Math. Ann. 249, 153-162 (1980) mm

© by Springer-Verlag 1980

A Barth-Type Theorem for Branched Coverings
of Projective Space

Robert Lazarsfeld
Department of Mathematics, Brown University, Providence, RI 02912, USA

Introduction

Let X be a non-singular connected complex projective variety of dimension n. In
1970, Barth [B1] discovered that if X admits an embedding X" ->P"*¢ of
codimension e, then the restriction mappings H'{(IP"*°, €)—H{(X, ) are isomor-
phisms for i<n—e. Our main result is an analogue of Barth’s theorem for
branched coverings of projective space:

Theorem 1. Let f:X"—1P" be a finite mapping of degree d. Then the induced maps
f* H(IP",C)-»H(X,C) are isomorphisms for i<n+1—d.

Observe that the conclusion is vacuous for d >n+ 1. On the other hand, as the
degree d becomes small compared to n, one obtains progressively stronger
topological obstructions to expressing a variety as a d-sheeted covering of IP".

The proof of the theorem relies on a basic construction which clarifies
somewhat the connection between subvarieties and branched coverings.
Canonically associated to a finite morphism f:X"—P" of degree d, there exists a
vector bundle E—P" of rank d— 1 having the property that f factors through an
embedding of X in the total space of E (Sect. 1). An important fact about coverings
of projective space is that these bundies are always ample. This leads one to
consider quite generally a smooth r-dimensional projective variety Y, an ample
vector bundle E~Y of ranke, and a non-singular projective variety X of
dimension n embedded in the total space of E:

X - E
N
Y.

Inspired by Hartshorne’s proof [H2, H3] of the Barth theorem, we show in Sect. 2
that under these circumstances one has isomorphisms HY(Y,C)— H'(X,C) for
i<n—e. This yields Theorem 1. And in fact, by taking E to be the direct sum of e
copies of the hyperplane line bundle on IP”, one also recovers Barth’s theorem for
embeddings X" - P*te,
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In Sect. 3 we give two applications to low degree branched coverings of
projective space by non-singular varieties. First we prove

Praposition 3.1, If f:X"—IP" has degree <n—1, then [ gives rise to an isomor-
phism Pic{P") S Pic(X).

Proposition 3.1 allows us to analyze the rank two vector bundle associated to a
triple covering, and we deduce

Proposition 3.2. If f:X"—" has degree three, and if n=4, then f factors through
an embedding of X in a line bundle over P".

This generalizes the familiar fact that a non-singular subvariety of projective
space having degree three and dimension at least four is necessarily a hypersurface.

It was shown in [G-L], where Theorem 1 was announced, thatif f:X"->P"is a
covering of degree <n, then X is algebraically simply connected. Deligne [D] and
Fulton [F] subsequently proved that in fact the topological fundamental group of
X is trivial. This result, plus the analogy with Larsen’s extension of the Barth
theorem [L,B2], lead one to conjecture that in the situation of Theorem 1 the
homomorphisms f, :7X)—n(IP") are bijective for iSn+1-—d. Deligne [D] has
recently stated a conjecture which — at least in certain cases — would imply this
homotopy version of Theorem 1.

Excellent accounts of Barth’s theorem and related work may be found in
Hartshorne’s survey articles [H2] and [H3]. Sommese [S] emphasizes the role
played by ampleness in Barth-type results. Along different lines, Berstein and
Edmonds [B-E] have obtained an inequality relating the degree of a branched
covering f:X—Y of topological manifolds to the lengths of the cohomology
algebras of X and Y. They sketch some applications to branched coverings of P" by
algebraic varieties in Sect. 4 of their paper.

0. Notation and Conventions

0.1. Except when otherwise indicated, we deal with non-singular irreducible
complex algebraic varieties. By a branched covering, we mean a finite surjective
morphism.

0.2. H*(X) denotes the cohomology of X with complex coefficients.

0.3. If E is a vector bundle on X, IP(E) denotes the bundle whose fibre over xeX is
the projective space of one-dimensional subspaces of E(x). We follow Hartshorne’s
definition [H 1] of an ample vector bundle.

1. The Vector Bundle Associated to a Branched Covering

Consider a branched covering f : X — Y of degree 4. As we are assuming that X and
Y are non-singular, f is flat, and consequently the direct image f, 0y is locally free
of rank d on Y. The trace Tryy: f,0y— 0y gives rise to a splitting

f*@x=(9y@F s
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where F=ker(Try,;y). We shall be concerned with the rank d—1 vector bundle
E=F"

on Y. We refer to E as the vector bundle associated to the covering f. Recall that as
a variety, E can be identified with Spec(Sym,(F)).

Lemma 1.1, The covering f: X —Y factors canonically as the composition
X-E-Y,

where E—Y is the bundle projection, and X «»E is a closed embedding.

Proof. The natural inclusion F— f, 0y of ¢y-modules determines a surjection
Symy(F)— f,0y of Oy-algebras. Taking spectra, we obtain a canonically defined
embedding X - E over Y. QED

When f:X- Y is a double covering, for example, the lemma yields the familiar
representation of X as subvariety of a line bundle over Y.

A basic property of coverings of projective space is that the vector bundles
obtained by this construction are ample:

Proposition 1.2. Let E be the vector bundle on P" associated to a branched covering
[:X"—P". Then E(— 1) is generated by its global sections. In particular, E is ample.
Proof. 1t suffices to show that E(— 1) is O-regular, ie. that

H(IP", E(—i—1)=0 for i>0
(cf. [M1, Lecture 14]). It is equivalent by Serre duality to verify
(x) H{P" F(i—n)=0 for i>0,
where as above F=E". When i=n, (#) is clear, since

HO(X, Ox) = H(P", f,0) = HP", 0,.) ® H(P", F)

and HX, Oyx)=H°(P", 0p.)=C. In the remaining cases 0 <i<n, we note similarly
that

H"~H(P", F(i—n)=H""(P", f,O (i —n))

:Hnmi(er*(gnz"(i_ n)) .
But for 0<i<n, f*@p.(i—n) is the dual of an ample line bundle on X, whence
HY{X *Opnl(i— 1)) =0 by the Kodaira vanishing theorem. QED.

We remark that the ampleness of the vector bundle associated to a branched
covering f:X Y has a striking geometric consequence, concerning the ramifi-
cation of /. Specifically, consider the local degree

e (x)=dimg (O, X/ *m )

of f at xeX, which counts the number of sheets of the covering that come together
at x (cf. [M2, Appendix to Chap. 6]).
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Proposition 1.3. If the vector bundle associated to a branched covering [ X"—>Y" of
projective varieties is ample, then there exists at least one point xeX at which

e {x)zmin(degf,n+1).

So for instance if degf =n+1, then n+1 or more branches of the covering must
come together at some point of X. For coverings of IP*, the existence of such higher
ramification points was proved with Gaffney [G-L] as a consequence of the
Fulton-Hansen connectedness theorem [F-H]. (The definition of e (x) adopted in
the more general setting of [G—-L] reduces to the one stated above thanks to the
fact that we are dealing with non-singular complex varieties.)

Sketch of Proof of (1.3 ). The argument given in [G-L, Sect. 2] goes over with only
minor changes once we know the following:

If S is a possibly singular integral projective variety of dimension =1, and if

g:5—Yis a finite morphism, then Z=X xS is connected.

We will show that in fact h°(Z,0,)=1. To this end, let f:Z—S denote the
projection. Then

f;@zzg*f*@ng*@y@g*F,
where F is the dual of the vector bundle associated to f. Since g is finite and Fis

ample, g*F is the dual of an ample vector bundle on the positive-dimensional
integral projective variety 5. Therefore h%(S, g*F)=0, and

h(Z,0,)=h(S, [.0,) = h(S,0)=1. QED

2. A Barth-Type Theorem

Qur object in this section is to prove the following theorem. Recall that we are
dealing with irreducible nonsingular varieties.

Theorem 2.1. Let Y be a projective variety of dimension n, and let E—Y be an ample
vector bundle of rank e on Y. Suppose that X C E is an n-dimensional projective variety
embedded in E. Denote by f the composition X —+E—Y. Then the induced maps

[ H(Y) - HX)
are isomorphisms for iSn—e.

Note that f, being affine and proper, is finite.

In view of (1.1) and (1.2), Theorem 1 stated in the introduction follows
immediately. More generally, we see that if Y” is projective, and if f:X"—Y"is a
branched covering of degree d such that the vector bundle associated to f is ample,
then the homomorphisms f*:H(Y)—H'X) are bijective for i<n+1—d. For
example, if f: X" Y" is a double cover branched along an ample divisor on ¥, then
H(Y) SH(X) for ign—1.

Remark 2.2. Theorem 1 is sharp “on the boundary of its applicability”, i.e. there
exists for every n>1 a covering f:X"— P" of degree n+ 1 with H(X)#+0. Assuming
nz2, for example, start with an elliptic curve CCP" of degree n+ 1, with C not
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contained in any hyperplane, and consider the incidence correspondence
X={(p,H)lpe H}SCx P"™*.

X is a IP*~ *-bundle over C, whence H'(X)=0, and the second projection gives a
covering f:X"—P"* of degree n+ 1. (The reader may find it amusing to check that
the vector bundie associated to this covering is isomorphic to the tangent bundle
of P") Similarly, if CCP" is a rational normal curve of degree n, we obtain an
n-sheeted covering f:X—-IP™ with dimH*X)=2. On the other hand,
Proposition 3.2 and Theorem 2.1 show that as one would expect, Theorem 1 is not
sharp for all d and n.

Remark 2.3. 1t follows from Theorem 1 that if f:X"—P" is a branched covering of
degree 4, and if §,TCX are (possibly singular) subvarieties such that codim S
+codim T<n+1—d, then S meets T (The first non-trivial case is when d=n—1,
the assertion then being that any two divisors on X must meet.) This result remains
true even if X is singular. For by [G-L, Theorem 1], there exists a subvariety RCX
of codimension <d — 1 such that f is one-to-one over f(R). And fIR)NfAS)Nf(T)is
non-empty for dimensional reasons.

Remark 2.4. Theorem 2.1 implies the Barth theorem for embeddings X* —P"**. In
fact, choose a linear space LEIP"* ¢ of dimension e~ 1, with L disjoint from X, and
consider the projection (IP"*¢— L)-1P" centered along L. The variety P"*¢— L is
isomorphic over P" to the total space of 0,.(1)@ ... ®U.(1) (e summands), and we
conclude from (2.1) that HY(IP")-=>H'(X) for i£n—e. But this is equivalent to
Barth’s assertion.

The remainder of Sect. 2 is devoted to the proof of (2.1). The argument is
inspired by Hartshorne’s simple proof of the Barth theorem [H2, p. 1020; H3,
p- 1477 and by Sommese’s demonstration of a related result [S, Proposition 2.67.

We assume henceforth that e<n. Let n:E=IP(E®1)—Y be the projective
completion of E. One has the commutative diagram

X SE
FAVINZ
Y,

where j denotes the composition of the given embedding X —E with the naturatl
inclusion ECE. Let é=c,(0x1))e HXE), and let nye H*¥(E) be the cohomology
class defined by X. The class ¢ represents the divisor at infinity in E [ie.
P(E)CP(E®D1)], and X does not meet this divisor. Hence

25) j*O=0.
We claim next that j*(5y)e H**(X) is given by
(26) j*(ny)=(deg f)c(f*E).

Indeed, in view of (2.5) it suffices to verify the formula

() nx=(degf) 3 ein* B
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To this end, note that the fundamental class [ X] of X is homologous in E to
(deg/)[Y], where YCE is the zero section. Hence = (deg f)ny, ny€ H?(E) being
the cohomology class defined by Y. Now if Q=a*(E@1)/0z— 1) denotes the
universal quotient bundle on E, then one has 1, =c,(Q), and (x) follows.

The key to the argument is having some control over the effect on H*(X) of
multiplication by j*#y). The requisite fact is provided by Sommese’s formulation
of a result of Bloch and Geiseker [ B~(] on the top Chern class of an ample vector
bundle:

(2.7) Let F be an ample vector bundle of rank e <n on a (non-singular, irreducible)
projective variety X of dimension n. Then multiplication by c¢(F) gives
surjections

Hn—e+!{X)_»er+e+i(X)
Jor [ =0,

See [S, Proposition 1.17] for the proof, which ultimately depends on the Hard
Lefschetz theorem.

These preliminaries out of the way, we conclude the proof of Theorem 2.1.
Note that it suffices to prove

f* IH"+E+I(Y)—->H"+8+I(X) is
surjective for [=0.

(*)

Indeed, H*(Y) injects into H*(X) for any generically finite morphism X"— Y”, and
so (2.1) is equivalent to (*) by Poincaré duality.
Consider the commutative diagram

Hn—e+lo() ix Hn+e+l(E)E7‘* Hn+e+l(Y)

\*wx) lj* /

Hn+e+l(X)

where j, is the Gysin map defined by Poincar¢ duality from
H,., (X)—H,, . (E) Since fis finite, f*E is an ample vector bundle on X, and it
follows from (2.6) and (2.7) that H"~¢*/(X)— H"*°*{(X) is surjective. Hence so also
is j*. But H*(E) is generated over H*(Y) by £e H*(E), and j* kills £ The surjectivity
of j* therefore implies the surjectivity of f*. This completes the proof.

Remark 2.8. We mention some additional results concerning the geometry of an
ample vector bundle E—P" of rank e. First, if X C E is a (non-singular) projective
variety of dimension a, then the maps HIP")— H'(X) are isomorphisms for i<2a
—n— e, The proof is similar to that just given, except that formuia (2.6} is replaced
by the observation that the normal bundle of X in E is ample. Along somewhat
different lines, the connectedness theorem of Fulton and Hansen [F-H] can be
used to prove an analogous result for ample bundles on P, from which one
deduces the following:

If 8 and T are irreducible but possibly singular projective subvarieties of E, then

(i) SNT is connected and non-empty if dimS+dimT=n+e+1;
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(1) S is algebraically simply connected if
2dimS=n+e+1.

In particular, if f:X"—IP" is a branched covering of degree d, with X non-
singular, then assertions (i) and (ii) apply with e=d—1 to subvarieties S, TCX.
Details appear in [Lz].

Remark 2.9. 1t is natural to ask whether in the situation of Theorem 2.1 the relative
homotopy groups n(E,X) vanish for i<n—e+1. At least when Y=IP", it secems
reasonable to conjecture that this is so. Assertion (ii) of the previous remark,
applied with S=X, points in this direction. Larsen’s theorem [L] provides
additional evidence.

3. Applications to Coverings of P" of Low Degree

We give two applications ol the results and techniques of the previous sections to
branched coverings f:X"—P" of low degree. We continue to assume that X is
irreducible and non-singular. The first result deals with Picard groups:

Proposition 3.1. If /:X"—P" has degree <n—1, then f*:Pic(P")—-Pic{X) is an
isomorphism.

Proof. A well-known argument (cf. [H3, p. 150]) shows that the proposition is
equivalent to the assertion that f*:H*(P",Z)-H?*(X,Z) is an isomorphism.
[Briefly: one looks at the exponential sequences on IP* and on X, noting that
Theorem 1, and the Hodge decomposition yield H(X,04)=H?*(X,04)=0.]
Theorem 1 implies that H,(X,Z) has rank one. On the other hand, X is
algebraically simply connected ([G-L, Theorem 2]), whence H,(X,Z)=0. It
follows from the universal coefficient theorem that H%(X, Z)=Z. Finally, as f has
degree <n—1<2" f* must map the generator of H*(IP",Z) to the generator of
H*X,Z). QED

As a second application, we derive a fairly explicit description of all degree
three coverings f:X"—1P" with n=4. Specifically, we will prove

Proposition 3.2. Let f:X"—IP" be a triple covering. Denote by b the degree of the
branch divisor of f.

(i) If wy=f*Op.(k) for some ke Z, then ffactors through an embedding of X in a
line bundle L—1P", and conversely. In this case,

6deg(L)=0b.
(ii) The condition in (i) always holds if n=4.

By the branch divisor of a covering f:X"—IP" we mean the push-forward to IP"
of the ramification divisor of f.

Statement (ii) is a consequence of Proposition 3.1, so only (i) needs proof. The
method is to focus on the rank two vector bundle E on IP” associated to f (Sect. 1).
Lemmas 3.3 and 3.4 show that if w, = f*@,.(k), then E at least has the form that it
should if X is to embed in a line bundle. Finally we show that this implies that f
actually admits the indicated factorization.
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Lemma 3.3. Let L—P" be an ample line bundle, and let ZC L be a possibly singular
projective variety of dimension n embedded in L. Denoting by d the degree of the
natural map g:Z—P", one has

9,0,=00,@L7 '@ ... QL ™7,

Proof. Let n: L= P(L@® 1) P" be the projective completion of L. Considering Z as
a divisor on L, and noting that Z does not meet the divisor at infinity
P(LCP(LB1), we see that O(—Z)=0,(—d@n*L™% Using [H4,
Exercise 111.8.4] to calculate R'n, 07(—d), the assertion follows from the exact
sequence 00— Z}—0;—0,—0 upon taking direct images. QED

Lemma 3.4. Under the assumption of (i) of Proposition 3.2, the vector bundle E
associated to f has the form E=L@®L> where 6deg(L)=>b. Equivalently, f 0
=0 DL ®L?

Proof. By duality for f, one has f, wy =,.®(f,0,); while the hypothesis on wy
yields f oy ={f, 0x)(k). Writing I=k+n+1, we conclude the existence of an
isomorphism

(*) Opl~DBE(—)=0p®E".

Now the ramification divisor of f represents the first Chern class of f*0,.(I), and
one deduces the relation b=3l. Note that in particular, ! is positive. With this in
mind, it is a simple exercise to show using (+) that E=0,.(/2)®0,.(}). QED

Proof of 3.2. If f factors as stated, then X is a divisor on L, and hence wy = f*0O.(k)
for some ke Z. Conversely, suppose that wy is of this form. By (1.1) and (3.4) there
is then an embedding X —L@®L? over P". Let Z£ L denote the image of X under
the natural projection n: L& L2 L, and consider the resulting factorization of f:

X >LoL?
2 i
Z — L f=gop.
AV
IP'I

We will show that p is an isomorphism.

To this end, note first that p is birational. For if on the contrary deg p=3, then
g would be an isomorphism and f would factor through an embedding of X in
7~ }(Z), i.e. in the line bundle L2~ Z = P". But then using (3.3) to compute f, 0y, we
would arrive at a contradiction to (3.4). Hence g has degree 3, and upon comparing
the calculations of (3.3) and (3.4), one finds that

(#) 9,022 f,0x.

But this implies that p is an isomorphism. In fact, let # be the cokernel of the
natural inclusion 0;-p 0. It follows from () that HY%Z,F ®¢*0pdd))=0 for
d>» 0, and hence # =0. QED
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Remark 3.5. As a special case of Proposition 3.2 [with L= (@.(1)] one recovers the
well known fact that the only non-singular subvarieties of projective space having
degree three and dimension at least four are hypersurfaces. For coverings
[:X">P" of larger degree, however, the analogy with subvarieties does not hold as
directly. For instance, a non-singular projective subvariety of degree five and
dimension =7 is a hypersurface. On the other hand, one may construct in the
following manner five-sheeted coverings f:X"—IP", with n arbitrarily large, that do
not factor through line bundles. Let L=0,.(1), and consider the vector bundle 7: E
=L12@L3*-P". Then there are canonical sections SeI'(E,n*L?), TeI'(E,n*L?)
which serve as global coordinates on E. Choose forms Ae'(IP", L3), Be I'(IP", L),
and consider the subscheme X CE defined by the common vanishing of the
sections

ST+n*Ael'(E,=*L5)
S3+ T2 +n*Bel'(E,n*L5).

One checks that the natural map f:X"—P" is finite of degree five. X is connected
(at least when n=2), and for generic choices of 4 and B, X is non-singular. Finally,
the scheme-theoretic fibre of X over a point in V(4, B)C P” has a two-dimensional
Zariski tangent space, which shows that f cannot factor through an embedding of
X in a line bundle over IP". [ Alternately, this follows by (3.3) from a computation of

foOx:
f,03=0p®L 2OL 3 @®L *®L ]
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