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Introduction 

A considerable body of work has developed over the last few years loosely cen- 

tered about the notion of positivity in algebraic geometry. On the one hand, numer- 

ous results have appeared on what might be called the geometry of projective space~ 

the theme being the often remarkable special properties enjoyed by low codimensional 

subvarieties of, and mappings to, projective space (cf. [i], [27], [9], [ii], [15], 

[31], [43], [52]). These resu3tsdepend on the positivity of projective space itself, 

as manifested for example in various theorems of Bertini type. In another direc- 

tion, the general theory of positive vector bundles has recently been extended and, 

more interestingly, applied in various geometric situations #cf. [42], [12], [13] , [5~, 

[7]). Bridging these two groups of results, in a class all by itself, one has Mori's 

far-reaching proof of the Frankel-Hartshorne con~ ~cture ([35], [6]) • 

Our lectures at the C.I.M.E. conference were largely concerned with the geo- 

metry of projective space, and especially with the work of F. L. Zak on linear nor- 

mality ([43], [32]). In addition, we discussed a recent theorem of Z. Ran [39] 

related to Hartshorne's conjecture [27] on complete intersections. Most of this 

material has been surveyed elsewhere (cf. [23] , [ii], [52]), and we do not propose 

to duplicate the existing literature here. 

The present paper will rather constitute the notes to a course that we might 

have given at the Acireale conference, focusing on positive vector bundles and their 

applications. We start I§l) with an elementary overview of the general theory, 

emphasizing the similarities and differences between the cases of line bundles and 

vector btundles of higher rank. The remaining sections are devoted to expositions 

of several previously unpublished proofs and results. In §2 we give a simple topo- 

logical proof of a theorem guaranteeing that under suitable positivity and dimen- 

sional hypotheses a map of vector bundles must drop rank. We then sketch how this 

may be applied, along the lines of [12], to give a quick proof of (a slight general- 

ization of) a recent theorem of Ghione [16] concerning the existence of special 

divisors associated to a vector bundle on an algebraic curve. In §3 we us~ a 

theorem of Goresky-MacPherson [17] to prove a homotopy Lefschetz-type result for 

the zero-loci of sections of certain positive vector bundles (Thm. 3-5)- We 
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deduce from this the homotopy analogue of the Barth-type theorem for branched cover- 

ings of projective space given in [31]. Finally, in §4 we show how Mori's arguments 

in [35] lead to the proof of an old conjecture of Remmert and Van de Ven, to 

the effect that if X is a smooth projective variety of dimension ~ i which is 

the target of a surjective mapping f : ~n ~ X, then X is isomorphic to ~n 

There are many interesting questions related to this circle of ideas, and the 

reader will find open problems - some well-known - scattered throughout the paper. 

It may seem at this point that the subject of these notes bears little rela- 

tionship to the theme of the conference, complete intersections. In reality~ how- 

everj there is an intimate connection. Suppose, for example~ that X c ~n is the 

complete intersection of hypersurfaces FI~...,F e of positive degrees dl,...~d e. 

If we think of F. as being the zero-locus of a section s. of the line bundle 
l l 

~pn(di)' then it is natural to view × as the zero-locus of the section 

s = (sl,...,Se) of the rank e vector bundle E = @ n(dl) ~ "'" @ ~ n(de). But 

E is the very prototype of a positive, or ample, vector bundle, and in fact most 

of the basic results about complete intersections (e.g. Lefschetz-type results) 

are special cases of general results for positive vector b~dles (e.g. (1.8) and 

(3-5) below). In this sense, the theory of ample vector bundles is a natural gener- 

alization of the study of complete intersections in projective space. 

We work throughout with algebraic varieties over the complex numbers, although 

the results of §2 remain valid over an arbitrary algebraically closed ground field. 

If E is a vector bundle on a variety X, we denote by ~(E) the projective 

bundle of one-dimensional subspaces of E. We shall follow Hartshorne's definition 

[24] of sm. ample vector bundle. The reader should be aware that there is a great 

deal of conflicting terminology in the literature; in particular, ample vector 

bundles are called "cohomologicallypositive" in [19 ] (where "ample" is used in 

another sense). 

I'd like to take this opportunity to ex~press my gratitude to the many Italian 

mathematicians - and especiaily to G. Ceresa, L. Chiantini~ N. Chiarli, C. Cilibert% 

A. Collino, S. Greco~ P. Maroscia, and E. Sernesi - who made my stay in Italy a 

valuable and enjoyable one. 
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~i. Ample Line Bundles and Ample Vector Bundles. 

Our purpose in this section is to give an elementary survey of the general 

theory of ample vector bundles. 

We start by reviewing the basic facts about positivity in the line bundle case. 

Let X be an irreducible projective variety, and let L be a line bundle on X. 

Recall that L is very ample if there is a projective embedding 

X c ]~N 

such that L is the restriction to X of the hyperplane line bundle on ~N 

L ~ ~N (1) IX. 

This is perhaps the most appealing notion of positivity from an intuitive point of 

view, but unfortunately it is technically rather difficult to work with. For ex- 

ampl% even when X is a smooth curve, it can be subtle to determine whether or not 

a given line bundle is very ample - the canonical bundle is a simple case in point. 

It is found to be much more convenient to deal instead with a somewhat weaker 

notion. Specifically, recall that L is ample if L ®k is very ample for some 

k > 0. What this definition may lack in intuitive content is made up in the simpli- 

city it yields. For example, if X is a smooth curve, then L is ample if and 

only if its degree is positive. Ample line bundles behave well functorially: if 

f : X ~Y is finite (eg. an embedding), and L is an ample line bundle on Y, 

. 
then f L is an ample line bundle on X. When X is smooth, amplitude is equiva- 

lent to Kodaira's differential geometric notion of positivity (cf [21]). 

There are essentially four basic theorems on ample line bundles. First, one 

has Serre's cohomological criterion: 

(I.i). A line bundle L o_~n X is ample if and only if for every 

sheaf S on X there exists a positive integer k(S) such 

that 

~i(x, 5® L®k) = 0 

for sll i > 0 8n___d k ~ k(S). 
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When X is smooth, one has the more precise: 

(1.2). Kodaira V.anishing Theorem: If L is ample, then 

Hi(X,L *) = 0 

for i < dim X - i. 

The basic topological fact is given by the 

(1.3). Lefschetz Hyperplane Theorem: Assume that X is smooth, 

and that L is an ample line bundle on X. Let 

s e 1 ~ (X,L) be a section of L, and let Z = Z(s) be 

the zero-locus of s. Then 

Vi(Z,Z) : 0 for i ~ dim X - i. 

A variant of (1.3) , which holds for arbitrary irreducible X, states that X - Z 

has the homotopy type of a CW complex of (real) dimension < dim X. When X - Z 

is smooth, this is a well known fact about affine varieties; the result in general 

was recently established by Ooresky-MacPherson [17] and by Hanm [92]. These 

authors also show that if X is a local complete intersection, then (1.3) itself 

remains true. 

Finally, one has the theorem of Nakai et al. which characterizes ample line 

bundles numerically: 

(I. 4) A line bundle L on X is ample if an d only if for every 

irreducible subvariety y c X the Chern number 

Cl(i )k ~y 

is strictly ~ositiv% where k = dim (Y). 

We refer to [26, Ch. i] or [21, Ch. i] for fuller accounts of the theory of 8mple 

line bundles. 

In the 1960's , a number of authors - notably Grauert [18], Griffiths [19] , and 
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Hartshorne [2~] - undertook to generalize the notion of ampleness to vector bundles 

of higher rank. One of the goals was to prove analogues for vector bundles of the 

basic theorems(l.l) - (1.4), and this led initially to a number of competing notions 

of positivity. (Indeed, the literature of the period is marked by a certain termin- 

ological chaos.) With the passage of time, however, it has become clear that the 

weakest of these definitions is also the most useful. The idea is simply to reduce 

the definition of amplitude for vector bundles to the case of line bundles. 

Suppose, then~ that X is an irreducible projective variety, and that E is 

a vector bundle on X of rank e. Following [24] one defines E to be ample if 

the Serre line bundle ~(E~ ) (I) on the projective bundle P(E*) is ample.* The 

first indication that this definition is the correct one is that it leads to various 

desirable formal properties (cf. [24]): 

(1.5) (i) A quotient of ~oample vector bundle is ample. 

(ii) A direct sum of vector bundles is ample if and only if each 

summand is. 

(iii) E is ample i<, and only if the sy~metFic power sk(E) i~s 

for some (or all) positive integer(s) k. If E and F 

are ample, then so is E ® F. 

(iv) If f : X ~Y is a finite map, and if E is an 8mple vector 

bundle on Y, then f*E is an ample vector bundle on X. 

If f is in addition flat, then the converse holds. 

The basic results (i.i) - (1.3) have good analogues for ample vector bundles: 

(1.6) A vector btmdle E on X is ample if and only if for every 

coherent sheaf ~ on X there exists a positive integer 

The presence of Io(E *) here, rather than ]P(F) , may be explained by the 
observation that if E = L is a line bundle, so that ]P(F) ~ io(E *) ~ ~, then 
(~]p(E.)(1) = L, whereas ~]p(E)(1) : L ~. 



k($) such that 

$5 

H i ( x , ~  e s k ( ~ ) )  ~ o 

f o r  i > o  and k ~ k ( S )  ([19], IS4]). 

The analogue of Kodaira's vanishing theorem (1.2) is due to Le Poitier [33]: 

(1.7) If X is smooth, and E is 8mple~ then 

Hi(X,E *) : 0 

for i < dim X - rk E. 

The strongest general Lefschetz-type result was proved by Sommese in [42]: 

(1.8) Assume that X is smooth; and that E is an ample vector 

bundle on X of rank e. Let s ~ ~(X,E) be a section 

of E, and let 

for i < dim X - e. 
- -  w 

Z = Z(s) be the zero-locus of s. Then 

Hi(x,Z;~) = 0 

Because Sommese's 8rgument deserves to be better kmown that it is~ we give the 

Proof. We will show, for arbitrarily singular irreducible 

(1.9) 

i > dim X + e. When for X 

schetz duality. 

Consider then the projective bundle 

X, that 

H i ( X  - Z; ~ )  := 0 

is smooth, the theorem as stated follows by Lef- 

: P(E*) ~ x. 

The Serre line bundle ~lp(E.)(1) is a quotient of It*E, 

tion s determines a section s* ¢ F(P(E*), @ (i)): 
p ~ )  

and so the given sec- 
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Let Z* c ~(E*) 

ly as follows. 

~s 

denote the zero-locus of s*. We may describe Z* very concrete- 

Thinking of P(E*) as the bundle of hyperplanes in E: 

P(E*) = [(x,A) IA ~ E(x) a cod i subspace], 

z *  = { ( x , A ) t s ( x )  ~ A]. 

a moment's thought shows that 

In particular, the bundle map 

and in fact, p is a ce-i 

p may not section). 

restricts to a morphism 

p : ~(E*) - Z* • X . Z, 

- bundle (but not, in general, a vector bundle, i.e. 

On the other harld, since E is ample, Z* is an ample divisor on ~(E*). 

Therefore ~(E*) - Z* is an affine variety, of dimension dim X + e - i, and 

hence has the homotopy type of a CW complex of (real) dimension < dim X + e - i. 

In particular, Hi(~(E* ) - Z*; ~) = 0 for i ~ dim X + e. But since p is an 

affine space bundle, this implies that Hi(X - Z; ZZ) = 0 for i ~ dim X + e, as 

desired. O 

Problem. In the situation of (1.8), is it true that Ti(X,Z ) = 0 for 

i < dim X -e? 

Under a stronger 

the section s, 

positivity condition on E, and a transversality assumption on 

Griffiths [i 9] has proven such a homotopy statement. Another re- 

sult of this nature is given in §3. (Thm. 3-5). 

Observe that there is no genericity or transversality hypothesis on the section 

s in (1.8). Hence the result gives topological obstructions to expressing a var- 

iety set-theoretically as the zero-locus of a section of an ample vector bundle. 
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For example, consider the Segre variety 

S = pl× p2c ~5 

Since b2(S ) = 2 while b2(~5 ) = i, we conclude that there cannot exist an ample 

vector bundle E of rank 2 on p5 with a section vanishing precisely on E. 

In particular, (1.8) gives an elementary proof of the well known fact that S is 

not a set-theoretic complete intersection. (Compare the lectures of Forster and 

Valla in this volume.) 

Another result along the lines of (1.8) has been established by Ein [7], who 

proves a Noether-type theorem on the Picard group of the zero-locus of a generic 

section of certain ample rank n - 2 bundles on ~n ; he also treats determinantal 

surfaces. In the same paper, Ein uses the vanishing theorem (1.7) of Le Poitier to 

give a simple proof of a theorem of Evans and Griffith on the cohomology of vector 

bundles of small rank on projective space. 

Turning to the numerical properties of ample vector bundles, one finds that 

there are two questions to ask if one hopes to generalize (i. 4). First: 

A. What are the numerically positive polynomials for ample vector bundles? 

(Recall that a homogeneous polynomial P c Q[Cl, ...,c e] of weighted degree n is 

numerically positive if for every irreducible projective variety X of dimension 

n, and for every ample vector bundle E of rank e on X~ the Chern number 

P(ol(~), ---Oe(E)) 
~X 

is strictly positive. For example, if e = rk(E) = i, the positive polynomials are 

just ~ c I (~ > 0).) And secondly: 

B. Is there a numberical criterion for ampleness analogous to the 

theorem of Nakai et al. for line bundles? 

Question (B) was the first to be answered. A theorem of Hsrtshorne [25] 

states that a vector bundle E on a smooth curve X is ample if and only if 
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every quotient of E has positive degree. For X of dimension ~ 2, however, 

simple examples [8] show that there cannot be a numerical criterion, at leas% in 

the form suggested by Griffiths [20]. 

As for question (A), the numerically positive polynomials may be described 

succinctly - if unrevealingly - as follows• Let A(n,e) denote the set of parti- 

tions of n into a sum of non-negative integers < e. Given X e A(n,e), X being 

the partition h I ~ -'' > X n ~ 0, one forms the so-called Sehur polynomial ph, 

defined as the n × n determinant 

P 
X 

eX 1 eXI+I • . . 

ex2-1 c~ 2 • . . 

cz -i cl 
n n 

where one makes the convention that c = i and c. = 0 for i / [0,el. The 
O 1 

from a basis for the homogeneous polynomials of weighted degree n, and the 

result is: 

(l.lo) p ~ Q[Cl,.•.,Ce] is numerically ptsitive for amp! ~ vector bundles 

if and only if P @ 0, a~j P is a non-negative linear ¢ombina- 

tion of the PX (X c A(n,e)). 

We refer to [13 ] for the proof, and for a discussion of earlier work on question 

(A). 

The determinantal definition of the PX is evidently rather awkward to deal 

with. There is a more conceptual approach, which makes (I. i0) seem quite natural. 

For simplicity~ we explain this only for bundles generated by their global sections. 

Suppose, then, that E is an ample vector bundle of rank e on X n which is 

given as a quotient of a trivial bundle of rank m. Then there is a classifying 

map 

~:X ~ G, 
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where G = G(m - e,m) is the Grassmannian of codimension e subspaces of an m-dim- 

ensional vector space; the bundle E is recovered as the pull-back of the universal 

quotient bundle Q on G. Consider now a codi~ension m cycle z e H2n(G). 

Then ~*(z) is a top dimensional cohomology class on X, and one may ask when 

fX ~*(z) > O. It is not hard to show that the of E implies that this ampleness 

degree is positive whenever z is represented by an effective algebraic cycle. 

Conversely, if z is not effective, then there exists an X and E so that 

~F~*(z ) < 0. But the cone of effective cycles on the Crassmannian G is well-un- 

derstood: it is generated by the codimension n Schubert cycles [~]XcA(n,e) 

(cf. [21]). And it turns out that the cycle ~A represents the cohomology class 

P~(Cl(Q),...,Ce(Q)). Thus ~*(0~) = P~(Cl(~),...,ee(~)), which proves (1.10) for 

bundles generated by their global sections. In general, one thinks of the classes 

Px(CI(E),...~Ce(E)) as representing "virtual' Schubert cycles; up to now, the ex- 

plicit formula for the PX has not proved to be of any particular significance in 

itself. 

Problem. Find a wider class of vector bundles for which the PX are numerically 

positive. 

It seems certain that one could weaken the hypothesis of smpleness arid yet retain 

the positivity of the Schur polynomials. For applications, such a strengthening of 

(i. i0) should prove useful. What seems difficult, however, is to find a suitable 

class of bundles with which to deal. It might well be that this problem is most 

sensibly attacked only with some particular application in mind. 

Problem. Determine whether the following conjecture of Hartshorne [26, III. 4.5] 

is true or false: 

Let M be a smooth variety, and let X~ Y c M be smooth projective sub- 

(*) varieties with ample normal bundles. If dim X + dim Y > dim M, then 

X meets Y. 

A number of conjectures have appeared suggesting global consequences of ampleness 

of normal bundles (eg. [26, Ill. 4.4], [9]). Simple counter-examples dispose of 
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many of these (cf. [14]), although they tend to be true when the ambient space is a 

rational homogeneous manifold. What's fascinating about Hartshorne's conjecture 

(*) is that several approaches to the construction of counter-examples seem sys- 

tematically to fail. Hence it seems likely that the resolution of the conjecture 

one way or the other could involve some interesting new ideas. 

§2. Degeneracy 1.9.ci, and a. Theorem......gf.......Ghione. 

A theorem on the non-emptiness of degeneracy loci. 

Let X be an irreducible projective variety of dimension n, and let 

u : E ~ F 

be a homomorphism of vector bundles of ranks e and f respectively. A number of 

interesting geometric problems can be formulated in terms of the degeneracy loci 

associated to such a map, i.e. the sets 

Dk(U) def {x ~ X I rk(u(x)) ! k] 

Recall that the set Dk(U ) is Zariski-closed, and its postulated codimension in 

X is (e - k)(f -k); if non-empty~ its actual codimension is < (e -k)(f - k). 

It may happen, of course, that Dk(U ) is empty even when its expected dimen- 

sion is non-negative. Our purpose here is to give a simple proof that this cannot 

occur under suitable positivity hypotheses: 

Theorem 2.1. Assume that the vector bundle 

Hom(E,F) = E* @ F 

$s ample. If n ~ (e - k)(f - k), then Dk(U ) is non-empty. 

The proof below arose in the course of the author's work on [12]~ where a more ela- 

borate argument was given to show that in fact Dk(U ) is connected if 

n > (e-k)(f-k). 
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We shall actually prove a slight strengthening of (2.1). Specifically 

(2.2). Assume that Hom(E,F) i s  ample.  F i x  an i n t e g e r  ~, and let 

Y E D~(u) 

be an. irreducible projective variety of dimension 

m ~ (e +f) - 2~+i. Then 

Note t h a t  (e  + f )  - 2~ + 1 i s  t h e  expec t ed  cod imens ion  of  D~_l(u  ) in  D~(u).  

Theorem 2.1 follows by applying (2.2) successively to each of the varieties in 

the chain. 

x = Dr(U) E Dr_l(U) E "'" E Dk(u), 

where r = min(e,f). The idea of the proof is to exploit the observation that if 

the assertion were false, then the kernel and image of u would be vector bundles 

on Y. This approach has been taken up again in [i0]. 

Proof of (2.2). We assume that Y ~ D~(u) is a projective variety of dimension 

m which does not meet D~_l(U); we will show that m ~ (e + f) - 2~. Evidently 

we may suppose that ~ ! min(e,f), and for simplicity of notation we write E and 

F for the restrictions of these bundles to Y. 

Let N = ker(ulY ) and K=im(ulY ). Since u has rank $ everywhere on Y, 

N and K are vector bundles of ranks e - ~ and ~ respectively. Consider the 

projective bundle ~ : ~(E) ~ Y. On ~(E) one has the diagram: 

o ~ N  ~ E ---~V--~ i~ ~o,  

which defines a section s e F(~(E), w*K ® ep(E)(1)) as shown. 

zero-locus Z(s) of s is exactly the subvariety ~(N) ~ P(E). 

apply the Lefschetz theorem (1.9) to study ~'(E) - P(N). 

Note that the 

The idea is to 
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Then evidently 
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denote the composition 

s ~(~)(-1) ~ ~:~K c~ 

z(t) : z(s). 

On the other hsmd, we shall show below that 

(2.3) If E* ® F is ample on Y then 

~*F ® ~(~)(i) 

is en ample vector bundle on ~(E) . 

Thus P(N) is the zero-locus of the section t 

IT*F ® ~(E)(1) . Hence by (i 9): 

~i(P(~) m(~)) = o if 

But there is a natural map 

; -F2F. 

fibre by fibre~ 

In particular, 

of the ample vector bundle 

i >_ (re+e-l) + f. 

Y 

p is just the linear projection centered at 

p is a C e-~ - bundle map~ and hence 

Hi(~(~) - m(N)) .... ~i(m(K)) 

p(~(y)) _c ~(z(y)). 

i.e. 

2(m + ~ - i) < m + e + f - i, 

for all i. Therefore Hi(IP(K)) = 0 for i >_ m+e +f - I. But IP(K) is a 

compact vsriety, of dimension m + £ - i, and so H2(m+~_I)(]P(K)) ~ 0. We con- 

clude that 
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m< e +f - 21, 

as desired. 

It remain• to check (2.3) , for which we use an argument suggested by 

W. Fulton. Consider the projectivization ]P = l° (w F ® @~p(E)(-l))----> ]P(E) . We 

need to show that @~p(1) is an ample line bundle. But ]P is isomorphic to the 

fibre product ]P(E) x X ]P(F*), and @]p(1) is the restriction of the Serre line 

bundle @]P(E® F*) (i) under the Segre embedding 

I°(E) X){ P(F*) c :IP(E ® F*). 

Hence @~P(E® F*) (I) is ample since E* ® F is. [U 

Ghione's ' generalization of the Kempf-Y~eiman-laksov existence theorem. 

One of the most famous examples of determinantal loci are the varieties of 

special divisor• on a smooth projective algebraic curve C of genus g. Specifi- 

cally, let J = Pic0(C) be the Jacobian of C, and fix once and for all a base 

point PO ~ C. One is interested in the set 

~{(c) = {x ~ JlhO(Lx(dPo)) ~ r + iL 

where L is the line bundle of degree 0 on C corresponding to the point 
x 

x • J. Thus Wd(C ) parametrizes linear equivalence classes of divisors of degree 

d moving in a linear system of (projective) dimension > r. 

let us recall how these varieties of special divisors are realized as deter- 

minantal loci. Choose some integer n _> max(d,2g), and n- d point• 

Pl J''''pn-d ~ C (say distinct, to fix idea•). Then for each x • J3 evaluation 

at the Pi yield• a homomorphism 

n-d 
u(x) :HO(C, Lx(nPo)) > ~ ~(C, Lx(nP O) ® ~p ). 

i=l 1 

~s ~ v~ies over J, the vector spaces ~° (c,~,x(~)) ~nd • HO(C, Lx(~ o) ® %) 
1 

fit together to form vector bundles E and F on J, of ranks n +I- g and 
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n - d respectively. Furthermore, the maps u(x) globalize to a vector bundle 

homomorphism 

Since 

(Cf. [28], [29 ] or [12] for de ta i l s .  ) 

non-empty~ then 

u:E ~F. 

ker u(x) = H0(C, Lx(nP0 - Z Pi)), we see that up to translation 

~d(C) = Dn_g_r(U). 

It follows in particular that if w[(c) is 

dm W[(C) ~ 0[(C) : g - (r +l)(g- d +r). 
def 

The celebrated existence theorem of Kempf [28] and Klelmmn-Laksov [29] asserts that 

in fact W~(C) % ~ provided that o~(C) ~ O. 

The traditional approach to the Kempf-Kleiman-Lsksov theorem is to compute via 

Porteous' formula the (postulated) fundamental class of ~dd(C) (or of a closely 

related variety). This turns out to be non-zero when D ~ O, and the theorem 

follows. This quantitative approach, as we may call it, has the advantage that a 

formula for [~(C)], which is useful in enumerative questions, emerges as a by- 

product. However there is an alternative qualitative approach based on positivity 

considerations. Specifically, it was shown in [12, §2] that 

(2.4) E* ® F is an ample vector bundle on J. 

Thus in fact the existence theorem follows from the elementary result (2.1), and 

this is one of the quickest proofs available. 

Ghione [16] has recently proved an interesting generalization of the Kempf- 

Kleiman-Laksov theorem. Specifically, fix a vector bundle 

M of degree a and rank e 

on C. Then s e t  

~(c,x) : {x ~ jlh0(M(dP0 ) ® L x) >_ r +l}. 
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Thus the classical set W~d(C ) correspond to taking M = @C" As before, the loci 

~d(C,M) may be realized determinantally. To do so, following [16], we fix an 

integer n > 2g - d 

sections. Choosing 

large enough so that M (nP0) is generated by its global 

e = rk(M) genera l  sec t ions  g ives  an exact  sequence 

o ~M > ~ ( r m o )  >T > o 

on C, where ~ is a torsion sheaf of length 

have homomorphisms 

e u(x) :HO(C,~c( (n+d)P  0 ~ Lx)) 

which as before fit together to form a vector bundle map 

en - a. Then for each x e J we 

J°(c,~ ® Zx(dPo)), 

(2.5) u:E > F, 

where E and F are now vector bundles on J of ranks e(n + d + i - g) anden-a 

respectively. Then ker u(x) = H0(C,M(dP0 ® Lx) , so 

~d(C) : De(n+d+l_g ) -(r+l) (u)" 

In particular, if W~(C,M) @ ~, then 

dim ~d(C,M) ~ 0~(C,M) = g - (r +l)(e(g-d+l) +r +l-a). 
def 

Ghione's generalization of the Kempf-Kleiman-Laksov theorem is: 

Theorem 2.6. ([16]). If ~(C,M) ~ 0~ then ~dd(C,M) is non-empty. 

Ghione takes the quantitative approach to Theorem 2.6, and obtains also a for- 

mula for  [~(C,M)]  va l id  when dim ~dd(C,M) : o~(C,M). For Theorem 2.6 the qua l i -  

t a t i v e  approach is very much quicker, and essentially involves nothing beyond what 

by M(dP0) , we may as well assume that d = 0. It 

is ample, E and F being the vector bundles de- 

let us start by defining these bundles more precisely. 

was proved in [12]. 

Proof of (2.6). Replacing M 

suffices to show that E* ® F 

fined informally in (2.5). 

Ghione assumes that M is general in a suitable sense. 
below shows that this is not necessary. 

However the proof 
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Denote by f and ~ the projections of J × C onto J and C respectively. 

Let ~ be the Poinca%e line bundle on J × C, normalized so that £1J × {Po] = @j. 

We take 

and  

E = f . ( @ ~ ( n P o ) ) ~ 9  g )  

The map u arises by taking direct images from the exact sequence 

o :, T:~vI® ~ >7~*(~ n P o ) ) ® £  • ~,~®~ ~,o. 

e 

Since E = • El, where E] = f.(~ (~c(nPo) ® ~)~ it is enough to show 
i = l  

* ®  F i s  a m p l e .  On t h e  o t h e r  h a n d ,  "r - l i k e  a n y  t o r s i o n  s h e a f  on  C - that E 1 

h a s  a f i l t r a t i o n  w h o s e  s u c c e s s i v e  q u o t i e n t s  a r e  t o r s i o n  s h e a v e s  o f  l e n g t h  o n e ,  a n d  

hence isomorphic to ~p. for suitable points Pie C. Therefore F has a filtra- 
x 

t i o n  w h o s e  s u c c e s s i v e  q u o t i e n t s  a r e  l i n e  b u n d l e s  o f  t h e  f o r m  

f~(~*~p.  ® ~) = ~ . .  
l def l 

Recalling that an extension of ample vector bundles is ampl% we are reduced to 

proving the amplitude of E 1 ® ~.. But this is the assertion of Len~na 2.2 of 
1 

[12]. (The proof in brief: observing that ~Pi is a deformation of ~Po = ~J' 

one s h o w s  t h a t  i t  s u f f i c e s  t o  p r o v e  t h a t  E ! i s  a m p l e .  Bu t  IP ( E l )  = C n ,  t h e  

symmetric product of C, and ~(EI)(1) = ~Cn(Cn-l)' Cn-i being embedded in 

v i a  D .~ D + P  O. And i t  i s  e l e m e n t a r y  - e g .  b y  N a k a i ' s  c r i t e r i o n  - t h a t  Cn_ 1 

is an ample divisor on C n.) [3 

N o t e  t h a t  b y  § l  o f  [12]  we c o n c l u d e  a l s o  t h a t  

th 
n 

C 
n 

(2.7) In the situation of Theorem 2.6~ if Dd(C,M ) > O, then 

Wd(C,M ) is connected. 
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Problem. Work out concretely the varieties T~d(C,M ) for various vector bundles 

M on curves of low genus. 

The question is whether the geometry of C is ~eflected in the geometry of 

~d(C,M) as it is in the geometry of ~d(C). (cf. [38, Chapt. i]). 

Problem. Are there theorems of Martens-Mumford type ([34], [37]) for 

~d(C,M), when M is stable? say 

The examples of Raynaud [40] show that the cohomological properties of stable vec- 

tor bundles can be quite subtle. 

§3- A Theore m of Barth-Larsen Type on the Homotopy Groups of Branched 

Coverings of Projective Space. 

A celebrated theorem of Barth and l arsen ([I], [2],[4],[30]) asserts that if 

X c pn+e is a smooth variety of dimension n and codimension e, then the maps 

wi(X ) > ~i (~n+e) induced by inclusion are bijective for i ~ n - % and sur- 

jective if i = n-e +i (cf also [ii], §9)- Our goal in this section is to prove 

an analogue for branched coverings of projective space: 

Theorem 3.i. Let 

ension n~ and let 

X be an irreducible non-sir~ular, projective variety of dim- 

f :X > ~n be a, finite, m,apping of degy,e,e d. Fix x c X. 

Then the induced homomorphisms 

are b ijective for 

Corollary 3- 2. 

and 

11 
f. : ~i(X,x) .~ vi(~ , f(x)) 

i < n+l-d, and surjective if i = n+2-d. 

In the setting of the theorem, the maps 

~n Z~) 
f. : Hi(x ; ~) ~ Hi( : 

f* : Hi(]P n ; 2Z) > Hi(x ; 2Z) 
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are isomorphisms if i < n+l-d. When i = n+2-d, f. is surjective and f is 

injective. [] 

It follows for example that if d < n then X is simply connected, while if 

d < n- i then Pic(X) ~ Pic(P n) . The theorem was announced in [31], where the 

analogous result for complex cohomology was proved. The material in this section 

was part of the author's Ph.D. thesis (unpublished). 

It is shown in [31 , §I] that canonically associated to a branched covering 

f : X > ~n satisfying the hypotheses of (3.1), there exists a vector bundle 

E ~ ]pn 

of rank d - i having the property that f factors through an embedding of X in 

the total space of E. The bundle E may be defined as the dual of the kernel of 

the trace Trx/pn : f* @X ~ ~pn" The crucial fact for our purposes is that 

the bundle associated to a branched covering of projective space satisfies the 

strong positivity property: 

(3.3) E(-I) is Generated by its global sections, ie. E arises 

as a quotient of a direct sum (9 @ (i) of copies of the 
]pn 

hyperplane line bundle. 

Proof. ([31], §i). According to a theorem of Mumford [36, Lect. 14], it suffices 

to show that E is (-i) - regular, i.e. that Hi(pn, E(- i- i)) = O for 

i > 0. This is equivalent by duality to the assertion that 

(*) Hn-l(~ n, E*(i - n)) = 0 for i > 0. 

It follcws from the definition of E that 

* 
f*~x : ~pn (9 E 

and hence 

= H0(X,~X ) : H0(]p n, ~]pn ) (9 H0(]pn, E *) = C (9 H0(]pn, E *) . 
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Thus HO(I °n, E*) = 0 

s imilarly 

which proves (*) for i = n. When i < i < n-i we have 

"-n) But f*@ion(1 

by the Kodaira vanishing theorem. 

Hn-i(io n, E*(i-n)) = Hn-i(]P n, f .@x( i -n ) )  

: Hn-i(x, f*~]pn(i-n)) .  

the dual of an ample line bundle, whence Hn-l(X,f~'" n(i-n))=O is 

[] 

Theorem 3.1 is therefore a consequence of 

Theorem 3.4. Let E > ~n be a vector bundle of rank e satisfying the 

positivity condition (3.3). Suppose that X is a compact~ connected, local com- 

plete intersection variety of pure dimension n embedded in the total space of E: 

X ¢ >E <\ / 
lp n . 

Define f as shown~ and fix x ~ X. Then 

f. : ~k(X,x) ~ i ( r  n, f(x)) 

is bijective for i ~ n-e, an__d sumjective if i = n-e + i 

(i.__ie. ~i(F,×,×) : 0 fo__ ! i i n-e + i). 

Note that f, being affine and proper, is finite. When E is the direct sum of e 

copies of the hyperplane line bundle, the theorem is equivalent to the Barth-Larsen 

theorem for embeddings X c ]pn+e(cf [31, Rink. 2.4]). We leave it to the reader to 

formulate the corresponding results for integral homology and cohomology implied by 

(3-4). Note that the latter in turn imply that if X is smooth, and if 

e < n-2, then f :Pic(I ° n ) >Pic(X) is an isomorphism. 

Turning to the proof of (3.4), the strategy is to derive from Deligne's gener- 

alization [ii~ §9] of the Fulton-Hansen connectedness theorem, an analogoue for 

the diagonal embedding X = A X > X × X. This will imply (3-4) in much the same 
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way that [ll, (9.2)] can be used, as W. Fulton remarked, to prove the Barth-Larsen 

theorem. The one additional ingredient we shall need is the following Lefschetz- 

type result, which is proved below. 

Thegrem >.5. Let X be a complete, connected? but possibly reducible local 

complete intersection variety of pure dimension n, and let A be an ample line 

bundle on X which is generated b~ its global sections. Suppose that E is a 

vector bundle of rank e o~n X haying the property that E ® A* is generated by 

its global sections. Let s e F(X,E) be a section of E, and let Z = Z(s) ~ X 

be the zero loeus of s. Then~ fixing x c Z, one has 

vi(X,Z,x) = 0 

for i < n- e. 

Proof of Theorem 3.4. Put Y = (f × f)-l(&]pn), so that the diagonal embedding 

8 : X * X × X factors through sn embedding of X in Y. The set-up we shall 

deal with is summarized in the diagram (5.6) below. Each of the three squares is 

cartesian, aud we henceforth make free use of the natural identifications indicated 

in that diagram. The inclusion E c > E G E = E X E is the evident diagonal ]pn 

homomorphism over ]pn = A 
~pn" 

(3.6) E = ~ ~- ~ E@E =~ E ×]pnE ~ ~ E × E 

pn 

Note that Y is a complete, connected, local complete intersection of pure 

dimension no Indeed, Y is locally cut out in X × X by n equations 3 and 

maps finitely to l on. It follows that Y has p~ure dimension n, and hence is a 

local complete intersection variety. The conneetedness of Y follows, for in- 

stance, from Deligne's theorem [ii, Thin. 9.2]. 

Consider first the inclusion X = A X ~ r Y. We assert that 
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(3.7) 

for i < n -e. Letting h 

point to observe is that X 

vi(Y,×) : 0 

denote the composition Y > E • E ~ ]pn, the 

is defined in Y as the zero-locus of a section of 

h*E. In fact, the embedding of Y in the total space of E~ E deter- 

mines a tautological section of he(E • E), i.e. two sections s I s 2 e F(Y,h*E), 

and X = Zeroes(s I - s2) ~Y. But the positivity assumption (3.3) on E implies 

that h*E(-l) is generated by its global sections, and hence since h is finite 

(3.7) is a consequence of Theorem 3-5. 

On the other hand, DeligneJs theorem [ii, (9.2)] applies to the inclusion 

Y > X × X. In the case at hand~ the theorem in question states that 

vi(x x x,Y) = 0 

for i / 2, i ~ n, and that if n _> 2 there is an exact sequence 

(*) v2(Y ) ~ v2(X × X) ~ 2Z ] vI(Y ) > vI(X × X) ~ 0 

Moreover the map to 2~ in (*) may be identified with the difference of the 

homomorphisms 

(pr I o (f X f))., (pr 2 o (f x f)). :Tr2(X x X) >172(]p n) = ?z. 

Consider now the composition 5.: 

~i(x) > ~i(Y) > ~i(x x x). 

5. 

This is just the diagonal map, so 5. is in any event injectiveo But it follows 

from (3.7) and Deligne's theorem that 5. is surjective when i < n- e, i i 2, 

which implies wi(X ) = 0. This proves Theorem 3.4 in the range i <_ n- e, i / 2. 

If i = 2 < n- e, then one obtains the commutative diagram 

As we deal exclusively with path-connected spaces, we will henceforth omit 
base-points. 
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0 , vs(X) > v2(x x x) .~ ~ ~. 0 = Vl(X) 

0 "..-~2(m n ) > 7 2 ( ~  n X IP n)  I~ m ) 0 = ~ l ( I P  n)  

of exact sequences. Hence ker f. = ker(f. × f.), and coker f. = coker(f. × f.). 

But this forces ker f. = coker f. = 0, i.e. f. is an isomorphism on v2" 

Finally, the surjectivity of Vn_e+l(X) D Vn_e+l(Pn) is non-trivial only if 

n - e = l, and we leave this case to the reader. (Hint: the diagram above re- 

mains exact on the right.) [] 

Proof of the Lefschetz-type theorem (3.5). 

The strategy will be to reduce the result to the following theorem of Goresky 

and MacPherson, which one may view as a non-compact strengthening of the classical 

Lefsehetz theorem: 

(3.8). Let Y be a connected local complete intersection variety of pure 

dimension n, possibly reducible and non-compact and let 

f:y ~ ~m 

be a finite-to-one morphism. Let L c ~ m be a linear space of 

co-dimension d, and denote by L an s-neighborhood of L 
E 

with, r e s p e c t  t o  some Riemannian  m e t r i c  on p n .  Then f o r  s u f -  

ficiently small E one has 

vi(Y, f-l(Lg) ) = 0 for i ~ n-d. 

Lena 9"9" Let X be a compact irreducible variety~ and A an ample line bundle 

on X which is generated by its 51obal sections. Let T ~ X be the direct sum 

of t copies of A, and denote by X 0 ---~T the zero section. SuDpose that Y 

See[17, §4] for an announcement with indications of proof. 

Returning to the situation of (3-5), we start with 
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is a connected, local complete intersection ' of pure dimension 

g : Y > T is a finite (i.e. finite Tto-one an d proper) map. 

n, 

Then 

and that 

wi(Y , g-l(Xo) ) = 0 fo__~r i ~ n-t. 

Proof. The assumption on A means that there is a finite map ~ : X > pr such 

that A = ~ @~r (1). Let S denote the direct sum of t copies of @]pr(1). In 

a standard manner, one can represent S as a Zariski open subset of pr+t. 

Specifically, fix disjoint linear spaces L0, L ~ pr+t, of dimensions r and 

t - 1 respectively. Then S = ~r+t - L, the bundle map S > L0 = ~r being 

L 0 ~ S is identified 

on X as the fibre 

X ×pr S. The projection ¢ : T > S is finite, and X 0 = ¢-l(L0): 

linear projection from L onto L O. The natural inclusion 

with the zero section°  Hence we can realize the bundle T 

product 

X0~ ~T < g Y 

Now let h I as indicated, be the composition ¢ ~ g : Y > S, which is fin- 

ite. We apply the theorem (3.8) of Goresky-MacPherson to h, and to the linear 

space L 0 c S c ~r+t . Denoting by L£ an e-neighborhood of L 0, we conclude 

that for sufficiently small E 3 

~i(Y, h-l(;~ )) : 0 

for i ~ dim Y - codim L 0 = n-t. But since h is proper, and L 0 is closed, 

h-l(Lo) is a deformation retract of h-l(Le) when £ is small, and the lemma 

follows. 

Proof of Theorem 3-5- The hypothesis on E implies that there is a surjective 

homomorphism p : T .-. E, where T is the direct sum of some number ~ say t - 

copies of A. Let X ~ E be the image of the given section s e I~(X,E), and 
S 

set Y = X s M E T. Denote by X 0 ~ T and X ---~ E the zero sections: 
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Y >x 

T > E  

X 0 P IX 0 ) X 

Since p restricts to an isomorphism on zero-sections, we have { zero-locus } 
X 0 n Y > X n X s = Z of s . 

t-e 
Bearing in mind that Y is a C -bundle over Xs~ on the level of homotopy 

groups one gets: 

vi(Y) > 7i(X s) 

~i(Xo n Y) .~ ~i(z) 

But Y is a connected, local complete intersection variety of pure dimension 

n + t - e, and the inclusion y c > T is a closed embedding, and in particular 

finite. Hence by lemma 3-9, Ti(Y , X 0 N Y) = 0 for i < (n+t-e) - t = n-e, and 

the theorem follows from (*). [] 

We conclude this section with a problem on branched coverings of projective 

space. A well-known, and elementary, theorem states that if X ~ pm is a smooth 

variety of degree 3 and dimension n, and if n > 4, then X is a h~ersurface. 

This was generalized in [31] to branched coverings: if f : X >~n has degree 

three, and if n ~ 4, then f factors through an embedding in the total space of 

a line bundle on pn : 

X C  . > L  

 \ni 
One direction in which the classical results on subvarieties generalize is 

through the "Babylonian" theorems of Barth and Van de Ven [2], [5]. The problem, 

which was suggested by W. Fulton, is to generalize the result to branched coverings. 

Specifically, suppose given for each n > I a branched covering: 
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f :X )]pn. 
n n 

= f-i . Then Suppose also that X n n+l (~n) for a suitable hyperplane pn ~ pn+l 

describe X explicitly. For instance, is X a complete intersection in the 
n n 

total space of a direct sum of line bundles on pn? 

We note that the example at the end of [31] suggests that the possibilities for 

coverings are more varied than those for subvarities. 

§4. A Problem of Remmert and Van de Ven. 

One of the most elementary results in algebraic geometry is that any projec- 

tive variety can be mapped onto some projective space. What's less clear, however, 

is whether projective space is the only smooth variety that plays this role. Our 

purpose in this section is to show how Mori's results in [35] lead to a proof that 

this property does in fact characterize projective space: 

Theorem 4.1. Let X 

be a sur~ective map. 

be a smogth projective variety of dimension > i, and let 

f : ~pn ,> X 

Then X ~ ]pn. 

This was conjectured by Remmert and Van de Ven (el. [~i~). Note that one cannot assert 

that f is an isomorphism, for there are non-trivial branched coverings 

]pn > ]pn (obtained by projections of Veronese embeddings). Observe also that 

the non-singularity of X is crucial. In fact, if one drops this hypothesis then 

one can take X = Pn/c, where G is a finite group acting on ]pn. We refer the 

reader to Demazure's paper [6] for a highly readable account of Mori's theorem. 

The proof of (4.1) is an elementary application of results proved (but not stated) 

by Mori in the course of his spectacular proof of the Frankel-Hartshorne conjecture 

that projective space is the only projective manifold with ample tangent bundle. 

Specifically, we shall use two results: 
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(4.2) Let X be a smooth prpjective variety of dimension n such 

that the anti-canonical bundle An(TX) is ample. Then for a 

generic point P e X, there exists a map 

u : (~i, a)  ~ ( x , P ) ,  ~ 

birational onto its image, with P a smooth point of u(~l), 

and 

U*Cl(× ) ~ n + i. 

This is essentially proved in §2 of [35]. (cf. Thm. 6). Mori's statement does 

not mention the possibility of finding a rational curve through a general point, 

but it was observed by Kollar that this is in fact what a small elaboration of 

Mori's proof yields. Note that the result implies that if X is as in (4.2), 

then X is uniruled. 

The second theorem we need is: 

(4.3) Let X be a smooth projective variety of dimension n, and let 

u: (pl a)  ~ ( x , s )  

be a map, birational onto its image, with ~U*Cl(X ) ~ n + i. 

Suppose that P(= u(a)) is a smooth point of u(~l), and that 

the following is satisfied: 

(*) For any morphism 

v : (~l, a) + (x,P) 

arising as a deformation of u 

a to P, the pull-back v*TX 

of X is ample. 

through maps taking 

of the tangent bundle 

*i.e. u is a map ]pl ~ X, and a e is a point with u(a) = P. 
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Then 

X~ ]pn. 

The condition in (*) is that the maps u and v correspond to points in the same 

connected component of the scheme Hom((pl, a), (X,P)) parametrizing maps IOl > X 

taking a to P. (4.3) is the essence of [35], §3" If one knows that TX is 

ample, then (*) is automatic, and in fact this, plus the amplitude of AnTX, is the 

only way in which Mori uses the ampleness of TX (cf. [35], P. 594). 

Proof of Theorem 4.1. Note to begin with that X has dimension n, and that f 

is finite (hence flat). In fact, projective space does not map to any variety 

other than a point with any fibres of positive dimension. We observe next that 

AnTX is ample. To check this, it suffices by (1.5 (iv)) to show that f*AnTX is 

ample. But f*AnTX = @ion(k) for some k e ~, and the inclusion 

AnTp n )Anf*TX of sheaves shows that k > n+l. Thus Mori's theorem (4.2) 

applies. 

Denote by R c Ion the ramification divisor of f, and by B = f(R) c X the 

branch divisor. By (4.2) there exists a map u = (I ° I, a) > (X,P) as in (4.3) 

with P / B. To prove the theorem, it then suffices to show: 

(4.4) If w : (IOl, a) .... > (X,P) is any non-constant map, with 

P I B~ then w*TX is ample. 

For once (4.4) is known, (4.3) applies to yeild X ~ i ° n . 

To prove (4. 4), choose a smooth irreducible projective cttrve C 

a commutative diagram 

~" I o n  C 

i 
IP I ~ X 

W 

fitting into 

where ~ and ~ are finite. For example, one may take C to be the normalization 
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of an irreducible component of ]pl ×X pn. Observe that since P = w(a) ] B, 

the image w (C) is not contained in R. Since ~ is flat, it suffices by 

(1.5 (iv)) to show that f w' TX .... ~*f~TX is an ample vector bundle on C. 

But on 1 ° n one has the exact sequence 

of sheaves, where @ is a torsion sheaf supported on the ramification divisor R. 

Then ~* df :w T~ > ~f*TX is an isomorphism aw%y from the finite set 

w I(R), -* * so pulling (*) back by ~* expresses w f TX as an extension of the ample 

vector bundle ~*T~ n by the torsion sheaf w ~. Hence (4.4) is a consequence of 

Lemma 4.5. Let C be a smooth irreducible projective curve, E an ample vector 

bundle on C, and F a vector bundle on C arising as an extension 

0 ~ E ~ F > • > O~ 

where ~ is a torsion sheaf. Then F is ample. 

Proof. By Hartshorne's numerical criterion [25], it is equivalent to show that 

any quotient bundle of F has positive degree. Given such a quotient 

F ~ Q ~ 0, we have the exact commutative diagram 

0 ~E ~F .>~- ~ , 0  

0 ) Q' ~ Q > ~' > 0, 

0 o o 

where Q' is the image of the composition E > F 

free, and T' is a torsion sheaf on C, and since E 

But 

Q. Thus 

is ample, 

Q' is locally 

deg Q' > 0. 

deg Q = deg Q' + length (T'), 

so deg Q ~ deg Q' . ½ 

This completes the proof of Theorem h.l. 
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Problem. Does Theorem h.l generalize when ~n is replaced by a homogeneous 

space G/P, where G is a semi-simple algebraic group, and p c G is a maximal 
m 

parabolic subgroup? For instance, if Q is a quadric of dimension > 3, or a 

Grassmannian, and if f = Q ) X is a non-trivial branched covering, with X 

smooth, is X a projective space? 
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