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Let C be a compact connected Riemann surface of genus g > 2, denote by Cp the mth
symmetric product of C, and consider the Abel-)acobi map

u: Cn > J(C),

where J(C) is the Jacobian of C. The derivative of u determines a homomorphism

du : B¢y, >u* 8

of coherent sheaves on Cy, Wwhere as usual ©y denotes the tangent sheaf of a complex
manifold X. In the course of his celebrated investigation (K1) of the deformation theory of
symmetric products, Kempf computed HYCp ,©c,.) and analyzed the map HYdu) induced
by du. Hisresult is that H'(Cp ,B8cp) =H'(C, @3 . and that H'(du) is identified with the
canonical homomorphism HY(C, ®c) —> H'(C, G¢) @ H'(C, &¢) dual to the multiplication
HO(C, Q) @ HUC, Q) > HO(C, Q?), Q being the canonical bundle on C. In particular, it
then follows from Noether's theorem that H'(du) fails to be injective if and only if C is
hypereiliptic.

The purpose of this note is to carry out the analogous computations for higher
cohomology groups. Surprisingly, we find that the answer involves the syzygies of canonical
curves,

To give precise statements, we start with some notation. Let M = M denote the kernel
of the evaluation homomorphism HO(C, Q)®G¢ > Q, and write Q=Qp = M*, sothat Q
is a vector bundle of rank g-1 on X. Making the identification H'C, &¢) = HY(C, Q)*, one
thus has an exact sequence

0

> Oc >HUC.,Gc)® Q¢ >Q >0
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90 Lazarsfeld

of vector bundles on C, which in turn gives rise to

o 0 —> AKlge 8 —> AKHI(C, 60) 8 6 ——> Akg——> 0.

In technical terms, we may summarize the result of our computation in the following

Theorem. If m > k and k <g-1, then there is a canonical isomorphism

B Cp . B¢y} = H'(C, AFTQe 6p),

and the map H*(aw) : HX(Cp , 8C,) —> H¥(Cm .u* ©)(()) is identified with the
homomorphism  H'(C, Ak 10 @ &) —> AKHI(C, ©¢) ® HIC, ©¢) determined by ().

A more picturesque formulation of this result involves the syzygies of the canonical
embedding C € P! of C. Recall (c.f. [GL1] or [L1]) that one says that the canonical bundle Q
satisfies property (Np) if roughly speaking the first p steps in the minimal graded free
resolution of the homogeneous ideal of C C P8B! are as simple as possible. Referring to [GL1]
or [L1] for the precise definition, suffice it to say here that Q satisfies (Ng) iff Q is
normally generated; (Ny holds iff Q is normally generated and in addition the homogeneous
ideal IC /p8-1 is generated by quadrics; (N,) holds iff (N;) does, and the module of syzygies
among quadratic generators Q;j € IC /P8-| is generated by relations of the form ZLjQj =0
where the Lj are linear polynomials; and so on. A well-known conjecture of Green’s [Gl]
asserts that least value of p for which (Np) fails for Q is equal to the Clifford index Cliff(C)
of C. (See[L2] for a recent survey of this and related conjectures.)

It is standard and elementary (consult [GL2},[L1] or [PR}) that the syzygies of Q are
governed by the exact sequences (*)g. Specificaily, (Nx) holds for Q if and only if the
homomorphism H'(C, AKQ @ &) ——> A¥lyg, Oc)® H'(C, ®¢) determined by (%)g+1 is
injective. Hence one has the

Corollary. If k <m and k<g-1, then Hk(du) fails to be injective if and only if property
(Ng-1) fails for the canonijcal bundle Q.

So for example, H2(du) fails to be injective if and only if C is Petri-exceptional. The Corollary
helps to explain some of the computations appearing in [K2] and [Muk]. We hope that it may
eventually open the door to some progress on computing the syzygies of generic canonical
curves. Some other, more geometric, variants of the Theorem and its Corollary appear in §3.

The reader will recognize my debt to Kempf’s paper [K1]. I am also grateful to L. Ein, M.
Green, G. Kempf, M. Schacher and C. Voisin for valuable discussions.

§l. A Lemma on Cohomology and Galois Coverings

The purpose of this section is to record an elementary result (Proposition 1.1} concerning
invariant cohomology classes on Galois coverings in characteristic zero. The fact in question is
certainly known in much greater generality (c.f. [Tohukul), but we have been unable to find a
suitable reference for the particular statement we need. Therefore, for the benefit of the
reader, we give here an elementary direct argument.
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Let £:X >Y be a finite surjective mapping of complex algebraic varieties. Recall
that one says that f is Galois with (finite) group G if G acts on X by automorphisms
commuting with f, and if the sheaf Gy of germs of functions on Y consists of the G-
invariant germs of sections of Oy . In other words, Y = X/G.

Proposition 1.1. Let f: X—>Y be a Galois covering of complex algebraic varieties with group
G. and set A =T(Y,G®y). Let L be aline bundleon Y, sothat f*L isa G -bundle on X,
and_consider the corresponding action of G on the A-module Hi(X, f*L). Then there is a
canonical isomorphism

R

HI(Y , L) > Hi(x,r1L)C,

where the space on the right is the submodule of invariants of the G-module Hi(X, f*L).

Proof. Since f is finite (and hence affine) we have using the projection formula a canonical
identification

) Hi(X,f*L) = Hi(Y, L&f.0y),

with G- module structure arising from the natural action of G on the sheaf f,0x on Y.
Choose an affine open covering U={Uy} of Y, andlet C=C(U, Lef,Oy) be the
corresponding Cech complex of A-modules computing the groups on the right in (*). G acts on
this complex by chain homomorphisms. Since Gy = f*GxG we see that  Hi(Y , L) = Hi(cO),
where CC C C denotes the subcomplex of G-invariants. Therefore the assertion of the
Proposition boils down to the statement that the canonical map Hi( ¢G) —> Hi(¢)0 isan
isomorphism. But this is the content of the following Lemma.®

Lemma 1.2. Let k be a field of characteristic zero, let A be a commutative k-algebra, let G
be a finite group, and let C=C be a complex of AlG]-modules. (L.e. C is a complex of A-
modules on which G acts by chain homomorphisms.) Denote by CG C C the subcomplex of
G-invariants. Then the natural A-module homomorphism

Ri( ¢0) > Hi(C)°

is an isomorphism.
Proof. As A is an algebra over a field of characteristic zero, one can average over G 1o see
that the left exact functor M —> MC on A[G)-modules is right exact. Since evidently

Bi( ¢© )=Bi(C )6 and A ¢G )=7i( )Y, taking invariants in the exact sequence
6 —> Bi(C) —> Zi(C) —> HI(C) —> 0 vyields the required isomorphism. B

We will apply Proposition 1.1 in the following relative setting:

Coroliary 1.3. Let 1:X >Y be a Galois covering of complex algebraic varieties, with group
G. Consider the commutative diagram

xxs .&.) YXS

AN
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where S is some (complex algebraic) variety and a and b are the projections on the first

factors. If L is aline bundleon Y xS, then one has a canonical isomorphism

RibdL) = Rlad (1" )G,

where the term on the right is the G - invariant subsheaf of the G-sheaf Rig,d (£x1)*L ).

Proof. The assertion is local on S, so we may suppose that S = Spec(A) is affine. Then
Rib,{ L) is the sheaf associated to the A - module H¥YxS,L) and simifarly for

Ria{ (fx1)*L ). Therefore the Corollary foliows by applying Proposition 1.1 to the Galois
covering f x1:XxS >YxS.m

§2. The Computation

We keep notation as in the Introduction: thus C is a compact connected Riemann surface
of genus g > 2, and Q is the vector bundle occurring in the statement of the Theorem.

Lemma 2.1. (Compare [K1], p. 326].) Let A CCxC be the diagonal, and denote by
p: CxC > C the projection onto the first factor. Then

ROp.Gcxc(A) = O¢ and  Rl'p.Scxc(A)=Q.

Proof. This follows from the exact sequence 0 —> G¢xg —> O¢gxc (A ) —>O¢—>0
upon taking direct images. 8

Consider now the universal divisor Dy C Cx Cp of degree m, so that Dy = CxCp-1,
and let p: CxCp > C be projection onto the first factor.

Proposition 2.2. One has a canonical isomorphism

Rpu { Ocxc g Dm)) = AKe.

Proof The idea is to apply Corollary 1.3. To this end, denote by C® = C¢x..xC the m- fold
Cartesian product of C, and write r: cm > Cpy for the canonical map, sothat r isa
Galois covering, with group the symmetric group S, on m objects. Then one has a
commutative diagram

cxed X0 cxgy

AN

where p and q are projections to C. Corollary 1.3 vyields first of ail:
(2.3) R¥pu (Oxcy(Dm)) = R¥q (1x0)*O¢xc (D) 1M

To explicate the sheaf on the right, consider the maps

m = lxprj: CxCB >CxC,
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pri being projection onto the ith factor. Then

m »*
2.4 (1 x )y Oprx Dm) = ® 1, GCx (A)
(2.9) Cx Cgp(Dm & 7 Oexcla)
Set .
R0=6¢, R'=Q, and RI=0 for j=0 or [

so that the Rj are the sheaves appearing in Lemma 2.1. Since the direct images Ri are
locally free, the Kunneth formula [(EGA 111.6.7.8] applies to (2.4) to give

25) REQ( (1x0)* Ocxgy(Dm)) = @ (& R').
jit..-+m =k -l

Let F denote the direct sum of sheaves appearing on the right in (2.5). Each summand of F is
naturally isomorphic to TKRY © TR KRO): fet & : TER!) © TR K(RO)}—> F denote the
diagonal map. The action of Sy on F is suchthat o €Sy carries the summand
Rle...eRm of Fto R’O(ﬁ&...@R’C’(m) . Hence the Sy invariant subsheaf Fom of P
is the image under § of TER)SK @ TR KRO)Sm-k, Now RO = G¢, so we may identify each
summand of F with Tk(R‘). and then P°m = Tk(R‘)Sk. But the resulting diagonal map

m
>F = qu* .® TT:GCx C(A)

i-1
is alternating, since it is given by a sum of fibre-wise cup products. Hence

8 : TXR!) = R'®...0 R

P = AKR = AKg,
proving the Proposition. B

Proof of the Theorem. As above, let Dy C CxCp be the universal divisor of degree m, so
that Dy = CxCp-y via the map

b’IC"Cm—l >c"Cm
(P,D) ——> (P,D+P).

Let f=fp : CxCp —>Cy denote projection onto the second factor. Then it is well known
(c.f. [K1)) that

@Cm = fxN

where N = Npp /CxCp, is the normal bundle to Dy, in CxCq . Furthermore, the sheaf
homomorphism du is identified with the connecting map

fiN >R« Ocxcy = H'C.GC) @0
determined by the exact sequence

(2.6) 0

> OCxCpy >OCxCpp( Pm ) >N >0.
But f|Dy is finite, and therefore

(2.7) H¥Cp . O¢y) = HDp . N).
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Moreover, Hk( du ) is identified with the composition
(2.8) B O . N) — BHC x Cp L O¢xc ) — HIC. 00 @ BY(Cy L O,y
arising from (2.6) and the Kunneth decomposition.

The next step is to push the exact sequence (2.6) down to C. To this end, we use from
[K1, p. 321} the fact that

¥*N = p*@¢cef0cy (Dp-1),

where (somewhat abusively) we are writing p and f for the projections of Cx Cy-| ontoits
first and second factors. Recalling that Hk(Cm . Gcm) = aky(c , 8¢), and applying Proposition
2.2, the push-forward of (2.6) becomes

(2.9) Rk—lp,‘N —> Rkp“ OCxCpy — Rkp* OCxCpp( Dm )
I Il Il
ece Akl AKHIC, 6¢) 86 Akg
The reader may check that under the indicated identifications, this is nothing but the exact
* ; k
sequence (*)y from the Introduction. [One analyzes the map R PxOCxCy >

R px chcm( D ) using the argument of Proposition 2.2.] In particular, (2.9) is a short
exact sequence.

As g(C) > 2, one easily verifies that HO(C, ®c®/\k0) =0 provided that k <g-1 (cf.
[GL2] or [L, §t]). Therefore, by the Leray spectrai sequence:

HKDg .N) = H'(C., acenk1Q)

when k <g-1, which proves the [irst statement of the Theorem. The analysis of Hk( du )
follows from (2.8) and (2.9). ®

§3. Variants
In conclusion, we state some variants of the the theorem and its corollary.
To begin with, fix an integer m < g-1. and consider the set

Cm"CZg—Z-m > Zm:{(D|E)|D+EEIK|}v

where K denotes a canonical divisor on C. There is a tautologous branched covering

> 1K= p8l

f:fm ZZm

which takes the pair of divisors (D, E) to the canonical divisor D+E. One may think of Zy as
the scheme parametrizing ail possible ways of writing a canonical divisor as a sum of two
effective divisors, of degrees m and 2g-2-m respectively. Let L = f*Opg-1(1) be the line
bundle on Zy defining the covering.
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Proposition 3.1. Fix an integer k <m - 1, and assume that property (Ni-1) holds for the
canonical bundle Q. Then (Ng) is satisfied if and only if

dim K2y L) = g@) . (i__ll)‘(ZkH—?;g)

Proof. Let N denote the cokernel of the sheaf homomorphism du, so that one has an exact
sequence

du
0

>N

>HYC, 8¢) ® B¢y >0

> @Cm

of sheaves on Cpy . Then Zy = P(N), and the map f: Zp
evident way from this sequence. We claim that:

> PHNC , ®) arises in the

*) Rim@r]p(N)(l) =0 for ix2}

where 10 : PH'(C, ®¢) x G —> Cpy i the projection. In fact, write P = PHYC, G¢). Then
P(N) C P xCy is defined scheme-theoretically by the vanishing of the natural map

() m*@g, —> O p().

Since Iy = P(N)—> P is evidently finite, every component of P(N) has dimension

< g - 1. Therefore (**) exhibits P(N) C P xCp as a local complete intersection, and in
particular the Koszul complex determined by (**) is exact. The assertion (*) then follows by
chasing through that complex.

It follows from (*) that Hk(Zm ,L)= Hk(Cm ,N) for all k. By the hypothesis and the
main theorem, one has an exact sequence

0 —> H(Bg,) — H'OQ ® HK(G(,) — HKN) — BE*M@c,) — Hi(©Q @ HE (G y).
Hence again invoking the theorem one finds that (Ng) holds for Q if and only if

dim B, N) = dim H(O0) @ AKHIO() - dim HX(@c,).

Recalling that Hk(Cm v 8cy,) = H'(C, Ak-1Q ® @), the assertion now follows with a
computation. &

Finally, when m = g-1, the theorem ties up in an amusing way with the geometry of
the theta divisor on J(C), and in particular with some of the ideas used by Green in his
analysis [G2] of quadrics of rank four containing the canonical curve. We follow the notation of
[ACGH, Chapter VI, §4]. Assume henceforth that C is non-hyperelliptic, and let D CC -1 be
the locus over which the Abel-Jacobi map fails to be finite. Denote by L the pull-back to Cg—l
the pull-back of the principal polarization on J(C), sothat L =K 1+ Green noted that one can

view the second derivatives 926/3z;3zj of the Riemann theta function as sections of L |D,
thereby defining a map

f:Sym? H'(C, &) > HO(Cg_l .L®6p.
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Coroliary 3,2. If C is non-hyperelliptic, then f fails to be surjective if and only if C is Pelri-
exceptional, i.e (N;) fails for C.

Sketch of Proof. One has an exact sequence

> @Cg_l

where Ip denotes the ideal sheaf of D in Cg-l , and by the Theorem (N;) holds for C if and
only if the map

0

> u*0y0) >IpeL >0

H(u* @) = HYC.Gc) @ H'C, ) —> HYC,_, . Ipe L)

81"

is surjective. But referring to diagram (4.4) on p. 258 of {ACGH], one sees thai this is
equivalent to the surjectivity of . m

Remark. We suspect that the Corollary generalizes as follows. Set

VK =ker( HI(C, 00 @ AKHI(C, 60) —> AKIHYC, 00) ).

Then presumably there is a map fy: vk >HE ¢
then (Ng) should if and only if fy is surjective.

g-1° Gp®L), andif (Ng_y) holds,
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