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1 Introduction

Given an irregular compact Kähler manifold X, one can form the derivative
complex of X, which governs the deformation theory of the groups Hi(X,α)
as α varies over Pic0(X). Together with its variants, it plays a central role in a
body of work involving generic vanishing theorems. The purpose of this paper
is to present two new applications of this complex. First, we show that it fits
neatly into the setting of the so-called Bernstein-Gel’fand-Gel’fand (BGG)
correspondence between modules over an exterior algebra and linear com-
plexes over a symmetric algebra (cf. [3, 9, 11, 12]). What comes out here is
that some natural cohomology modules associated to X have a surprisingly
simple algebraic structure, and that conversely one can read off from these
modules some basic geometric invariants associated to the Albanese map-
ping of X. Secondly, under an additional hypothesis, the derivative complex
determines a vector bundle on the projectivized tangent space to Pic0(X) at

First author partially supported by NSF grant DMS-0652845.
Second author partially supported by NSF grant DMS-0758253 and a Sloan Fellowship.

R. Lazarsfeld
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI
48109, USA
e-mail: rlaz@umich.edu

M. Popa (!)
Department of Mathematics, University of Illinois at Chicago, 851 S. Morgan Street,
Chicago, IL 60607, USA
e-mail: mpopa@math.uic.edu

mailto:rlaz@umich.edu
mailto:mpopa@math.uic.edu


606 R. Lazarsfeld, M. Popa

the origin. We show that this bundle, which encodes the infinitesimal behav-
ior of the Hilbert scheme of paracanonical divisors along the canonical linear
series, can be used to generate inequalities among numerical invariants of X.

Turning to details, we start by introducing the main homological play-
ers in our story. Let X be a compact Kähler manifold of dimension d , with
H 1(X, OX) != 0, and let P = Psub(H

1(X, OX)) be the projective space of
one-dimensional subspaces of H 1(X, OX). Thus a point in P is given by a
non-zero vector v ∈ H 1(X, OX), defined up to scalars. Cup product with v
determines a complex LX of vector bundles on P:

0 −→ OP(−d) ⊗ H 0(X, OX) −→ OP(−d + 1) ⊗ H 1(X, OX) −→ · · ·
−→ OP(−1) ⊗ Hd−1(X, OX) −→ OP ⊗ Hd(X, OX) → 0. (1.1)

Letting S = Sym(H 1(X, OX)∨) be the symmetric algebra on the vector space
H 1(X, OX)∨, taking global sections in LX gives rise to a linear complex LX

of graded S-modules in homological degrees 0 to d:

0 −→ S ⊗C H 0(X, OX) −→ S ⊗C H 1(X, OX) −→ · · ·
−→ S ⊗C Hd(X, OX) −→ 0. (1.2)

These two complexes are avatars of the derivative complex introduced in [16]
and studied for instance in [8, 18, 28, 30], which computes locally the push-
forward to Pic0(X) of the Poincaré line bundle on X×Pic0(X). We shall also
be interested in the coherent sheaf F = FX on P arising as the cokernel of
the right-most map in the complex LX , so that one has an exact sequence:

OP(−1) ⊗ Hd−1(X, OX) −→ OP ⊗ Hd(X, OX) → F −→ 0. (1.3)

For reasons that will become apparent shortly, we call LX and LX the BGG-
complexes of X, and FX its BGG-sheaf.

We shall be concerned with the exactness properties of LX and LX . Let

albX : X −→ Alb(X)

be the Albanese mapping of X, and let

k = k(X) = dimX − dim albX(X)

be the dimension of the general fiber of albX . We say that X carries an ir-
regular fibration if it admits a surjective morphism X −→ Y with connected
positive dimensional fibres onto a normal analytic variety Y with the prop-
erty that (any smooth model of) Y has maximal Albanese dimension. These
are the higher-dimensional analogues of irrational pencils in the case of sur-
faces. The behavior of LX and LX is summarized in the following technical
statement, which pulls together results from the papers cited above.



Derivative complex, BGG correspondence, and numerical 607

Theorem A

(i) The complexes LX and LX are exact in the first d − k terms from the left,
but LX has non-trivial homology at the next term to the right.

(ii) Assume that X does not carry any irregular fibrations. Then the BGG
sheaf F is a vector bundle on P with rk(F ) = χ(ωX), and LX is a reso-
lution of F .

The essential goal of the present paper is to show that these exactness proper-
ties have some interesting consequences for the algebra and geometry of X.

The first applications concern the cohomology modules

PX =
d⊕

i=0

Hi(X, OX), QX =
d⊕

i=0

Hi(X,ωX)

of the structure sheaf and the canonical bundle of X. Via cup product, we may
view these as graded modules over the exterior algebra

E =def $∗H 1(X, OX)

on H 1(X, OX).1 There has been a considerable amount of recent work in
the commutative algebra community aimed at extending to modules over an
exterior algebra aspects of the classical theory of graded modules over a poly-
nomial ring. In the present context, it is natural to ask whether one can say
anything in general about the algebraic properties of the modules PX and QX

canonically associated to a Kähler manifold X: for instance, in what degrees
do generators and relations live?

An elementary example might be helpful here. Consider an Abelian variety
A of dimension d + 1, and let X ⊆ A be a smooth hypersurface of very large
degree. Then by the Lefschetz theorem one has

Hi(X, OX) = Hi(A, OA) = $iH 1(X, OX) for i < d,

Hd(X, OX) ! Hd(A, OA) = $dH 1(X, OX).

Thus PX has generators as an E-module in two degrees: 1 ∈ H 0(X, OX),
and many new generators in Hd(X, OX). If one takes the viewpoint that the
simplest E-modules are those whose generators appear in a single degree, this
means that PX is rather complicated. On the other hand, the situation with the

1Following the degree conventions of [12] and [11], we take E to be generated in degree −1,
and then declare that the summand Hi(X,ωX) of QX has degree −i, while Hi(X, OX) has
degree d − i in PX .
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dual module QX is quite different. Here H 0(X,ωX) is big, and the maps

H 0(X,ωX) ⊗ $iH 1(X, OX) −→ Hi(X,ωX)

are surjective, i.e. QX is generated in degree 0. This suggests that QX behaves
more predictably as an E-module than does PX . Our first main result asserts
that quite generally the module QX has simple homological properties.

Specifically, given a graded E-module M = ⊕−d
i=0 Mi generated in de-

grees ≤ 0, one says that E is m-regular if the generators of M appear in
degrees 0,−1, . . . ,−m, the relations among these generators are in degrees
−1, . . . ,−(m + 1), and more generally the pth module of syzygies of M has
all its generators in degrees ≥ −(p + m). This is the analogue for modules
over the exterior algebra of the familiar notion of Castelnuovo-Mumford reg-
ularity for graded modules over a polynomial ring. As in the classical case,
one should see regularity as being a measure of algebraic complexity, with
small regularity corresponding to low complexity. For example, in the exam-
ple above (an appropriate shift of) the module PX has worst-possible regular-
ity = d .

The following result asserts that the regularity of QX is computed by the
Albanese fiber-dimension of X.

Theorem B As above, let X be a compact Kähler manifold, and let k =
dimX − dim albX(X). Then

reg(QX) = k,

i.e. QX is k-regular, but not (k − 1)-regular as an E-module. In particular,
X has maximal Albanese dimension (i.e. k = 0) if and only if QX is generated
in degree 0 and has a linear free resolution.

According to the general BGG-correspondence, which we quickly review in
Sect. 2, the regularity of a graded module over the exterior algebra E is gov-
erned by the exactness properties of a linear complex of modules over a sym-
metric algebra. Our basic observation is that for the module QX , this com-
plex is precisely LX . Then Theorem B becomes an immediate consequence
of statement (i) of Theorem A. Note that it follows from Theorem B that the
Albanese dimension of X is determined by purely algebraic data encoded in
QX; it would be interesting to know whether this has any applications.

Our second line of application for Theorem A is as a mechanism for gen-
erating inequalities on numerical invariants of X. The search for relations
among the Hodge numbers of an irregular variety has a long history, going
back at least as far as the classical theorem of Castelnuovo and de Fran-
chis giving a lower bound on the holomorphic Euler characteristic of surfaces
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without irrational pencils. Assuming that X does not have any irregular fibra-
tions, statement (ii) of Theorem A implies that the BGG-sheaf F is a vector
bundle on the projective space P, whose invariants are determined by LX .
Geometric facts about vector bundles on projective spaces then give rise to
inequalities for X. Specifically, consider the formal power series:

γ (X; t) =def

d∏

j=1

(1 − j t)(−1)j hd,j ∈ Z[[t]], (1.4)

where hi,j = hi,j (X). Write q = h1(X, OX) for the irregularity of X (so that
q = hd,d−1), and for 1 ≤ i ≤ q − 1 denote by

γi = γi (X) ∈ Z

the coefficient of t i in γ (X; t). Thus γi is a polynomial in the hd,j . We prove:

Theorem C Assume that X does not carry any irregular fibrations (so that
in particular X itself has maximal Albanese dimension). Then

(i) Any Schur polynomial of weight ≤ q − 1 in the γi is non-negative. In
particular

γi(X) ≥ 0

for every 1 ≤ i ≤ q − 1.
(ii) If i is any index with χ(ωX) < i < q , then γi(X) = 0.

(iii) One has χ(ωX) ≥ q − d .

Part (i) expresses in particular the fact that the Chern classes of F are non-
negative. For example, when i = 1 this yields (under the assumption of the
theorem) the inequality

hd,1 − 2hd,2 + 3hd,3 − · · · + (−1)d+1 · d · hd,d ≥ 0. (*)

This includes some classically known statements (for instance if dimX = 3,
(*) reduces to the Castelnuovo–de Franchis-type inequality h0,2 = h3,1 ≥
2q − 3), but the positivity of higher γi and part (iii) produce new stronger
results. In fact, for threefolds satisfying the hypotheses of the theorem, an in-
equality kindly provided by a referee and the inequality in (iii) together imply
that asymptotically

h0,2 , 4q and h0,3 , 4q

while in the case of fourfolds the same plus the inequality γ2 ≥ 0 give asymp-
totically

h0,2 , 4q, h0,3 , 5q +
√

2q, h0,4 , 3q +
√

2q.
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(See Corollary 4.5 for more details.) When X is a surface without irrational
pencils, related methods applied to &1

X yield a new inequality for h1,1 as well.
Assertion (iii) is (a slightly special case of) the main result of [30], for which
we provide a simple proof. The idea is that when the rank rk(F ) = χ(ωX)
of F is small compared to q − 1 = dim P, it is hard for such a bundle to
exist, giving rise to lower bounds on χ(ωX). The method used here allows us
to further analyze possible borderline cases when the Euler characteristic is
small, and conjecture stronger inequalities. All of the inequalities above can
fail when X does carry irregular fibrations.

Given the role it plays in Sect. 3, it is natural to ask what is the geometric
meaning of the BGG sheaf FX . Our last result, which could be considered as
an appendix to [15] Sect. 4 and [16], shows that in fact it has a very natural
interpretation. Recall that in classical terminology, a paracanonical divisor
on X is an effective divisor algebraically equivalent to a canonical divisor.
The set of all such is parametrized by the Hilbert scheme (or Douady space)
Div{ω}(X), which admits an Abel-Jacobi mapping

u : Div{ω}(X) −→ Pic{ω}(X)

to the corresponding component of the Picard torus of X. The projective space
|ωX| parametrizing all canonical divisors sits as a subvariety of Div{ω}(X): it
is the fibre of u over the point [ωX] ∈ Pic{ω}(X). On the other hand, the pro-
jectivization P(F ) = ProjP(Sym(F )) sits naturally in Pq−1 ×P(Hd(X, OX)),
giving rise to a morphism

P(F ) −→ P
(
Hd(X, OX)

)
= |ωX|. (1.5)

Theorem D With the notation just introduced, P(F ) is identified via the mor-
phism (1.5) with the projectivized normal cone to |ωX| inside Div{ω}(X).

Note that we do not assume here that X carries no irregular fibrations.
When this additional hypothesis does hold, Theorem D implies the amusing
fact that whether or not the projective space |ωX| is an irreducible component
of Div{ω}(X) depends in most cases only on the Hodge numbers hd,j (X)
(Proposition 5.5).

We conclude this Introduction with a few remarks about related work. The
sheafified complex LX came up in passing in [10] and [19], but it has not up
to now been exploited in a systematic fashion. Going back to Theorem B, we
note that a statement of a similar type was established in [13] for the singular
cohomology of the complement of an affine complex hyperplane arrange-
ment: in fact this cohomology always has a linear resolution over the exterior
algebra on its first cohomology (though it is not generated in degree zero).
However whereas the result of [13] is of combinatorial genesis and does not
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involve using the BGG correspondence, as explained above Theorem B is ul-
timately based on translating Hodge-theoretic information via BGG. We note
also that Catanese suggested in [5] that it might be interesting to study the
BGG correspondence for holomorphic cohomology algebras. In another di-
rection, Lombardi [23] has extended the approach of the present paper to deal
with Hodge groups Hq(X,&

p
X) with p,q != 0, d: see Remark 4.7 for a brief

description of some of his results.
Concerning the organization of the paper, in Sect. 2 we prove the main

technical result Theorem A. The connection with BGG is discussed in Sect. 3.
Applications to numerical inequalities occupy Sect. 4, where we also give a
number of examples and variants. Finally, Theorem D appears in Sect. 5.

2 Proof of Theorem A

This section is devoted to the proof of the main technical result, giving the
exactness of the BGG complexes. The argument proceeds in the form of three
propositions. We keep notation as in the Introduction: X is a compact Kähler
manifold of dimension d , albX : X −→ Alb(X) is the Albanese mapping, and

k = k(X) = dimX − dim albX(X)

is the dimension of the generic fibre of albX . As before, P= Psub(H
1(X, OX))

is the projective space of lines in H 1(X, OX), and LX and LX are the com-
plexes appearing in (1.1) and (1.2).

Proposition 2.1 The complexes LX and LX are exact in the first d − k terms
from the left.

Proof It is sufficient to prove the exactness for LX , as this implies the corre-
sponding statement for its sheafified sibling. The plan for this is to relate LX

to the derivative complex introduced and studied in [16].
Write V = H 1(X, OX) and W = V ∗, and let A = Spec(Sym(W )) be the

affine space corresponding to V , viewed as an algebraic variety. Thus a point
in A is the same as a vector in V . Then there is a natural complex K• of trivial
algebraic vector bundles on A:

0 −→ OA ⊗ H 0(X, OX) −→ OA ⊗ H 1(X, OX) −→ · · ·
−→ OA ⊗ Hd(X, OX) −→ 0,

with maps given at each point of A by wedging with the corresponding
element of V = H 1(X, OX). Recalling that '(A, OA) = S, one sees that
LX = '(A, K•) is the complex obtained by taking global sections in K•. As



612 R. Lazarsfeld, M. Popa

A is affine, to prove the stated exactness properties of LX , it is equivalent to
establish the analogous exactness for the complex K•, i.e. we need to show
the vanishings Hi(K•) = 0 of the cohomology sheaves of this complex in the
range i < d − k. For this it is in turn equivalent to prove the vanishing

Hi
(

K•)
0 = 0 (*)

of the stalks at the origin of these homology sheaves in the same range
i < d − k. Indeed, (*) implies that Hi (K•) = 0 in a neighborhood of the ori-
gin. But the differential of K• scales linearly in radial directions through the
origin, so we deduce the corresponding vanishing on all of A.

Now let V be the vector space V , considered as a complex manifold, so
that V = Cq , where q = h1(X, OX) is the irregularity of X. Then on V we
can form as above a complex (K•)an

0 −→ OV ⊗ H 0(X, OX) −→ OV ⊗ H 1(X, OX) −→ · · ·
−→ OV ⊗ Hd(X, OX) −→ 0,

of coherent analytic sheaves, which is just the complex of analytic sheaves
determined by the algebraic complex K•. This analytic complex was studied
in [16], where it was called the derivative complex D•

OX
of OX . Since passing

from a coherent algebraic to a coherent analytic sheaf is an exact functor (cf.
[33, 3.10]), one has Hi ((K•)an) = Hi ((K•))an. So it is equivalent for (*) to
prove:

Hi
(
(K•)an

)
0 = 0 for i < d − k. (**)

But this will follow immediately from a body of results surrounding generic
vanishing theorems.

Specifically, write Pic0(X) = V/$, let P be a normalized Poincaré line
bundle on X × Pic0(X), and write

p1 : X × Pic0(X) −→ X, p2 : X × Pic0(X) −→ Pic0(X)

for the two projections. The main result of [16], Theorem 3.2, says that via the
exponential map exp : V → Pic0(X) we have the identification of the analytic
stalks at the origin

Hi
(
(K•)an

)
0
∼= (Rip2∗P)0. (***)

On the other hand, by [30] Theorem C, we have Rip2∗P = 0 for i < d − k,
where p2 is the projection onto the second factor.2 In view of (***), this gives
(**), and we are done. !

2This was posed as a problem in [16], and first answered in the smooth projective case by
Hacon [18] and Pareschi [28]. In [30] it was simply shown that the result is equivalent to the
Generic Vanishing Theorem of [15], hence it holds also in the compact Kähler case.
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The next point is the non-exactness of LX beyond the range specified in
the previous proposition.

Proposition 2.2 The complex LX is not exact at the term S⊗CHd−k(X, OX).

Remark 2.3 The analogous statement for the sheafified complex LX can fail.
For example, if X = A × Pk , with A an Abelian variety of dimension d − k,
then LX—which in this case is just a Koszul complex on Pd−k−1—is every-
where exact.

Proof of Proposition 2.23 As the cohomology groups involved in the con-
struction of LX are birationally invariant, one can assume that there is a
surjective morphism f : X → Y , with Y a compact Kähler manifold of di-
mension d − k, such that f ∗ : H 1(Y, OY )

.−→ H 1(X, OX) and that there is a
map Y → Alb(X), generically finite onto its image. Noting that a surjection
between compact Kähler manifolds f induces injective maps

f ∗ : Hi(Y, OY ) ↪→ Hi(X, OX) for all i,

we obtain an inclusion of complexes LY ↪→ LX . Now the rightmost term
in LY is S ⊗C Hd−k(Y, OY ). By Serre duality this is non-zero, since
H 0(Y,ωY ) != 0 by virtue of Y being of maximal Albanese dimension. If
0 != α ∈ Hd−k(Y, OY ) then obviously dY (1 ⊗ α) = 0, hence also dX(1 ⊗
f ∗α) = 0, where dY and dX are the differentials of LY and LX respectively.
But f ∗α != 0, and 1 ⊗ f ∗α cannot be in the image of dX , since it has degree
0 with respect to the S-grading. !

Remark 2.4 (Converse to the Generic Vanishing theorem [15]) Arguing as in
the proof of Proposition 2.1, the conclusion of Proposition 2.2 is equivalent
to the fact that (Rd−kp2∗P)0 != 0. According to [30] Theorem 2.2, this is in
turn equivalent to the fact that around the origin, the cohomological support
loci of ωX (see Proposition 2.5 below) satisfy

codim0V
i(ωX) ≥ i − k for all i > 0.

Therefore this last condition becomes equivalent to dima(X) ≤ k, which is a
converse to the main result of [15] (in a strong sense, as it has the interesting
consequence that the behavior of the V i(ωX) is dictated by their behavior
around the origin).

3This proof was indicated to us by one of the referees; it simplifies considerably our original
argument. One can also deduce the statement directly from a theorem of Kollár by passing
through the BGG correspondence: see Remark 3.5 in the next section.
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Finally, we record a criterion to guarantee that the BGG sheaf F on the
projective space P is locally free. Recall that an irregular fibration of X is a
surjective morphism f : X −→ Y with connected fibres from X onto a normal
variety Y with 0 < dimY < dimX having the property that a smooth model
of Y has maximal Albanese dimension.

Proposition 2.5

(i) If X has maximal Albanese dimension, then LX is a resolution of F .
(ii) Suppose that 0 ∈ Pic0(X) is an isolated point of the cohomological sup-

port loci

V i(ωX) =def
{
α ∈ Pic0(X) | Hi(X,ωX ⊗ α) != 0

}

for every i > 0. Then F is a vector bundle on P, with rk(F ) = χ(ωX).
(iii) The hypothesis of (ii) holds in particular if X does not carry any irregu-

lar fibrations.

Proof The first statement is the case k = 0 of Proposition 2.1, and (iii) fol-
lows from [16], Theorem 0.1. In general, V i(ωX) contains the support of the
direct image Rip2∗P . Hence if the V i(ωX) are finite for i > 0, then the cor-
responding direct images are supported at only finitely many points, and this
implies that the vector bundle maps appearing in LX are everywhere of con-
stant rank. (Compare [10] or [19], Proposition 2.11.) Thus F is locally free,
and its rank is computed from LX . !

Remark 2.6 We note for later reference that the main result of [16] asserts
more generally that if X doesn’t admit any irregular fibrations, then in fact
V i(ωX) is finite for every i > 0.

3 BGG and the canonical cohomology module

In this section we apply main technical result Theorem A to study the regular-
ity of the canonical module QX . We also discuss a variant involving a twisted
BGG complex.

We start by briefly recalling from [12] and [11] some basic facts con-
cerning the BGG correspondence. Let V be a q-dimensional complex vector
space,4 and let E = ⊕d

i=0
∧i V be the exterior algebra over V . Denote by

W = V ∨ be the dual vector space, and by S = Sym(W) the symmetric alge-

4The BGG correspondence works over any field, but in the interests of unity we stick through-
out to C.
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bra over W . Elements of W are taken to have degree 1, while those in V have
degree −1.

Consider now a finitely generated graded module P = ⊕d
i=0 Pi over E.

The dual over E of the module P is defined to be the E-module

Q = P̂ =
d⊕

j=0

P ∨
−j

(so that positive degrees are switched to negative ones and vice versa). The
basic idea of the BGG correspondence is that the properties of Q as an E-
module are controlled by a linear complex of S-modules constructed from P .
Specifically, one considers the complex L(P ) given by

· · · −→ S ⊗C Pj+1 −→ S ⊗C Pj −→ S ⊗C Pj−1 −→ · · ·

with differential induced by

s ⊗ p /→
∑

i

xis ⊗ eip,

where xi ∈ W and ei ∈ V are dual bases. We refer to [12] or [11] for a dictio-
nary linking L(P ) and Q.

It is natural to consider a notion of regularity for E-modules analogous
to the theory of Castelnuovo-Mumford regularity for finitely generated S-
modules. We limit ourselves here to modules concentrated in non-positive
degrees.

Definition 3.1 (Regularity) A finitely generated graded E-module Q with no
component of positive degree is called m-regular if it is generated in degrees
0 up to −m, and if its minimal free resolution has at most m+1 linear strands.
Equivalently, Q is m-regular if and only if

TorEi (Q,C)−i−j = 0

for all i ≥ 0 and all j ≥ m + 1.

As an immediate application of the results of Eisenbud-Fløystad-Schreyer,
one has the following addendum to [12] Corollary 2.5 (cf. also [11] Theo-
rems 7.7, 7.8), suggested to us by F.-O. Schreyer.

Proposition 3.2 Let P be a finitely generated graded module over E with no
component of negative degree, say P = ⊕d

i=0 Pi . Then Q = P̂ is m-regular
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if and only if L(P ) is exact at the first d − m steps from the left, i.e. if and
only if the sequence

0 −→ S ⊗C Pd −→ S ⊗C Pd−1 −→ · · · −→ S ⊗C Pm

of S-modules is exact.

We propose to apply this machine to the canonical cohomology module.
As before, let X be a compact Kähler manifold of dimension d , and albX :
X −→ Alb(X) its Albanese map. Set

V = H 1(X, OX), E = $∗V, W = V ∨, S = Sym(W).

We are interested in the graded E-modules

PX =
d⊕

i=0

Hi(X, OX), QX =
d⊕

i=0

Hi(X,ωX),

the E-module structure arising from wedge product with elements of
H 1(X, OX). These become dual modules (thanks to Serre duality) provided
that we assign Hi(X, OX) degree d − i, and Hi(X,ωX) degree −i.

According to Proposition 3.2, the regularity of QX is governed by the ex-
actness of the complex L(PX) associated to PX . Thus Theorem B from the
Introduction follows at once from statement (i) of Theorem A in view of the
following:

Lemma 3.3 The complex L(PX) coincides with the complex LX appearing
in (1.2).

Proof It follows easily from the definitions that the differentials of both com-
plexes are given on the graded piece corresponding to any p ≥ 0 and i ≥ 0
by

Sp−1W ⊗ Hi−1(X, OX) −→ SpW ⊗ Hi(X, OX)

induced by the cup-product map V ⊗ Hi−1(X, OX) → Hi(X, OX) and the
natural map Sp−1W → SpW ⊗ V . !

Remark 3.4 (Exterior Betti numbers) The exterior graded Betti numbers of
QX are computed as the dimensions of the vector spaces TorEi (Q,C)−i−j .
When X is of maximal Albanese dimension and q(X) > dimX, Theorem B
implies that these vanish for i ≥ 0 and j ≥ 1, and the i-th Betti number in the
linear resolution of QX is

bi = dimC TorEi (Q,C)−i = h0(P, F (i))
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where F is the BGG sheaf defined in (1.3) in the Introduction. (The last equal-
ity follows from general machinery, cf. [11] Theorem 7.8.) On the other hand
F is 0-regular in the sense of Castelnuovo-Mumford by virtue of having a lin-
ear resolution, so the higher cohomology of its nonnegative twists vanishes.
Hence bi = χ(P, F (i)), i.e. the exterior Betti numbers are computed by the
Hilbert polynomial of F .

Remark 3.5 (Alternative proof of Proposition 2.2) One can use the BGG cor-
respondence to deduce the non-exactness statement of Proposition 2.2 from
a theorem of Kollár and its extensions. In fact, in view of Proposition 3.2, it
is equivalent to prove that QX is not (k − 1)-regular. To this end, observe that
the main result of [21] (extended in [32] and [34] to the Kähler setting) gives
the splitting Ra∗ωX

∼= ⊕k
j=0 Rja∗ωX[−j ] in the derived category of A. This

implies that QX can be expressed as a direct sum

QX =
k⊕

j=0

Qj [j ], with Qj = H ∗(A,Rja∗ωX).

Moreover this is a decomposition of E-modules: E acts on H ∗(A,Rja∗ωX)
via cup product through the identification H 1(X, OX) = H 1(A, OA), and
we again consider Hi(A,Rja∗ωX) to live in degree −i. We claim next
that Qk != 0. In fact, each of the Rja∗ωX is supported on the (d − k)-
dimensional Albanese image of X, and hence has vanishing cohomology in
degrees > d − k. Therefore Hd(X,ωX) = Hd−k(A,Rka∗ωX), which shows
that Qk != 0. On the other hand, Qk[k] is concentrated in degrees ≤ −k, and
therefore QX must have generators in degrees ≤ −k.

Remark 3.6 Keeping the notation of the previous Remark, the authors and
C. Schnell have shown that each of the modules Qj just introduced is 0-
regular. Thus the minimal E-resolution of QX splits into the direct sum of
the (shifted)-linear resolutions of the modules Qj [j ]. Details will appear in a
forthcoming note.

Finally, we discuss briefly a variant involving twisted modules. Fix an ele-
ment α ∈ Pic0(X), and set

Pα =
⊕

Hi(X,α), Qα =
⊕

Hj(X,ωX ⊗ α−1).

With the analogous grading conventions as above, these are again dual mod-
ules over the exterior algebra E. Letting

t = t (α) = max{i | Hi(X,ωX ⊗ α−1) != 0},
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the BGG complexes L(Pα) and L(Pα) for Pα take the form

0 → S ⊗ Hd−t (X,α) → S ⊗ Hd−t+1(X,α) → · · ·
→ S ⊗ Hd−1(X,α) → S ⊗ Hd(X,α) → 0

and

0 → OP(−t) ⊗ Hd−t (X,α) → OP(−t + 1) ⊗ Hd−t+1(X,α) → · · ·
→ OP(−1) ⊗ Hd−1(X,α) → OP ⊗ Hd(X,α) → 0.

Writing as before k = k(X) for the generic fibre dimension of the Albanese
map, it follows as above from [18, 28, 30] that L(Pα) is exact at the first
d − t − k steps from the left. Hence:

Variant 3.7 The E-module Qα is k-regular. !

We will return to the sheafified complex L(Pα) later.

Remark 3.8 (Holomorphic forms) One can also extend aspects of the present
discussion to E-modules associated to other bundles of holomorphic forms.
This is worked out by Lombardi [23], who gives some interesting applica-
tions: see Remark 4.7.

4 Inequalities for numerical invariants

In this section, we use the BGG-sheaf F to study numerical invariants of a
compact Kähler manifold. The exposition proceeds in three parts. We begin
by establishing Theorem C from the Introduction. In the remaining two sub-
sections we discuss examples, applications and variants.

Inequalities from the BGG bundle As before, let X be a compact Kähler
manifold of dimension d , and write

pg = h0(X,ωX), χ = χ(X,ωX), q = h1(X, OX), n = q − 1.

Denote by P = Psub(H
1(X, OX)), so that P is a projective space of dimension

n = q −1, and by F = FX the BGG-sheaf on P introduced in (1.3). Once one
knows that F is locally free, more or less elementary arguments with vector
bundles on projective space yield inequalities for numerical invariants. As in
the Introduction, for 1 ≤ i ≤ q − 1 define γi = γi (X) to be the coefficient of
t i in the formal power series

γ (X; t) =def

d∏

j=1

(1 − j t)(−1)j hd,j ∈ Z[[t]],
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with hi,j = hi,j (X). The following statement recapitulates Theorem C from
the Introduction under a slightly weaker hypothesis (cf. Proposition 2.5).

Theorem 4.1 Assume that 0 ∈ Pic0(X) is an isolated point of V i(ωX) for
every i > 0. Then

(i) Any Schur polynomial of weight ≤ q − 1 in the γi is non-negative. In
particular

γi(X) ≥ 0

for every 1 ≤ i ≤ q − 1.
(ii) If i is any index with χ(ωX) < i < q , then γi(X) = 0.

(iii) One has χ(ωX) ≥ q − d .

Proof Thanks to Proposition 2.5, the hypothesis guarantees that F is locally
free, and has a linear resolution:

0 −→ OP(−d) ⊗ H 0(X, OX) −→ OP(−d + 1) ⊗ H 1(X, OX) −→ · · ·
−→ OP(−1) ⊗ Hd−1(X, OX) −→ OP ⊗ Hd(X, OX) −→ F −→ 0.

(4.1)

Identifying as usual cohomology classes on Pn with integers, γ (X; t) is then
just the Chern polynomial of F . On the other hand, as F is globally generated,
the Chern classes ci(F )—as well as the Schur polynomials in these—and
represented by effective cycles. Thus

γi(X) = deg ci(F ) ≥ 0.

The second statement follows from the fact that ci(F ) = 0 for i > rank(F ).
Turning to (iii), we may assume that q > d since in any event χ ≥ 0 by

generic vanishing. If q − d = 1, then the issue is to show that χ = rank(F ) ≥
1, or equivalently that F != 0. But this is clear, since there are no non-trivial
exact complexes of length n on Pn whose terms are sums of line bundles of
the same degree. So we may suppose finally that q − 1 = n > d . The quickest
argument is note that chasing through (4.1) implies that F and its twists have
vanishing cohomology in degrees 0 < j < n − d − 1. But if χ ≤ n − d this
means by a result of Evans–Griffith, [14] Theorem 2.4, that F is a direct sum
of line bundles, which as before is impossible. (See [22], Example 7.3.10,
for a quick proof of this splitting criterion due to Ein, based on Castelnuovo-
Mumford regularity and vanishing theorems for vector bundles.)

For a more direct argument in the case at hand that avoids Evans–Griffith,
let s ∈ H 0(P, F ) be a general section, and let Z = Zeroes(s). We may sup-
pose that Z is non-empty—or else we could construct a vector bundle F ′ of
smaller rank having a linear resolution as in (4.1)—and smooth of dimension
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n − χ . Splicing together the sequence (4.1) and the Koszul complex deter-
mined by s, we arrive at a long exact sequence having the shape:

0 −→ OP(−d) −→ ⊕OP(−d + 1) −→ · · · −→ ⊕OP(−1)

−→ ⊕OP −→ $2F −→ · · · −→ $χ−1F −→ OP(c1) −→ OZ(c1)

−→ 0, (*)

where c1 = c1(F ). Observe that ωZ = OZ(c1 − n − 1) by adjunction. Since
F is globally generated, a variant of the Le Potier vanishing theorem5 yields
that

Hi(P,$a F ⊗ ωP())) = 0 for i > χ − a , ) > 0.

Now twist through in (*) by OP(d − n − 1). Chasing through the resulting
long exact sequence, one finds that Hn−d−(χ−1)(Z,ωZ(d)) != 0. But if χ ≤
n − d , this contradicts Kodaira vanishing on Z. !

Remark 4.2 (Evans–Griffith Theorem) A somewhat more general form of
(iii) appears in [30] and can be deduced here as well: applying Variant 4.12
and using more carefully the results of [16], one can assume only that there
are no irregular fibrations f : X −→ Y such that Y is generically finite onto
a proper subvariety of a complex torus (i.e. X has no higher irrational pen-
cils in Catanese’s terminology [4].) The argument in [30] involved applying
the Evans–Griffith syzygy theorem to the Fourier–Mukai transform of the
Poincaré bundle on X × Pic0(X). The possibility mentioned in the previous
proof of applying the Evans–Griffith–Ein splitting criterion to the BGG bun-
dle F is related but substantialy quicker. As we have just seen the additional
information that F admits a linear resolution allows one to bypass Evans–
Griffith altogether, although as in Ein’s proof we still use vanishing theorems
for vector bundles.

Hodge-number inequalities Here we give some examples and variants of
the inequalities appearing in the first assertions of Theorem 4.1. To put things
in context, we start with an extended remark on what can be deduced from
previous work of various authors.

5The statement we use is that if E is a nef vector bundle of rank e on a smooth projective
variety V of dimension n, then

Hi(V,$a E ⊗ ωV ⊗ L) = 0

for i > e − a and any ample line bundle L. In fact, it is equivalent to show that
Hj (V,$a E ∗ ⊗ L∗) = 0 for j < n + a − e. For this, after passing to a suitable branched cov-
ering as in [22], proof of Theorem 4.2.1, we may assume that L = M⊗a , in which case the
statement follows from Le Potier vanishing in its usual form: see [22], Theorem 7.3.6.
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Remark 4.3 (Inequalities deduced from [4] and [6]) Catanese [4] shows that if
a compact Kähler manifold X admits no irregular fibrations, then the natural
maps

φk :
k∧

H 1(X, OX) −→ Hk(X, OX) (4.2)

are injective on primitive forms ω1 ∧ · · · ∧ ωk , for k ≤ dimX. Since these
correspond to the Plücker embedding of the Grassmannian G(k,V ), one
obtains the bounds h0,k(X) ≥ k(q(X) − k) + 1. This includes the classical
h0,2(X) ≥ 2q(X) − 3. However, still based on Catanese’s results, one of the
referees points out a nice argument that provides the even stronger inequality:

h0,2(X) ≥ 4q(X) − 10 (4.3)

provided that dimX ≥ 3. We thank the referee for allowing us to include the
proof here.

Assume then that X is a compact Kähler manifold of dimension ≥ 3 with
no irregular fibrations. By [4], for any independent 1-forms ω1, ω2, ω3 on X
one has ω1 ∧ ω2 ∧ ω3 != 0 in H 0(X,&3

X). Accordingly, for any independent
ω1,ω2,ω3,ω4 ∈ H 0(X,&1

X) one has

ω1 ∧ ω2 != ω3 ∧ ω4 ∈ H 0(X,&2
X).

Writing W = 〈ω1,ω2,ω3,ω4〉 ⊆ H 0(X,&1
X), we then have that the natural

map

2∧
W → H 0(X,&2

X)

is injective (as the secant variety of the Grassmannian G(2,4) fills up the
ambient P5 of the Plücker embedding). Denote now by E the tautological
sub-bundle on the Grassmannian of subspaces G = G(4,H 0(X,&1

X)). We
obtain a morphism

R := Psub

( 2∧
E
)

ϕ−→ Psub(H
0(X,&2

X))

which is given by sections of the line bundle OP(1). As this line bundle is
big,6 we have dim Im(ϕ) = dim R, and (4.3) follows.

6This is equivalent to the assertion that the map , : R −→ Psub(
∧2 H 0(X,&1

X)) is generi-
cally finite over its image. But it is elementary to see that the image of , coincides with the
secant variety of the Plucker embedding of G′ = G(2,H 0(X,&1

X)), and this secant variety is
well-known to have dimension = 2 dim G′ + 1 − 4 = 4q − 11 = dim R.
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Finally we note that Causin and Pirola [6] provide a more refined study in
the case k = 2 of the homomorphism appearing in (4.2). Among other things,
for q(X) ≤ 2 dimX − 1 they show that φ2 is injective, so h0,2(X) ≥

(q(X)
2

)
.

Thus for threefolds with q(X) = 5 and no irregular fibrations, their result
coincides with (4.3).7

Example 4.4 (Theorem 4.1 in small dimensions) We unwind a few of the
inequalitites in statement (i) of Theorem 4.1. We assume that X has dimen-
sion d , and that it carries no irregular fibrations. For compactness, write
h0,j = h0,j (X) and q = q(X). To begin with, the condition γ1 ≥ 0 gives a lin-
ear inequality among q,h0,2, . . . , h0,d−1. In small dimensions this becomes:

h0,2 ≥ −3 + 2q when d = 3;

h0,3 ≥ 4 − 3q + 2h0,2 when d = 4;

h0,4 ≥ −5 + 4q − 3h0,2 + 2h0,3 when d = 5.

(4.4)

Similarly, γ2 is a quadratic polynomial in the same invariants, and one may
solve γ2 ≥ 0 to deduce the further and stronger inequalities:

h0,2 ≥ −7
2

+ 2q +
√

8q − 23
2

when d = 3;

h0,3 ≥ 7
2

− 3q + 2h0,2 +
√

49 − 24q + 8h0,2

2
when d = 4;

h0,4 ≥ −11
2

+ 4q − 3h0,2 + 2h0,3 +
√

71 + 48q − 24h0,2 + 8h0,3

2
when d = 5,

(4.5)

where in the last case we assume that the expression under the square root
is non-negative. (This is automatic when d = 3 since q ≥ 3, and when d = 4
thanks to (4.3).) Note that equality holds in (4.4) when X is an Abelian variety
(in which case F = 0). Similarly, when X is a theta divisor in an Abelian
variety of dimension d + 1, then rank F = 1, so equality holds in each of the
three instances of (4.5).

When d = 3 or d = 4, we can combine the various inequalities in play to
get an asymptotic statement:

7The results of Catanese and Causin-Pirola actually only assume the absence of higher irra-
tional pencils, cf. Remark 4.2.
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Corollary 4.5

(i) If X is an irregular compact Kähler threefold with no irregular fibration,
then

h0,3(X) ≥ h0,2(X) − 2,

so asymptotically

h0,2(X) , 4q(X) and h0,3(X) , 4q(X).

(ii) If X is an irregular compact Kähler fourfold with no irregular fibration,
then asymptotically

h0,2(X) , 4q(X), h0,3(X) , 5q(X) + √
2q(X),

h0,4(X) , 3q(X) + √
2q(X).

Proof (i) The first inequality is equivalent to the statement χ(ωX) ≥ q − 3
from statement (iii) of Theorem 4.1, and the other inequalities follow from
this and (4.3).

(ii) The inequality χ(ωX) ≥ q − 4 is equivalent to

h0,4(X) ≥ (2q − 5) +
(
h0,3(X) − h0,2(X)

)
.

The statement then follows by using (4.5) to bound h0,3 − h0,2, and invoking
the inequality h0,2 , 4q coming from (4.3). !

Similar arguments lead to a new inequality for h1,1 on a surface. Specifi-
cally, let X be a compact Kähler surface with no non-constant morphism to a
curve of genus at least 2. The classical Castelnuovo-de Franchis inequality as-
serts that h0,2(X) ≥ 2q(X) − 3. A related result based on the Castelnuovo-de
Franchis Lemma and linear algebra also bounds h1,1 in terms of the irregu-
larity: it is shown in [1], IV.5.4, that h1,1(X) ≥ 2q(X) − 1. The methods of
the present paper yield a strengthening of this:8

Proposition 4.6 If X is a compact Kähler surface without irrational pencils,
then

h1,1(X) ≥
{

3q(X) − 2 if q(X) is even,

3q(X) − 1 if q(X) is odd.

8We remark that in the case of surfaces of general type without irrational pencils the inequal-
ity h1,1(X) ≥ 3q(X) − 2 could also be obtained by combining the Castelnuovo-de Franchis
inequality with the deep Bogomolov-Miyaoka-Yau inequality.



624 R. Lazarsfeld, M. Popa

Proof It is well known that given any non-zero one-form ω ∈ H 0(X,&1
X) on

such a surface X, the map H 1(X, OX)
∧ω−→ H 1(X,&1

X) obtained by wedging
with ω is injective. On the other hand, this map is naturally dual to the map
H 1(X,&1

X)
∧ω−→ H 1(X,&2

X), via Serre duality. Hence in the natural complex

0 −→ H 1(X, OX)
∧ω−→ H 1(X,&1

X)
∧ω−→ H 1(X,&2

X) −→ 0,

the first map is injective and the second is surjective. Globalizing, we obtain
a monad of vector bundles on P := Psub(H

0(X,&1
X)):

0 −→ OP(−1)q −→ Oh1,1(X)
P

φ−→ OP(1)q −→ 0.

The cohomology E of this monad sits in an exact sequence

0 −→ OP(−1)q −→ K −→ E −→ 0

where K = ker(φ). A direct calculation shows that rk(E) = h1,1(X)−2q and

ct (E) = 1
(1 − t2)q

= 1 + qt2 +
(

q + 1
2

)
t4 + · · · ,

with non-zero terms in all even degrees ≤ dim P = q − 1. As ci(E) = 0 for
i > rk(E), this implies that rk(E) ≥ q − 2 if q is even, and rk(E) ≥ q − 1 if
q is odd. !

Remark 4.7 (Bounds for other Hodge numbers) The techniques of this paper,
applied to bundles of holomorphic forms &

p
X as opposed to OX , can be used

to bound other Hodge numbers for important classes of compact Kähler man-
ifolds, where no results in the style of those of [4] in Remark 4.3 are available.
This is carried out by Lombardi in [23]; for instance, on threefolds whose 1-
forms have at most isolated zeros (e.g. subvarieties of Abelian varieties with
ample normal bundle), there are lower bounds for all Hodge numbers in terms
of q(X). Besides those mentioned in the proof of Corollary 4.5, one has as-
ymptotically

h1,1 , 2q +
√

2q and h2,1 , 3q +
√

2q.

Bounds involving the Euler characteristic In this final subsection, we make
some remarks surrounding the inequality

χ(X,ωX) ≥ q(X) − dimX (4.6)

established in [30] and Theorem 4.1(iii) for compact Kähler manifolds with
no irregular fibrations.
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Note to begin with that equality holds in (4.6) when X is birational to a
complex torus (in which case χ = 0) or to a theta divisor in a principally
polarized Abelian variety (in which case d = q − 1 and χ = 1). It was es-
sentially established by Hacon–Pardini [19], Sect. 4, that in fact these are the
only such examples with χ ≤ 1.

Proposition 4.8 Let X be an irregular smooth projective complex variety
with no irregular fibrations.

(i) If χ(ωX) = 0, then X is birational to an Abelian variety.
(ii) If χ(ωX) = 1 = q(X) − dimX, then X is birational to a principal polar-

ization in a PPAV.

Since the statement does not appear explicitly in [19] we will briefly in-
dicate the proof, but we stress that all the ideas are already present in that
paper.

Sketch of Proof We again focus on the exact sequence (4.1) of bundles on
P = Pq−1. Note that in any event X has maximal Albanese dimension, and
hence q ≥ d . If χ = 0, then F = 0. In this case one reads off from (4.1) that
q = d and P1(X) = h0,d(X) > 0. On the other hand, the assumption of the
theorem implies by [16] that V i(ωX) has only isolated points when i > 0,
and since χ(ωX) = 0, this implies that V 0(ωX) also consists only of isolated
points. But a result of Ein-Lazarsfeld (cf. [7], Theorem 1.7) says that a variety
of maximal Albanese dimension with V 0(ωX) zero dimensional is birational
to its Albanese.

Now suppose that χ = 1. Then F is a line bundle, and it follows that
(4.1) is a twist of the standard Koszul complex, this being the unique linear
complex of length n + 1 on Pn whose outer terms have rank one. In par-
ticular h0,d(X) = q . On the other hand we have an injection H 0(A,&d

A) →
H 0(X,&d

X). Indeed, since d = q − 1, if the pullback map were not injec-
tive we would have a d-wedge of independent holomorphic 1-forms on X

equal to 0, which by [4] Theorem 1.14 would imply the existence of an ir-
regular fibration. Now since the two dimensions are equal, the map is in fact
an isomorphism. To prove (ii), one can then use a characterization of princi-
pal polarizations due to Hacon-Pardini (cf. [19] Proposition 4.2), extending a
criterion of Hacon, which says that the only other thing we need to check is
V i(ωX) = {0} for all i > 0. But this follows from Remarks 2.6 and 4.13. !

On the other hand, one expects it to be very rare to find manifolds X with
no irregular fibrations for which χ(X,ωX) = q(X) − dimX ≥ 2.
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Conjecture 4.9 If X is an irregular compact Kähler manifold with no irreg-
ular fibrations and χ(ωX) ≥ 2, then

χ(ωX) > q(X) − dimX

when q(X) is very large compared to χ(ωX).

The thinking here is that if equality were to hold in (4.6), then the BGG-sheaf
F would provide a non-split vector bundle of small rank on the projective
space P. But these should almost never exist. The fact that F admits a linear
resolution, and the resulting relations in Theorem C (ii), should provide even
more constraints.

As an example in this direction, one has the following, whose proof was
shown to us by I. Coandă.

Proposition 4.10 Let X be a compact Kähler manifold with no irregular
fibrations, such that χ(ωX) = 2 and q(X) ≥ 5. Then q(X) − dim X < 2.

Proof Assume for a contradiction that q(X) − dimX = 2, and consider yet
again the BGG resolution (4.1) of F . This resolution shows first of all that
F is 0-regular in the sense of Castelnuovo-Mumford. We next claim that
H 1(P, F (−2)) != 0, while H 1(P, F (i)) = 0 for all i != −2. Grant this for
the moment. Then the S-module H 1

∗ (F ) has a non-zero summand in degrees
−2 and higher. But [26] Theorem 1.7 asserts that a 0-regular rank 2 bundle
with this property cannot exist when n ≥ 4. As for the claim, note that (4.1)
starts on the left with a twist of the Euler sequence, and thus the cokernel of
the injection OPn(−n + 1) → On+1

Pn (−n + 2) is TPn(−n + 1). One then finds
that

H 1(Pn, F (i)) = Hn−1(Pn, TPn(−n + 1 + i)),

and the assertion follows from the Bott formula (cf. [27] p.8–9) and Serre
duality. !

Example 4.11 (Surfaces and the Tango bundle) The case of surfaces is par-
ticularly amusing from the present point of view. When dimX = 2, (4.6) is
equivalent to the classical Castelnuovo-de Franchis inequality

pg(X) ≥ 2q(X) − 3,

which holds for surfaces with no irrational pencils of genus at least 2. As
soon as q(X) ≥ 4 it has been suggested (cf. e.g. [24])—and proved in [25]
for q(X) = 5—that there should be no such surfaces satisfying pg(X) =
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2q(X) − 3. If such a surface were to exist, its BGG bundle F would have
a resolution:

0 −→ OPn(−2) −→ OPn(−1)n+1 −→ O2n−1
Pn −→ F −→ 0

where n = q(X) − 1 ≥ 3. On the other hand, for every n ≥ 3 there does exist
a vector bundle having this shape: it is the dual of the Tango bundle (cf. [27]
Chap. I, Sect. 4.3). It would be quite interesting to decide one way or the other
whether one can in fact realize the dual Tango bundle as the BGG bundle of
a surface.

Finally, we discuss a strengthening of the inequality (4.6), also appearing
in [30], which involves the twisted BGG complexes introduced in Variant 3.7.

As always, let X be a compact Kähler manifold, and fix any point α ∈
Pic0(X). Following [30], one defines the generic vanishing index of ωX at
0 ∈ Pic0(X) to be the integer

gv0(X) = min
i>0

{codim 0V
i(ωX) − i}.

The basic generic vanishing theorems assert that gv0(X) ≥ 0 when X has
maximal Albanese dimension, and if 0 is an isolated point of V i(ωX) for
every i > 0 then

gv0(X) = q(X) − dim(X).

The following statement, which appeared as Corollary 4.1 in [30], therefore
generalizes Theorem C(iii).

Variant 4.12 Assume that X has maximal Albanese dimension. Then

χ(X,ωX) ≥ gv0(X).

Brief Sketch of Proof The origin belongs to all the V i(ωX) (cf. [10],
Lemma 1.8), and hence there exist a largest index t > 0, and an irreducible
component Z ⊆ V t(X), such that gv0(X) = codimZ − t . Choose a general
point α ∈ Z and consider the twisted BGG complex L(Pα), giving a resolu-
tion of the indicated sheaf Fα :

0 −→ OP(−t) ⊗ Hd−t (X,α) −→ OP(−t + 1) ⊗ Hd−t+1(X,α) −→ · · ·
−→ OP(−1) ⊗ Hd−1(X,α) −→ OP ⊗ Hd(X,α) −→ Fα −→ 0. (*)

The sheaf Fα is typically not locally free. But if one chooses a subspace

W ⊆ TαPic0(X) = H 1(X, OX)
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transverse to the tangent space of Z at α, and restricts (*) to the projectiviza-
tion P′ = PsubW of W , then it follows as in [10], Theorem 1.2, that one gets
an exact complex

0 −→ OP′(−t) ⊗ Hd−t (X,α) −→ OP′(−t + 1) ⊗ Hd−t+1(X,α) −→ · · ·
−→ OP′(−1) ⊗ Hd−1(X,α) −→ OP′ ⊗ Hd(X,α) −→ G −→ 0 (**)

where G is a vector bundle, of rank χ(X,ωX). Note that

dim P′ = codimZ − 1 = gv0(ωX) + t − 1.

Now the argument proceeds much as in the proof of Theorem 4.1, using (**)
in place of (4.1). !

Remark 4.13 (Non-trivial isolated points) A similar argument gives yet an-
other variant, which was also noted in [30].

Suppose that α ∈ Pic0(X) is a point having the property that for every
i > 0 either α /∈ V i(ωX) or else α is an isolated point of V i(ωX). As-
sume furthermore Hp(X,α) != 0 for some p < d , and let p(α) be the
least index for which this holds. Then

χ(X,ωX) ≥ q(X) − dimX + p(α).

Since evidently p(α) > 0 if α != 0, this means that non-trivial isolated points
improve the basic lower bound for the Euler characteristic.

5 The BGG sheaf and paracanonical divisors

In this section we study the geometric meaning of the BGG sheaf F , proving
Theorem D. As always, X is a compact Kähler manifold of dimension d , but
we do not exclude the possibility that it carries irregular fibrations. Keeping
the notation from the Introduction, Div{ω}(X) denotes the space of divisors
on X lying over Pic{ω}(X), and |ωX| ⊆ Pic{ω}(X) is the canonical series.

The first point is to relate the Hilbert scheme of paracanonical divisors
Div{ω}(X) to a suitable direct image of the Poincaré bundle on X × Pic0(X).

Proposition 5.1 Let P denote the normalized Poincaré bundle on X ×
Pic0(X). Then

Div{ω}(X) = P
(
(−1)∗Rdp2∗P

)

as schemes over Pic0(X), where (−1) : Pic0(X) −→ Pic0(X) is the morphism
given by multiplication by −1, and p1,p2 are the projections of X × Pic0(X)
onto its factors.
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We will provide a formal proof shortly, but for a quick plausibility argument
note that if α ∈ Pic0(X) is any point, then the fibre of P((−1)∗Rdp2∗P) over
α is the projective space of one-dimensional quotients of Hd(X,α−1), which
thanks to Serre duality is identified with the projective space parametrizing
divisors in the linear series |ωX ⊗ α|. Granting Proposition 5.1 for the time
being, we complete the

Proof of Theorem D It is enough to establish the stated isomorphism after
pulling back by the exponential map exp : V = H 1(X, OX) −→ Pic0(X),
which is étale. Then the results of [16] quoted in the proof of Proposition 2.1
imply that exp∗(Rdp2∗P) is isomorphic in a neighborhood of the origin to
the cokernel of map

u : Hd−1(X, OX) ⊗ OV −→ Hd(X, OX) ⊗ OV

of sheaves on the affine space V = Cq arising from the right-most terms of the
BGG complex. Note that u is given by a matrix of linear forms, and pulling
back by (−1) just multiplies the entries of this matrix by −1. The theorem
then reduces to a general statement, appearing in the following lemma, con-
cerning the projectivization of the cokernel of a map of trivial vector bundles
on affine space defined by a matrix of linear forms. !

Lemma 5.2 Let u be an a × b matrix of linear forms on a vector space Cq ,
defining maps

u : Oa
Cq −→ Ob

Cq , u : OPq−1(−1)a −→ Ob
Pq−1,

and set A = coker(u), A = coker(u). Consider the subscheme

P(A) ⊆ Cq × Pb−1,

whose fibre F over the origin 0 ∈ Cq is a copy of Pb−1. Then the projectivized
normal cone to F in P(A) is identified with P(A) via the natural projection
P(A) −→ Pb−1.

Proof An a × b matrix u of linear forms on Cq gives rise to an a × q matrix
w of linear forms on Pb−1 having the property that if B is the cokernel of the
resulting map

w : OPb−1(−1)a −→ Oq

Pb−1,

then P(A) ∼= V(B) as subschemes of Pb−1 × Cq . (In fact, w is constructed
so that P(A) and V(B) are defined in Pb−1 × Cq by the same equations.)
Under this identification, the issue is to determine the projectivized normal
cone to V(B) along its zero section; equivalently, one needs to determine the
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exceptional divisor in the blow-up of V(B) along this zero-section. But by
virtue of [17, 8.7] this exceptional divisor is P(B), and this in turn coincides
with P(A) as a subscheme of Pb−1 × Pq−1. !

It remains only to give the

Proof of Proposition 5.1 As explained in [20], Theorem 3.13, there is a
unique coherent sheaf Q on Pic0(X) characterized by the property that

Hom(Q, E ) = p2∗(p∗
1ωX ⊗ P ⊗ p∗

2 E ) (*)

for any sheaf E on Pic0(X), and then Div{ω}(X) = P(Q). So we need to es-
tablish that (*) holds with Q = (−1)∗Rdp2∗P . To this end, denote as usual
by R,P (G) = Rp2∗(p∗

1 G ⊗ P) the Fourier-Mukai transform of a sheaf G on
X. By the projection formula, one has

Rp2∗(p∗
1ωX ⊗ P ⊗ p∗

2 E ) ∼= R,P (ωX)
L⊗ E ,

and we claim that it suffices to prove the derived formula

R,P ωX

L⊗ E ∼= RHom
(
(−1)∗R,P OX[d], OPic0(X)

) L⊗ E . (**)

Indeed, suppose that (**) is known. Now

RHom
(
(−1)∗R,P OX[d], OPic0(X)

) L⊗ E ∼= RHom((−1)∗R,P OX[d], E ),

(***)

so the right-hand side of (*) is computed as the 0th cohomology sheaf of the
right-hand side in (***). But there is a spectral sequence

E
p,q
2 = E xtp

(
(−1)∗Rd−qp2∗P, E

)
⇒ Rp+q Hom

(
(−1)∗R,P OX[d], E

)

with p ≥ 0 and q ≤ 0. For degree reasons only Hom((−1)∗Rdp2∗P, E ) con-
tributes to the 0th term, so we get the required identity of sheaves.

So it remains only to prove (**), for which it suffices to establish that

R,P ωX
∼= RHom

(
(−1)∗R,P OX[d], OPic0(X)

) ∼= (R,P ∨ OX)∨[−d].

But this is precisely the commutation of Grothendieck duality with integral
functors (see for instance [29] Lemma 2.29). !

9This is proved in [29] in the context of smooth projective varieties, but as indicated in [30]
the same proof works on complex manifolds, due to the fact that the analogue of Grothendieck
duality holds by [31].
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Remark 5.3 Note that via the BGG correspondence, one can read off the sheaf
F just from the structure of QX as an E-module. Thus Theorem D admits the
picturesque corollary that QX determines the normal cone to the canonical
linear series in Div{ω}(X).

As an application, we consider the question of whether the canonical se-
ries |ωX| is an irreducible component of the space Div{ω}(X) of paracanonical
divisors: following Beauville [2], one says that |ωX| is exorbitant if this hap-
pens. An immediate consequence of Theorem D is

Corollary 5.4 The canonical linear series |ωX| is exorbitant if and only if
the mapping P(F ) −→ P(Hd(X, OX)) = |ωX| in (1.5) fails to be surjective.

Under some additional hypotheses, the criterion in the Corollary can be
checked numerically. An amusing consequence of this is that in the setting
of Theorem 4.1, the exorbitance of the canonical series actually depends only
on the Hodge numbers of X. In fact:

Proposition 5.5 Assume that the hypotheses of Theorem C (or, more gener-
ally, Theorem 4.1) are satisfied, and that

pg − χ ≤ q − 1. (*)

Then |ωX| is exorbitant if and only if the codimension (pg −χ) Segre number
of F ∨ vanishes, i.e. if and only if:

s1×(pg−χ) (γ1, . . . ,γq−1) = 0,

where the quantity in question indicates the Schur function associated to the
partition (1, . . . ,1)(pg − χ) times.

Observe that if χ > 0 then Div{ω}(X) has a unique component of dimension
q + χ − 1 dominating Pic0(X), so if (*) fails in this case, then necessarily
|ωX| is exorbitant.

Proof of Proposition 5.5 According to Corollary 5.4, |ωX| is exorbitant if and
only if the natural mapping

P(F ) −→ P
(
Hd(X, OX)

)
= Ppg−1

fails to be surjective. But the Segre number in question computes the degree
in Pq−1 of the preimage of a general point in the target, and the statement
follows. !
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Example 5.6 Suppose that X is a surface without irrational pencils. Then
pg − χ = q − 1, and the BGG complex takes the form

0 −→ OP(−2) −→ OP(−1)q −→ Opg

P −→ F −→ 0.

In this case the Segre number appearing in Proposition 5.5 is the coefficient
of tq−1 in (1 + t)q/(1 + 2t), and this is = 0 if q is even, and = 1 if q is odd.
Thus |ωX| is exorbitant if and only if q is even, a fact observed by Beauville
in [2], Sect. 4.
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