X is the general member of a covering family, then

KC � (d − n − 2)h
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where h is the pullback of a hyperplane divisor to C . This implies in the first place
that gon(C) ≥ (d − n), and therefore that

deg h = (degree of image of C in Pn+1) ≥ (d − n).

We then find that 2g(C)−2 ≥ (d−n)(d−n−2), and the assertion follows. The precise
covering gonality of a very general hypersurface X has been (essentially) computed
by Bastianelli et al in [3]. It would be interesting to find a more accurate estimate of
its covering genus. ��

Curves

We now turn to the case of curves, and in particular prove Theorem B from the
Introduction.

In order to apply Proposition 3.1, one needs to control the positivity of the restricted
tangent bundle of the universal deformation of a curve. The following statement is an
analogue of Proposition 1.1 in [20].

Lemma 3.8 Let X be a smooth projective curve of genus g ≥ 2, and let

μ : X −→ M

be a local universal deformation of X, so that dim M = 3g − 3. Then for any point
x ∈ X,

TX |X ⊗ OX (x) is an ample vector bundle on X . (3.6)

Proof For simplicity, writeUX = TX |X . This bundle is uniquely characterized by the
fact that it sits in an extension

0 −→ TX −→ UX −→ H1(X , TX
) ⊗C OX −→ 0

(namely the tangent/normal bundle sequence for the inclusion X ⊆ X ) for which the
connecting homomorphism

H1(X , TX
) = H1(X , TX

) ⊗ H0(X ,OX
) −→ H1(X , TX

)

is the identity map. This description shows that UX is the dual of the restriction to X
of one of the Picard bundles on Jac(X) studied in [12]: UX ∼= E∗

2K in the notation of
[12], the identification following from Lemma 2.3 of that paper. It was established in
[12, Proposition 2.2] that UX is stable, and we see that UX has slope

μ(UX ) = 2 − 2g

3g − 2
> −1.

Therefore UX ⊗ OX (x), being stable of positive slope, is ample. ��
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Using the Lemma, we deduce:

Proposition 3.9 Let X and Y be very general curves of genera gX , gY ≥ 2 and let Z
be a correspondence between them. As in (1.1) denote by

a : Z −→ X , b : Z −→ Y

the two projections. Then

ωZ = a∗ωX ⊗ b∗ωY ⊗ P,

where P is a line bundle on Z having the property that

deg P > max{− deg a , − deg b}.

Note that we do not assert that P or any specific twist has non-trivial global sections.

Proof of Proposition 3.9 Let μ : X −→ M and ν : Y −→ N be local universal
families of curves of genera gX , gY ≥ 2, so that p = dim M = 3gX − 3 and q =
dim N = 3gY − 3. We may consider X and Y to be very general fibres of μ and ν.

Write UX = TX |X . Noting that 

p
X |X = UX ⊗ ωX , Proposition 3.1 (with i =

0, j = 1) asserts the existence of a generically surjective morphism

a∗(UX ⊗ ωX ) ⊗ b∗ωY −→ ωZ

of vector bundles on Z . In other words, there is a generically surjective morphism
a∗UX −→ P . It follows from the previous Lemma that if x ∈ X is any point, then
the image of

a∗(UX ⊗ OX (x)
) −→ P ⊗ a∗OX (x)

is ample. Therefore P ⊗ a∗OX (x) has positive degree, so deg P + deg(a) > 0. The
positivity of P ⊗ b∗OY (y) is similar. ��
Remark 3.10 One can improve slightly the inequality on deg P by noting that the proof
of Lemma 3.8 actually shows that the Q-twisted bundles

UX < 2
3 x > and UX <

2g−2
3g−2 x >

on X are ample and nef respectively. However this leads to only marginal numerical
improvements in the application.

Proof of Theorem B Let X and Y be very general curves of genera gX , gY ≥ 2, and let
Z be a smooth curve covering both. Then (as in Example 1.7) one has

a = deg(Z −→ X) ≥ gon(Y ) , b = deg(Z −→ Y ) ≥ gon(X).
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The previous Proposition then gives:

2g(Z) − 2 ≥ gon(Y ) · (2gX − 2) + gon(X) · (2gY − 2) − min
(
gon(X), gon(Y )

)
.

Recalling that

gon(X) =
[
gX + 3

2

]
, gon(Y ) =

[
gY + 3

2

]
,

this simplifies to the inequality

g(Z) ≥ gX gY + (gX + gY )

2
− min(gX , gY )

4
− 7

4
,

as asserted. The upper bound

cov. genus(X ,Y ) ≥ 5gX gY + 7(gX + gY ) + 1

4

comes from computing the genus of a fibre product of gonality maps X −→ P1 and
Y −→ P1. ��

4 Joint covering invariants, II: in the spirit of Pirola

Themain result of this section is the computation of the joint covering gonality of very
general pairs of hyperelliptic curves for almost all genera. The argument is inspired
by the degenerational approach of Pirola; see also [22] and [17].

Definition 4.1 A subvariety Z of an abelian variety A generates the abelian subvariety
B ⊆ A if Z is contained in a translate of B but is not contained in a translate of a
proper abelian subvariety of B.

Example 4.2 (Joint covering gonality of elliptic curves) The joint covering gonality
of two elliptic curves X and Y is 2. Indeed, the set of abelian surfaces which are
isogenous to X × Y is dense in the moduli of principally polarized abelian surfaces
A2. Since the Torelli locus is an open dense subset of A2, there is a genus 2 curve
C such that J (C) is isogenous to X × Y . Let C ′ ⊆ X × Y be the image of C under
such an isogeny. Since C generates J (C) so must C ′ generate X × Y . Thus, C ′ is a
hyperelliptic curve which dominates both X and Y .

Theorem 4.3 Let X andY be very general hyperelliptic curves of genera gY ≥ gX ≥ 2.
Then:

cov. gon(X ,Y ) =
{
3 or 4 if gX = gY = 2

4 if gY ≥ 3 .
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Theorem 4.3 will be deduced from the following result:

Theorem 4.4 Fix an abelian variety A, and let Y a very general hyperelliptic curve
of genus g ≥ 2. Then any hyperelliptic curve in A × J (Y ) must be contracted by the
projection to one of the factors.

Remark 4.5 (Joint covering gonality of abelian surfaces) If A, B are very general
abelian surfaces, then

3 ≤ cov. gon(A, B) ≤ 4.

The upper bound is given by Proposition 1.13 whereas the lower bound follows from
Theorem 4.4. Indeed a very general abelian surface dominates the Jacobian of a very
general genus 2 curve. It would be interesting to know which of the two possibilities
actually occurs.

We will begin by proving Theorem 4.3 contingent on Theorem 4.4.

Proof of Theorem 4.3 Theorem 4.4 together with the obvious upper bound fromExam-
ple 1.3 gives the inequalities

3 ≤ cov. gon(X ,Y ) ≤ 4.

The lower bound can be improved to cov.gon(X ,Y ) ≥ 4 when gY ≥ 3 by the
Castelnuovo-Severi bound: If D ⊆ X × Y is trigonal and dominates Y then the
basepoint-free g13 on D maps to a base-point free g13 on Y or a curve in a base-point
free g23 on Y . The Castelnuovo-Severi bound ensures that a curves of genus at least
3 cannot have both a basepoint-free g12 and a basepoint-free g13. Finally, a curve of
genus at least 2 cannot admit a basepoint-free g23. ��
Example 4.6 (Joint covering gonality of general curves of genus 1 and 2) The joint
covering gonality of a very general genus 1 curve X and a very general genus 2 curve
Y is 3. Proposition 4.7 gives the lower bound

cov.gon(X ,Y ) ≥ 3.

Hence it suffices to show that there is a genus 4 curve C which dominates both X
and Y . LetRY ,2 denote the moduli space of isomorphism classes of ramified double-
covers π : D → Y , where D is smooth of genus 4. This space has dimension 2 and
the Prym map

P : RY ,2 −→ A2

(π : D → Y ) �−→ P(π)

is quasi-finite. Observe that the surface P(RY ,2) ⊆ A2 meets some loci of split
abelian surfaces in a curve by Proposition 5 of [10]. A point of this curve corresponds
to an abelian surface isogenous to X × E for some elliptic curves E . We have thus
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obtained a smooth genus 4 curve D dominating Y and such that J (D) has an elliptic
factor isogenous to X . Projecting to this factor and composing with the isogeny give
a dominant map D → X . Since a curve of genus 4 has gonality at most 3, we get the
bound

cov.gon(X ,Y ) ≤ 3.

��
The proof of Theorem 4.4 will be obtained by reducing to the case of the product

of an arbitrary abelian variety with a general abelian surface.

Proposition 4.7 Let A be any fixed abelian variety and B a very general abelian
surface. Then any hyperelliptic curve in A × B must be contracted by the projection
to one of the factors. In particular, any hyperelliptic curve in A × B is geometrically
degenerate in the sense of Ran.

Proposition 4.7 will be proven using the method of [19] by reaching a contradiction
with the following rigidity statement:

Lemma 4.8 (Pirola [19]) Hyperelliptic curves on abelian varieties are rigid up to
translation.

(In brief: a hyperelliptic curve in an abelian surface with a Weierstrass point at the
identity gives rise to a rational curve in the corresponding Kummer surface. Rational
curves in Kummer surfaces are rigid since K3 surfaces are not uniruled.)

We now turn to the proof of Proposition 4.7. As a matter of notation, given a family
of varietes G −→ S, and a map T −→ S, we denote by GT −→ T the pull-back
family over T . Suppose then that for a very general abelian surface B, the variety A×B
contains a hyperelliptic curve which is not contracted by either of the projection maps
to the factors. Then we can find a local universal family of abelian surfaces B −→ S
and a flat family of irreducible curves

Z ⊆ A × B =def AS ×S B

such that Zs is hyperelliptic for all s ∈ S. Moreover, up to replacing S with an open
subset and A by an abelian subvariety, we can assume that Zs generates A × Bs for
all s ∈ S.

There are countably-many divisors Sλ ⊆ S along which Bs is isogeneous to a
product Bs ∼ Eλ

s ×Fλ
s , where λ encodes the isogeny and Eλ −→ Sλ and Fλ −→ Sλ

are locally complete families of elliptic curves. We let � be the set that indexes such
loci and for all λ ∈ �, we write

pλ A × BSλ −→ A × Eλ ×Sλ Fλ −→ A × Eλ
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for the composition of the isogeny with the projection map.10

We will find some λ ∈ � and a curve C ⊆ Sλ such that:

• Eλ
C is isotrivial with fibre E , i.e. C parametrizes abelian varieties isogenous to
A × E × F for a fixed elliptic curve E and some (varying) elliptic curve F ,

• The projection pλ(Zs) ⊆ A × E varies with s ∈ C .

This will provide the desired contradiction with Lemma 4.8.

Lemma 4.9 Let A beabelian variety, F an elliptic curve, and Z ⊆ A×F an irreducible
curve which generates A × F. Moreover, assume that {0} × F is not contained in the
surface

D =def {z − z′ : z, z′ ∈ Z} ⊆ A × F .

There is an isogeny η : F −→ F ′ such that the restriction of the projection map
πA : A × F ′ −→ A to the curve Z ′ =def (idA × η)(Z) is birational on its image.

Proof First, consider the action τ : F −→ Aut(A× F) of F on A× F by translation
on the second factor. The subgroup

FZ =def {x ∈ F : τx (Z) = Z} ⊆ F

is finite.
Now let η : F −→ F ′ be the isogeny with kernel FZ and let Z ′ =def (idA × η)(Z)

so that

F ′
Z ′ =def {x ′ ∈ F ′ : τx ′(Z ′) = Z ′} ⊆ F ′

is trivial. Moreover, note that

D′ =def {z − z′ : z, z′ ∈ Z ′} ⊆ A × F ′

does not contain {0} × F ′. We claim that the restriction of the projection πA : A ×
F ′ −→ A to Z ′ is birational on its image. Consider a generic a ∈ πA(Z ′) and
preimages (a, x1), (a, x2) ∈ Z ′. Then (0, x1 − x2) ∈ D′ ∩ {0} × F which is discrete.
Accordingly, for all (a, x) ∈ Z ′ we must have (a, x + (x1 − x2)) ∈ Z ′, so that
x1 − x2 ∈ F ′

Z ′ = {0}. It follows that (a, x1) = (a, x2). ��
A consequence of Lemma 4.9 is

Lemma 4.10 There is a λ ∈ � such that for generic s ∈ Sλ the map pλ|Zs : Zs −→
A×Eλ

s is the composition of the restriction of an isogenywith amapwhich is birational
on its image.

10 Note that we abuse notation to denote by Sλ a generically finite cover of Sλ as the projection pλ may
only be defined after a generically finite base change.
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Proof For all s ∈ S consider

Ds =def {z − z′ : z, z′ ∈ Zs} ⊆ A × Bs .

Shrinking S if needed, we can assume that for all s ∈ S the surfaceDs does not contain
{0} × E for any elliptic curve E ⊆ Bs . Applying the following lemma with A × Eλ

s
instead of A and F = Fλ

s finishes the argument. ��
Now if λ is as in the statement of Lemma 4.10, given a generic elliptic curves E ,

we can take

C =def {s ∈ Sλ : Eλ
s = E} ⊆ Sλ.

Then Eλ
C is isotrivial by construction and since E is generic the map pλ|Zs : Zs −→

A × Eλ
s is the composition of the restriction of an isogeny with a morphism which is

birational on its image for generic s ∈ C .
Finally, we will use the following lemma to ensure that the curve pλ(Zs) ⊆ A× E

varies with s ∈ C .

Lemma 4.11 Let B −→ C be a non-istrovial family of abelian varieties over a one-
dimensional base C and letZ ⊆ B be a flat family of irreducible subvarieties. Suppose
that Zs generates Bs for all s ∈ C. Consider a variety X and a morphism

f : B −→ XC = X × C

such that for all s ∈ C the map f |Zs is a composition

Zs
gs−−→ Z ′

s
hs−−→ X ,

where gs is the restriction of an isogeny η : Bs −→ A to Zs , and hs is birational on
its image. Then the composition

Z f−→ XC −→ X

is generically finite over its image.

Proof If this composition is not generically finite on its image there is a fixed subvariety
V ⊆ X such that f (Zs) = V ⊆ X for all s ∈ C . We can choose desingularizations
Z̃s and Ṽ of Zs and V respectively so that there is a morphism

f̃s Z̃s −→ Ṽ

identifying birationally to f |Zs : Zs −→ V . The composition

Pic0(Bs)
gs∗−−→ Pic0(A) −→ Pic0(Z̃s)

f̃s∗−−→ Pic0(Ṽ )
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has finite kernel since f̃s is birational and gs(Zs) generates A. Moreover, note that
Pic0(Ṽ ) does not depend on the choice of the desingularization Ṽ . Accordingly,
Pic0(Ṽ ) is a fixed abelian variety and for each s ∈ C the abelian variety Bs maps
to Pic0(Ṽ ) with finite kernel. This provides a contradiction since the locus of abelian
varieties admitting a morphism with finite kernel to a fixed abelian variety is discrete
in any locally complete family of abelian varieties. ��

This provides the required contradiction to Lemma 4.8 and completes the proof of
Proposition 4.7.

Remark 4.12 The proof given above is different and sowewhat simpler than the argu-
ments of [1, 17, 19, 22]. In this previous body of work, an involved density argument
was used instead of Lemma 4.10. However, we will need such a density argument in
the course of the reduction of Theorem 4.4 to Proposition 4.7.

Finally, we present the proof of Theorem 4.4 which proceeds by reduction to Propo-
sition 4.7. Let Y −→ Hg denote a locally complete family of genus g hyperelliptic
curves and suppose that there is a flat family of hyperelliptic curves Z ⊆ A × J (Y)

such that for all s ∈ Hg the curveZs is not contracted by either of the projection maps
to the factors. Let G −→ Hg be the universal Grassmanian of 2-planes in the relative
tangent bundle of J (Y) at the identity. By Proposition 4 of [10], the following locus
is dense

{ TB,0 ⊆ TJ (Ys),0 : s ∈ Hg, B ⊆ J (Ys) an abelian surface } ⊆ G.

Indeed, though Proposition 4 therein is formulated as a density statement in Hg , the
proof proceeds by obtaining a density statement at the level of the Grassmanian. Since
Hg has dimension 2g − 1 and all Hecke translates of the image of A2 × Ag−2 in

Ag have codimension
(g2+1

2

) −
(
3 + (g−1

2

)) = 2g − 4, all irreducible components

of this locus have dimension at least 3. We let � be a set indexing these irreducible
components and denote by Tλ the component indexed by λ ∈ �.

It suffices to show that for sufficientlymany of these components the abelian surface
B in J (Yt ) varies in a 3-dimensional family with t ∈ Tλ. Indeed, we can then consider
the composition of the isogeny and the projection

A × J (Yt ) −→ A × D × B −→ A × B

where D is an abelian (g − 2)-fold. The image of Zt is then a hyperelliptic curve
Z ′ ⊆ A × B. Since B is a very general abelian surface Z ′ must be contracted by one
of the projection maps to the factors. This provides the desired contradiction.

Given λ ∈ �, there is a morphism from Tλ to an appropriate moduli of abelian
surfaces and we denote by dλ the dimension of its image. In particular, there is a
dλ-parameter family of abelian surface Bλ −→ Tλ and a dominant morphism11

pλ : A × J (YTλ) −→ A × Bλ.

11 Again, strictly speaking, after a finite base change.
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Theorem 4.4 then follows from the following proposition, which will also require
the use of Pirola’s method.

Proposition 4.13 The set

⋃
λ∈�:dλ=3

Tλ ⊆ G

is dense.

Proof The work of Colombo and Pirola in [10] shows that

⋃
λ∈�

Tλ ⊆ G

is dense. It therefore suffices to show that

⋃
λ∈�:dλ<3

Tλ ⊆ G

cannot be dense. Let �′ =def {λ ∈ � : dλ < 3} and assume that
⋃

λ∈�′ Tλ ⊆ G is
dense. We will use a specialization and projection argument analogous to the one used
in the proof of Proposition 4.7 to reach a contradiction with Lemma 4.8.

After a finite base change the family YG −→ G has a section which gives rise to an
embedding YG −→ J (YG). Let W ⊆ J (YG) be the resulting family of hyperelliptic
curves. The fact that pλ|Wt is generically finite on its image for most λ ∈ �′ and
t ∈ Tλ, allows us to find

• a generically finite cover of G, which we call G by abuse of notation,
• a subset �′′ ⊆ �′ such that the following subset is dense

⋃
λ∈�′′

Tλ ⊆ G,

• a family of curves W ′ −→ G,
• a map

p : W −→ W ′

which identifies birationally with the restriction of pλ to WTλ along Tλ for all
λ ∈ �′′ ⊆ �′.

(For more details regarding these steps the reader can consult the proof of Proposition
1.4 in [22] or Section 3.4 of [17]. A key element in the argument is the fact that the
Gauss map of pλ(Wt ) ⊆ Bλ

t is generically finite on its image for generic t ∈ Tλ and
all λ ∈ �′. This follows from the fact Wt generates J (Yt ) for all t ∈ G.)
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Now replacing G with an open subset if needed we can consider desingularization
W̃ −→ G and W̃ ′ −→ G with smooth fibres and a map p̃ : W̃ −→ W̃ ′ which
identifies birationally with p on fibres. Consider the morphism

Pic0(J (Yt )) −→ Pic0(W̃t )
p̃∗−−→ Pic0(W̃ ′

t ).

One easily checks that for generic t this morphism is non-zero. Since Pic0(J (Yt ))

is simple for generic t ∈ G, it follows that the composition above has finite kernel
for generic t ∈ G. ShrinkG further so that the composition hasfinite kernel for all t ∈ G.

Now consider λ ∈ �′′ such that the image of Tλ in G has survived the various base
changes and restrictions. Let B be an abelian surface such that

Tλ(B) = {t ∈ Tλ : Bλ
t

∼= B}

has positive dimension. If pλ(Wt ) ⊆ B does not vary with t ∈ Tλ(B) there is a curve
V ⊆ B such that pλ(Wt ) = V ⊆ B for all t ∈ Tλ(B). Given a desingularization Ṽ of
V , the abelian variety Pic0(Ṽ ) contains an abelian subvariety isogenous to Pic0(J (Yt ))

for all t ∈ Tλ(B). Since a fixed abelian variety cannot contain all members of a non-
isotrivial family of abelian varieties, we must conclude that pλ(Wt ) ⊆ B varies with
t ∈ Tλ(B). This contradicts Lemma 4.8. ��

5 Questions and open problems

This section is devoted to some questions and open problems.
It is frustrating that it seems non-trivial to obtain lower bounds on cov. gon(X ,Y )

even when X and Y are curves. We propose

Problem 5.1 Let X and Y be smooth curves of genera gX , gY ≥ 2 that are Hodge-
independent in the sense of (1.6). Establish additive—or better still, mulitiplicative—
lower bounds on cov. gon(X ,Y ) in terms of the gonalities of X and Y .

It is possible that a closer study of the bundles UX appearing in §3 might be helpful
for additive statements. In a somewhat different direction, if gon(X) and gon(Y ) are
relatively prime and much smaller that gX and gY can one apply the well-known
argument of Castelnuovo and Severi to get a statement? John Sheridan suggests a
number of other interesting questions. For example, fix a curve Y , an integer d and
a genus g. If f : X −→ Y is a very general degree d covering of Y by a curve of
genus g, does X itself compute corr. deg(X ,Y )? Or again, can the correspondence
degree between two fixed curves X ,Y be computed by several correspondences with
essentially different numerics? We remark that since the present paper first appeared
in preprint, Nathan Chen, Gabi Farkas and Ruijie Yang havemade substantial progress
on Conjecture C from the Introduction under the additional hypothesis that the curve Z
computing the joint covering gonality sits inside the fibre product of maps X −→ P1

and Y −→ P1.
Similarly:
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Problem 5.2 Establish better bounds (in terms of d and e) for the order of growth of

cov. genus(Xd ,Ye) cov. gon(Xd ,Ye)

for very general hypersurfaces Xd ,Ye ⊆ Pn+1 of degrees d and e.

Our sense is that the question of establishing multiplicative lower bounds on the joint
covering gonality has somewhat the same flavor as the problem of proving multiplica-
tive estimates for the covering gonality of a complete intersection of codimension≥ 2
in projective space.12 In another direction, David Stapleton asks what sort of examples
one can find of pairs of (special) hypersurfaces with surprisingly small correspondence
degree.

Voisin [22] and the second author [17] gave lower bounds on the covering gonality
of very general abelian varieties of fixed dimension. It is natural to ask for an extension
of those results to pairs:

Problem 5.3 Let A1 and A2 be very general abelian varieties of dimensions g1 and
g2. Prove an additive linear lower bound on cov. gon(A1, A2) in terms of g1, g2.

In their very nice paper [7], Chen and Stapleton were able to adapt Kollár’s argu-
ments in [14] (involving reduction to characteristic p > 0) to arrive at lower bounds on
measures of irrationality for complex hypersurfaces in the Fano range. This suggests

Question 5.4 Can one use these ideas to studymeasures of association for Fano hyper-
surfaces?

There are several invariants of a pair of varieties X and Y that come to mind beyond
those studied in the present paper. For example, the minimum degree of irrationality
of a correspondence Z between X and Y measures in effect their failure to both be
unirational: when Y = Pn this degree was studied by Yang [23]. One might also take
products with projective spaces to arrive at stable analogues of the invariants here, and
in the same spirit cov. genus(X ,Y ) and cov. gon(X ,Y ) make perfectly good sense for
pairs of varieties of different dimensions. This suggests the somewhat vague

Problem 5.5 Explore other measures of association, and compute or estimate them in
some examples.

Hopefully some experimentation will help to clarify what other invariants may be
particularly interesting to look at. There is interesting work in progress by Giovanni
Passeri investigating ideas along these lines.

Returning to the setting of Theorem 2.4, consider a very ample line bundle A on a
smooth projective variety M of dimension n + 1, and let Xd ∈ |d A |, Ye ∈ |eA | be
very general divisors.

Question 5.6 Can one find conditions on M and A to guarantee that

corr. deg(Xd ,Ye) ≈ irr(Xd) · irr(Ye)

when d, e � 0?

12 Chen [6] has made some striking recent progress on this question for complete intersections of codi-
mension two and complete intersection surfaces.
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In view of Example 2.5, it seems unlikely that this holds for every M and A.
Finally, it might be interesting to explore analogues for varieties over other fields:

Problem 5.7 Study measures of association for varieties defined over a field k other
than C.

In particular, can one replace theHodge-theoretic inputs to the results appearing above?

References

1. Alzati, A., Pirola, G.P.: Rational orbits on three-symmetric products of abelian varieties. Trans. AMS
337, 965–980 (1993)

2. Bastianelli, F.: On symmetric products of curves. Trans. AMS 364, 2493–2519 (2012)
3. Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P.: Gonality of curves on general hypersurfaces. J.

Math. Pures Appl. 125, 94–118 (2019)
4. Bastianelli, F., Cortini, R., De Poi, P.: The gonality theorem of Noether for hypersurfaces. J. Algebr.

Geom. 23, 313–339 (2014)
5. Bastianelli, F., De Poi, P., Ein, L., Lazarsfeld, R., Ullery, B.: Measures of irrationality for hypersurfaces

of large degree. Compos. Math. 153, 2368–2393 (2017)
6. Chen, N.: Multiplicative bounds for measures of irrationality on complete intersections.

arXiv:2111.05549 (2021)
7. Chen, N., Stapleton, D.: Fano hypersurfaces with arbitrarily large degrees of irrationality. ForumMath.

Sigma 8, paper E24 (2020)
8. Chen, X., Gounelas, F.: Curves of maximum modulus on K3 surfaces. Forum Math. Sigma 10, paper

E36 (2022)
9. Ciliberto, C.: Jacobian endomorphisms. Rend. Sem. Mat. Fis. Milano 59, 213–242 (1989). (Italian)

10. Colombo, E., Pirola, G.P.: Some density results for curves with non-simple Jacobians. Math. Ann. 288,
161–178 (1990)

11. Ein, L.: Subvarieties of generic complete intersections. Invent. Math. 94, 163–169 (1988)
12. Ein, L., Lazarsfeld, R.: Stability and restrictions of Picard bundles, with an application to the normal

bundles of elliptic curves, in Complex Projective Geometry (Trieste:/Bergen 1989), London Math.
Soc. Lect. Notes 179(1992), 149–156 (1989)

13. Green, M.: The period map for hypersurface sections of high degree of an arbitrary variety. Compos.
Math. 55, 135–156 (1985)

14. Kollár, J.: Nonrational hypersurfaces. J. Am. Math. Soc. 8, 241–249 (1995)
15. Lazarsfeld, R.: Positivity in Algebraic Geometry I & II, Ergebnisse Math. 48 and 49. Springer, Berlin

(2004)
16. Lopez, A.F., Pirola, G.P.: On the curves through a general point on a smooth surface of P3. Math. Z

219, 93–106 (1995)
17. Martin, O.: On a conjecture of Voisin on the gonality of abelian varieties. Adv. Math. 369, 107173

(2020)
18. Peters, C., Steenbrink, J.: Mixed Hodge Structures. Ergebnisse der Mathematik und ihrer Grenzgebiet,

vol. 52. Springer, Berlin (2008)
19. Pirola, G.P.: Curves on generic Kummer varieties. Duke Math. J. 59, 701–108 (1989)
20. Voisin, C.: On a conjecture of Clemens on rational curves on hypersurfaces. J. Differ. Geom. 44,

200–213 (1996)
21. Voisin, C.: Hodge Theory and Complex Algebraic Geometry, II, Cambridge Studies in Advanced

Mathematics, vol. 77 (2003)
22. Voisin, C.: Chow rings and the gonality of general abelian varieties. Ann. H. Lebesgue 1, 313–332

(2018)
23. Yang, R.: On irrationality of hypersurfaces in Pn+1. Proc. AMS 147, 971–976 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2111.05549


Measures of association between algebraic varieties Page 37 of 37 46

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Measures of association between algebraic varieties
	Abstract
	Introduction
	1 Measures of association
	Correspondence degree
	Joint covering invariants

	2 The correspondence degree of very general hypersurfaces
	Proof of Theorem A
	Hypersurfaces in an arbitrary variety

	3 Joint covering invariants, I: in the spirit of Ein and Voisin
	Joint families
	Hypersurfaces
	Curves

	4 Joint covering invariants, II: in the spirit of Pirola
	5 Questions and open problems
	References




