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LENGTHS OF PERIODS AND SESHADRI
CONSTANTS OF ABELIAN VARIETIES

Robert Lazarsfeld

Introduction

The purpose of this note is to point out an elementary but somewhat
surprising connection between the work of Buser and Sarnak [BS] on lengths
of periods of abelian varieties and the Seshadri constants measuring the
local positivity of theta divisors. The link is established via symplectic
blowing up, in the spirit of [McDP]. As an application, we get a simple new
proof of a statement of Buser-Sarnak type to the effect that a Jacobian has
a period of unusually short length.

We start by recalling the definition of Seshadri constants. Let X be a
smooth complex projective variety, let L be an ample line bundle on X,
and fix a point x ∈ X. Consider the blowing-up

f : Y = Blx(X) −→ X

of X at x, with exceptional divisor E = f−1(x) ⊂ Y . Then for 0 < ε % 1
the cohomology class f∗c1(L) − ε · [E] will lie in the Kähler cone of Y . As
a measure of how positive L is locally near x we ask in effect how large we
can take ε to be while keeping the class in question positive. More precisely,
set

ε(L, x) = sup { ε ≥ 0 | f∗c1(L) − ε · [E] is nef } .

Here f∗c1(L)−ε·[E] is considered as an R-divisor class on Y , and to say that
it is nef means that

∫

C′ f∗c1(L) ≥ ε(E · C ′) for every irreducible algebraic
curve C ′ ⊂ Y .1 We refer to [Dem, §6] or [EKL, §1] for further discussion
and alternative characterizations. Introduced by Demailly in [Dem], these
Seshadri constants have attracted considerable interest in recent years. The
main result of [EKL] states that if X has dimension n, then at a very general
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1Recall that a theorem of Kleiman characterizes the nef cone as the closure of the

ample cone.
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point x ∈ X one has the universal lower bound ε(L, x) ≥ 1
n (cf. also [KS]).

Some more refined results when X is a surface appear in [EL], [S] and
[Xu2], but except in the simplest examples Seshadri constants have proven
very difficult to control with any precision. We propose here to study these
invariants when the ambient manifold is an abelian variety.

Suppose then that (A,Θ) is a principally polarized abelian variety of
dimension g, i.e. that A is a complex torus, and that Θ ⊂ A is an ample
divisor with h0(A,OA(Θ)) = 1. Since A is homogeneous, the Seshadri con-
stants ε(OA(Θ), x) are independent of x ∈ A, and we denote their common
value by ε(A,Θ) or simply ε(A). One has the elementary upper bound

ε(A) ≤ g
√

g!

(cf. [EKL, 1.8]). Nakamaye [N] has shown that ε(A, Θ) ≥ 1, with equality iff
(A,Θ) is the product of an elliptic curve and an abelian variety of dimension
g − 1.

Our goal is to relate the Seshadri constant ε(A) to a metric invariant of
(A,Θ). As usual, write A as a quotient

A = V/Λ

of its universal covering, so that V ∼= Cg, and Λ ⊂ V is a lattice in V . The
principal polarization Θ determines a positive definite Hermitian form H
on V (cf. [LB,Chapter 2]), and following [BS] we define

m(A) = m(A,Θ) = min
x∈Λ−{0}

H(x, x).

Thus m(A) is the square of the minimal length (with respect to H) of a
non-zero lattice vector. This is the analogoue for abelian variety period
lattices of an invariant familiar in connection with sphere packings and
the geometry of numbers (cf. [O]). Buser and Sarnak study the maximum
value of m(A) as A varies over the moduli space Ag of principally polarized
abelian varieties, and they show ([BS, §2]) that there exist p.p.a.v.’s (A,Θ)
for which

(BS1) m(A) ≥ 1
π

(2g!)1/g .

The most surprising result of [BS] is that if C is a smooth projective alge-
braic curve of genus g ≥ 2, and (J(C),ΘC) is its polarized Jacobian, then
one has the upper bound

(BS2) m(J(C)) ≤ 3
π

log(4g + 3).

In other words, for g ) 0 a Jacobian has a period of unusually short length.
Our main result states that the Seshadri constant of A is bounded below

in terms of the mimimal length of a period:
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Theorem. One has the inequality

ε(A,Θ) ≥ π

4
m(A,Θ).

Note that in general (and maybe always) the inequality is strict, as one
sees already in the one dimensional case.

This inequality has a number of pleasant consequences. In the first
place, combining the Theorem with the bound (BS1) of Buser and Sarnak,
we obtain the

Corollary. Let (A,Θ) be a very general principally polarized abelian vari-
ety. Then

ε(A,Θ) ≥ 2
1
g

4
g√

g! ≈ g

4e
.

The hypothesis on A means that the inequality is valid off the union of
countably many proper subvarieties of the moduli space Ag. In the approx-
imation, which holds for g ) 0, we are ignoring the factor of 21/g. Observe
that this lower bound differs from the upper bound ε(A) ≤ g√g! by a factor
of less than 4. It would be interesting to know whether ε(Avery general) =
(g!)1/g for large g.2

Now let C be a compact Riemann surface of genus g ≥ 2, and as above
let (J(C),ΘC) be its polarized Jacobian. It is rather easy to obtain upper
bounds on the Seshadri constants of J(C):

Proposition. (i). One has

ε(J(C),ΘC) ≤ √
g.

(ii). Suppose that C can be expressed as a d-sheeted branched covering
φ : C −→ P1. Then

ε(J(C),ΘC) ≤ gd

g + d − 1
.

For hyperelliptic curves (when d = 2), the inequality (ii) was established
by Steffens [S]. Combining statement (i) and the Theorem, one arrives at
an elementary new proof that a Jacobian has a period of small length,
although the specific inequality that comes out is not as strong as (BS2).
On the other hand, we see from (ii) that if C is a d-sheeted covering of P1,
then in fact

m(J(C),ΘC) ≤ 4d

π
.

2Proposition 3 of [S] asserts that equality never holds, but the proof is erroneous (a
circumstance for which the present author must share some culpability).
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This seems to be new. In the other direction, Buser and Sarnak construct
examples of curves to show that the supremum of m(J(C)) on the moduli
space Mg is ≥ c · log(g), where c is a small positive constant. Hence the
Seshadri constant ε(J(Cvery general)) of the Jacobian of a very general curve
satisfies the same inequality (with a slightly different constant). It would
be interesting to know how ε(J(Cvery general)) actually grows with g. It is
also tempting to wonder to what extent small Seshadri constants might
characterize Jacobians among all irreducible p.p.a.v.’s.

I am grateful to L. Ein, M. Nakamaye and M. Thaddeus for valuable
discussions. I’d also like to acknowledge my debt to the papers [Deb] and
[Xu1], through which I became aware of [BS] and [McDP] respectively.

§1. Proofs of Theorem and Proposition

The Theorem is a simple consequence of the construction of the symplec-
tic blowing up of a point, as explained for example in the paper [McDP] of
McDuff and Polterovich. The basic fact, which is implicit in [McDP], is a
relation between Seshadri constants and radii of symplectically embedded
holomorphic balls. This connection was exploited in a related but more
sophisticated manner in [McDP].

We start by fixing notation. In Cn with coordinates zj = xj +iyj , denote
by

ωstd =
∑

dxj ∧ dyj =
i

2

∑

dzj ∧ dzj

the standard symplectic form. Write B(λ) ⊂ Cn for the open ball of radius
λ centered at the origin:

B(λ) = {z ∈ C
n | |z|2 < λ2}.

We view B(λ) as a complex manifold, and also as a symplectic manifold
via ωstd.

Now let X be a smooth projective variety of dimension n, L an ample
line bundle on X, and ωL a Kähler form3 on X representing c1(L). We view
(X, ωL) as a symplectic manifold. Given x ∈ X we define a real number
λ(x) = λ(ωL, x) ≥ 0 by looking for the largest radius λ > 0 for which there
exists a holomorphic and symplectic embedding

(*) j = jλ : (B(λ), ωstd) ↪→ (X, ωL) with 0 -→ x.

More precisely, if there is no λ > 0 for which an embedding (*) exists, set
λ(x) = 0. Otherwise, put

λ(ωL, x) = sup {λ > 0 | ∃ holomorphic and symplectic jλ as in (*) } .

3I.e. a closed positive (1, 1) form.
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Main Lemma. One has the inequality

ε(L, x) ≥ πλ(ωL, x)2.

By way of proof, it would probably be almost enough just to refer to
[McDP], (5.1)-(5.3). But since the lemma isn’t stated there explicitly, and
since it involves some ideas that are not standard algebro-geometrically,
we will summarize the argument for the benefit of the reader in §2. In the
meantime, we grant the lemma.

The rest of the proofs are quite immediate:

Proof of Theorem. Let π : V −→ A be the universal covering, and as above
let H be the Hermitian form on V determined by Θ. In the natural way, we
may view the imaginary part ω = im H as a symplectic form on V , which
is in fact the pull-back ω = π∗ωΘ of a Kähler form ωΘ on A representing
c1(OA(Θ)). We fix a basis of V with respect to which H is the standard
Hermitian form

H(v, w) = tv · w

on Cg. Then taking zj to be the corresponding complex coordinates, one
has

(*) ω = π∗ωΘ = ωstd,

and H(x, x) = |x|2 is just the usual Euclidean length. In particular,

m(A) = min
x∈Λ−{0}

{

|x|2
}

.

Now let λ =
√

m(A)/2. Then given any two points x, y ∈ B(λ) one has
|x − y| < 2λ =

√

m(A). Therefore no two points of B(λ) are congruent
(modulo Λ), and consequently the composition

jλ : B(λ) ↪→ V
π−→ A

is an embedding. But jλ is of course holomorphic, and thanks to (*) it is
symplectic as well. Therefore

λ(ωΘ, 0) ≥
√

m(A)
2

,

and the Theorem follows from the Main Lemma. !
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Proof of Proposition. We assume to begin with that C is non-hyperelliptic.
Consider the subtraction map

s : C × C −→ J(C), (x, y) -→ OC(x − y) ∈ Pic0(C) = J(C),

and let Σ ⊂ J(C) be its image. It is elementary and well known (cf.
[ACGH, pp. 223, 263]) that if C is non-hyperelliptic, then s is an isomor-
phism off the diagonal ∆ ⊂ C ×C, and blows ∆ down to the origin 0 ∈ Σ,
which is a point of multiplicity 2g− 2. Moreover ∆ is the scheme-theoretic
inverse image of the singular point 0 ∈ Σ. The required inequalities will
follow from some computations in the intersection ring of C × C. To this
end, let F1, F2 ⊂ C×C be the preimages of a point of C under the two pro-
jections. Then working with numerical equivalence of divisors, one checks
that

s∗(Θ) ≡ (g − 1)(F1 + F2) + ∆

(cf. [R]). It follows with a calculation that the degree of Σ with respect to
Θ is

degΘ(Σ) = Θ2 · Σ =
(

(g − 1)(F1 + F2) + ∆
)2

= 2g(g − 1).

Then by [Dem, (6.7)]:

ε(J(C),Θ) ≤

√

degΘ(Σ)
mult0Σ

=

√

2g(g − 1)
2g − 2

=
√

g.

Turning to statement (ii), let L = φ∗OP1(1). Then there is an effective
divisor Γ ⊂ C × C with

Γ ∈ |pr∗1L ⊗ pr∗2L ⊗OC×C(−∆)|.

Geometrically, for instance, we may realize Γ as the closure of Γ0 = {(x, y) |
x 2= y, φ(x) = φ(y)}. Now if ε = ε(J(C),OJ(Θ)), then s∗(Θ) − ε · ∆ is nef
on C × C. Hence

Γ · (s∗(Θ) − ε∆) =
(

d(F1 + F2) − ∆
)

·
(

(g − 1)(F1 + F2) + (1 − ε)∆
)

≥ 0,

and with another calculation this leads to the second assertion of the Propo-
sition. Finally, if C is hyperelliptic the only thing that needs proof is state-
ment (ii) with d = 2, and this follows by looking at the image in J(C) of
the curve Γ just constructed. !
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§2. Sketch of proof of Main Lemma

Finally, for the benefit of readers not versed in symplectic matters, we
outline the proof of the Main Lemma. We follow [McDP], §5 (also pp.
414 ff), quite closely. The essential point, which seems to go back at least
as far as [GS], is to construct explicitly a Kähler form on the blow-up
Bl0(Cn) which agrees with the standard form off a ball of specified radius.
The presence of a symplectically embedded holomorphic ball allows one to
carry over the local construction to a global setting, and then the inequality
of the Main Lemma follows from the positivity of the form so constructed.

Turning to the details, let

V ⊂ C
n × P

n−1

be the blowing up of 0 ∈ Cn, embedded in the usual way as an incidence
correspondence. Write

f : V −→ C
n, q : V −→ P

n−1

for the projections, so that f is the blowing-up, and q realizes V as the total
space of the line bundle OPn−1(−1). Denote by V (λ) the inverse image of
the ball B(λ) ⊂ Cn:

V (λ) = f−1B(λ) ⊂ V,

so that V (λ) is an open neighborhood of the exceptional divisor E =
Pn−1 ⊂ V . Finally, let σ be the usual Fubini-Study Kähler form on Pn−1,
normalized so that

∫

P1 σ = π, the integral being taken over a line in Pn−1.
This normalization is chosen so that if S = S2n−1 ⊂ Cn is the unit sphere,
and κ : S −→ Pn−1 is the Hopf map, then κ∗σ = ωstd|S.

The crucial ingredient is the following

Basic Local Construction. Fix λ > 0. Given any small η > 0, there
exists some 0 < δ % 1, plus a Kähler form τ = τ(λ, η) on V such that

(i). τ = f∗(ωstd) on V − V (λ(1 + η));
(ii). τ = f∗(ωstd) + λ2q∗(σ) on V (δ).

In other words, τ coincides with the standard Kähler form on Cn off a
ball of radius (a tiny bit larger than) λ, whereas in a neighborhood of the ex-
ceptional divisor, we are “twisting” by a form representing πλ2q∗c1(OPn−1(1)).
This is an extremely slight variant of [McDP, (5.1)], proved exactly as in
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[McDP, (5.2), (5.3)], and we refer the reader to the very clear exposition
there.4 See also [McDS, §6.2].

Given this local construction, the proof of the Main Lemma is rather ev-
ident. Let f : Y = Blx(X) −→ X be the blowing up of X, with exceptional
divisor E ⊂ Y , and fix any λ < λ(ωL, x). It is enough to show that

(*) the R-divisor class f∗(c1(L)) − πλ2[E] is nef on Y .

To this end, fix 0 < η % 1 so that λ · (1 + 3η) < λ(ωL, x). We have a
holomorphic and symplectic embedding

(**) B(λ · (1 + 3η)) ↪→ X,

and so for ν < λ · (1 + 3η) we can view the local model V (ν) as being
embedded in Y as a neighborhood of the exceptional divisor. Thanks to
property (i) and the fact that the embedding (**) is symplectic, the basic
local construction guarantees the existence of a Kähler form ωL on Y ,
agreeing with ωL off V (λ(1+2η)), and being given by (ii) in a neighborhood
V (δ) of E. Since ωL is Kähler, and in particular positive, (*) will follow
once we know that its cohomology class satisfies

(***) [ωL] = f∗[ωL] − πλ2[E] = f∗c1(L) − πλ2[E].

But ωL − f∗ωL is supported in a small neigborhood of E, and then (***)
follows easily using (ii) and the normalization of σ. !

4In brief, choose a monotone increasing smooth function φ(r) such that φ(r) =√
λ2 + r2 for 0 < r < δ " 1, and such that φ(r) = r for r > λ(1 + η), and then

consider the smooth mapping

F : C
n − {0} −→ C

n, F (z) =
φ(|z|)
|z|

· z.

Then τ = f∗F ∗ωstd, extended over E by (ii), has the required properties.
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