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Introduction

Consider a reduced irreducible curve
XclPr (r=3)
of degree d, not contained in any hyperplane. For a given integer n=0, it is
natural to ask whether X enjoys one or more of the following properties:
(4,) The line bundle O(n) is non-special.

(B,) Hypersurfaces of degree n trace out a complete linear system on X, ie.,
the homomorphism

HO(IP", Op.(n))— H°(X, Ox(n))
is surjective.
(C,) X is cut out in IP" by hypersurfaces of degree n, and the homogeneous
ideal of X is generated in degrees =n by its component of degree n.

It is of course classical that each of these conditions is satisfied for all
sufficiently large n. But one would like to have an explicit bound on how large
n must be, and to understand the extremal examples.

*  Partially supported by the NSF and the AMS.
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The fundamental work in this direction was carried out by Castelnuovo
[3]. For property (A4), using the argument leading to his celebrated bound on
the genus of a space curve, Castelnuovo obtained complete results (cf. [20], or
[6]; when r=3 a considerable refinement was stated earlier by Halphen [9],
and recently proved by the first and third authors [7] and by Hartshorne
[10]). The present paper is chiefly concerned with property (B). Castelnuovo
proved that for smooth curves, at least, (B,) holds for n>d —2, and he suggest-
ed that an irrational curve satisfies (B,_;). Examples show that Castelnuovo’s
estimate is optimal for curves in IP3. But given X <IP" it is natural to expect
that property (B,) holds in fact for n=d+1—r. Our purpose here is to com-
plete Castelnuovo’s theorem by showing that this is indeed the case, and by
describing the examples on the boundary.

Our main result is the following

Theorem. Let X <1P" be a reduced irreducible curve of degree d, not contained in
any hyperplane. Then:

(i) Property (B,) is satisfied for alln=zd+1—r.

(ii) Property (B,_,) fails if and only if X is smooth and rational, and either d=r
+1,0ord>r+1 and X has a (d+2—r)-secant line.

Note that it is not required in (i) that X be smooth. The first and third
authors had previously extended the estimate given by Castelnuovo to possibly
singular curves. They had also proved Castelnuovo’s assertion that any ex-
tremal example in IP? is rational (unpublished). Special cases of (i) were proved
by Jongmans [12] via a reduction to Castelnuovo’s results, and by Meadows
[13] for certain rational curves. A modern exposition of Castelnuovo’s theo-
rem is given by Szpiro in his notes [20].

It is known by work of Mumford [14], who attributes the idea to Castel-
nuovo, that if a curve satisfies (4, _,) and (B, _,) for some n,=0, then (C,)
holds for all n=n,. It follows from Castelnuovo’s results for property (A4), or
from the proofs below, that (4,_,) always holds. The cases where (4,_, _,) or
(B,_,) fail are easily analyzed separately, and we obtain the

Corollary. Let X<IP" (r=3) be a reduced, irreducible curve of degree d, not
contained in any hyperplane. Then:

(1) Property (C,) holds for all n=d+2—r.

(ii) Property (C,. ,_,) fails if and only if X is a smooth rational curve having a
(d+2—r)-secant line.

The equations defining space curves have been studied by several authors,
notably Mumford [15], Saint-Donat [18], and Arbarello-Sernese [1]. Our
viewpoint differs somewhat from theirs, however, in that we are forced to deal
with embeddings defined by possibly incomplete linear systems.

Unlike Castelnuovo’s arguments, which are geometric in nature, our proofs
are essentially cohomological. They depend on a simple but somewhat surpris-
ing technique. Roughly speaking, the method is to “resolve” the ideal sheaf
Fyxp- (or something related) by a complex with generally non-trivial homology
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supported on X. For example, to prove the first statement of the Theorem, we
use a Beilinson-type construction to express X as the locus where a matrix of
linear forms drops rank, and then take the corresponding Eagon-Northcott
complex. By allowing non-trivial homology, one arrives at complexes much
simpler than those that would be required for an actual resolution of the ideal
sheaf. Happily, as long as the complex is exact away from a one-dimensional
set, one is still able to read off the desired vanishings. We hope that this
technique may find other applications in the study of space curves.

An explicit estimate for the regularity of an arbitrary ideal sheaf on IP" has
been obtained by Gotzmann [5] and generalized by Bayer [2] to any coherent
sheaf. Gotzmann’s bound depends only on the Hilbert polynomial of the
scheme in question, however, and as one would expect the numbers that it
gives are generally far from optimal for reduced curves.

Our exposition proceeds in three stages. First we establish the regularity
assertions (i) of the Theorem and Corollary (§1). We next show (§2) by a
similar but independent argument that an irrational curve satisfies (B,_,) and
(C441_,), so that any extremal example must be rational. For rational curves, a
refinement of the proof in §1 then gives the classification statements (ii) (§3).
Strictly speaking, the first assertions of the Theorem and its Corollary are
consequences of the enumeration of the extremal examples, and it would have
been possible to organize the presentation in such a way as to avoid at least
the last lemma of §1. However the regularity results (i) are substantially easier
to prove than the classification statements (ii), and it seemed to us worthwhile
to treat them directly. Finally we discuss in §4 some open problems.

We have greatly benefitted from the suggestions and encouragement of

several people, especially E. Arbarello, D. Eisenbud, J. Harris, A.P. Rao, and
K. Vilonen.

§0. Notation and Conventions

(0.1) We work over an algebraically closed field k of arbitrary characteristic.

(0.2) Unless otherwise stated, a curve is a reduced and irreducible, but possibly
singular, projective variety of dimension one. Recall that a curve X =IP" is non-
degenerate if it is not contained in a hyperplane. Given a variety V<IP’, we denote
by .#, the ideal sheaf of V in IP"; if X =V is a subvariety, we indicate the ideal
sheaf of X in V by #,. For a coherent sheaf # on V, #(n) denotes as usual
F ® Op.(n), and following common usage we let h'(V, #)=dim H'(V, ¥).

(0.3) Consider a generically surjective homomorphism
u: E-F

of vector bundles of ranks e and f on a smooth variety. Associated to u are
several Eagon-Northcott complexes (cf. [4, 19, or 8]), of which we shall need the
following two:
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(0.4) 0> AE®Se~/ (F)*—... > A/ 1 EQF* > ATE—2* s AT F -0
(0.5) 0> A E®Se~! ~L(F)*—...» A/ T2 EQF* > A/ 1 E
SEQA'F 2L, F® A/ F-0.

The basic fact for our purposes is that these complexes are exact away from the
support of coker u ([4, 19, 8]). (In general they aren’t acyclic unless Supp(coker
u) has the expected codimension e —f+1.)

§1. A Regularity Theorem

It will be convenient to phrase our results in terms of the regularity of the
ideal sheaf. Recall ([14], Lecture 14) that a coherent sheaf # on IP” is said to
be n-regular if H'(IP", # (n—i))=0 for i>0. The usefulness of this concept lies in
the fact that if & is n-regular, then:

(1) & (n) 1s generated by its global sections,
(if) the maps
H(F (n)@H°(Op-(1)>H)(F (n+1))
are surjective for /20, and
(iii) & is (n+ 1)-regular.

([14], loc. cit.). We will say that a curve X <IP" is n-regular if its ideal sheaf .4,
is, and n-irregular otherwise. Thus for n=0, X is n-regular if and only if
properties (4,_,) and (B,_,) of the Introduction are satisfied, in which case
(C,) holds by facts (i) and (i1), as do (4, _,), (B,-_,) and (C,) for any n'=n by
(ii). Hence the first assertions of the results stated in the Introduction are
consequences of

Theorem 1.1. Let X <IP" be a (reduced and irreducible) non-degenerate curve of
degree d. Then X is (d+2—r)-regular.

The key to Theorem 1.1 is the following result, which allows one to
estimate the regularity of a curve in terms of a vanishing on its normalization.

Proposition 1.2. Let X <IP" be a reduced (but possibly reducible) curve, with
normalization X, and let p: X —IP" denote the natural map. Set

M =p* Qp.(1),
and suppose that A is a line bundle on X such that
HY (X, A°M®A)=0.
Then X <IP" is h°(X, A)-regular.
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Proof. The first step is to show that there is an exact sequence

(1.3) H(X, M®A)®,0p.(— 1) —— H(X, 4)®,0p-—p, A0

of sheaves on IP". This follows readily from an evident variation of the
Beilinson spectral sequence (cf. [16], 11.3.1). For later reference, and for the
benefit of the reader not versed in such matters, we may give an elementary
and self-contained (but equivalent) derivation as follows. Setting (1)
=p*0p.(1), the morphism p: X—IP" is determined by a subspace V
c H°(X, ( ¢(1)) of dimension r+ 1. This gives rise to an exact sequence

(1.4) 0—>M—Vy—( £(1)—>0

of vector bundles on X, where V;=V®,( ;. Denote by 7 and f the projections
of X xIP" onto X and IP" respectively. On X xIP" there are vector bundle
homomorphisms

00— t*M —> 7*l5

~

S
J*Cpi(1),

and the graph I' = X xIP" of p is defined scheme-theoretically by the vanishing
of s. X x IP" being smooth, one obtains a Koszul resolution of ¢/, and twisting
by n* A gives the following resolution of O ®n* A4:

(1.5) 0 /0
N,
7\
TP MQA)R [ * Up(—2) > THM Q@A) [ * O — 1) » ¥ A— O, @T* A—0.

\‘JI
0 0
The sheaves %, and %, are defined as indicated. By Kiinneth,

RIf (A (AP M®A)® f * Up.(—p)) = HY(X, A? M@ A)® U —P).

Therefore
R'f, #,=0

thanks to the vanishing of H'(X,4°M®A) and the fact that R'f, is right
exact since f has fibre dimension one. Taking direct images in (1.5) one then
finds the exact sequence
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[ @* (M@A)QSf* Up,(— 1)) —— f,(n* A) >, (O, @1* A)
— X S R (AF(MQA)®S* Op(— 1))

of sheaves on IP". But f (0;®n*A4)=p, A is a torsion Op-module, whereas
RYf (a*(M@A)Q[*Op.(—1)) is locally free, and so §=0. Thus one arrives
finally at the exact sequence (1.3). We set

n,=h%X, A).

Let #<@p- denote the zeroth Fitting ideal sheaf of p A computed from
(1.3), ie, the image of A™u. Since p, A4 is supported on X, the subscheme
defined by _# coincides set-theoretically with X, and hence

F S Ix

because X is reduced. Moreover as the Fitting ideals of a module are inde-
pendent of the presentation used to compute them, .#,/ ¢ is supported in the
finitely many points of IP" at which p, A fails to be locally isomorphic to Oy
(ie., the singular points of X). Thus H'(IP", #y(m)) is a quotient of H'(IP", #(m))
for all i>0 and meZ, so it suffices to prove that ¢ is n,-regular.

Consider to this end the Eagon-Northcott complex (0.4) constructed from wu.
It takes the form

o O (—ng+ 1= 1) > 5 O (—np— 1) > OMo(—ng) — 0,

where ¢=A"u is surjective. This complex is exact off X, and we observe that
twisting by Op.(n,—m) for some 1<m<r kills the higher cohomology of the
first r+1—m locally free terms from the right. Thus the following Lemma
applies to prove the n,-regularity of #. W

Lemma 1.6. Let

Sl Ly §0

r—1

be a complex of coherent sheaves on a projective variety V of dimension r, with ¢
surjective. Assume that

(a) Z. is exact away from a set of dimension <1,

and
(b) For a given integer 1 Sm<r, one has
HY,%)=...=HV,%,_,)=0 for i>0.
Then H'(V, #)=0 for i=m.

Proof. Hypothesis (a) guarantees that the homology sheaves #; of #. have
vanishing cohomology in degrees =2:
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H(V,#)=0 for i22 andall j.

With this in mind, the Lemma is most simply proved by chopping .#. into

short exact sequences in the usual way, and chasing through the resulting
diagram. W

Remark. Note for later reference that Proposition 1.2 remains valid for any line
bundle A for which the sheaf R'f, % occurring in the proof is supported on a
set of dimension <0. For then one still has ¢ < .#,, while 4,/ ¢ and coker u
continue to be supported in sets of dimensions zero and one respectively.

Theorem 1.1 now follows from

Lemma 1.7. Let X be a smooth irreducible curve of genus g, and let p: X —>IP" be
a morphism of degree d (i.e., degp* Op,(1)=d). Assume that X does not map into
a hyperplane, and set M = p* QL.(1). Then there exists a line bundle A on X, with
h°(X,A)=d+2—r, such that H'(X, A*M® A)=0.

Proof. We assert that M admits a filtration
(1.8) M=F'2F?’2..2F 2F*'=0

by vector bundles such that each of the quotients L,=F'/F'*! is a line bundle
of strictly negative degree. Indeed, H°(X, M)=0 by (1.4) since X does not map
to a hyperplane, and in particular no non-zero sub-bundle of M is trivial. The
existence of the desired filtration is then a consequence of the elementary
observation that if a non-trivial vector bundle F on a smooth curve is a sub-
bundle of a trivial bundle, then F has a line bundle quotient of negative
degree.
In order that H' (X, A2M® A)=0, it suffices that

(*) H'(X,L®L;®A)=0 forall ISi<j<r.
Since M has degree —d and all the L, have degree <0,
deg(L,®Lj)zr—2—d

for any 1 Si<j<r. But a generic line bundle of degree >=g—1 is non-special,
so () will be satisfied if A is a sufficiently general line bundle of degree g+d
+1—r. Moreover p(X) being non-degenerate one has d >r, so we may suppose
in addition that H(X, 4)=0, in which case h°(X, A)=d+2—r. B

Remarks. (1) If X <IP" is reduced but possibly reducible, a variant of Theorem
1.1 holds. Specifically, suppose that X has irreducible components X; of degree
d;, and that X, spans a IP""<IP". Set

mi=

d+2—r if d;=2
1 if d;=1 (e, if X;is a line).

~

Applying a slight modification of (1.7) component by component on X, one
finds from Proposition 1.2 that X is (Xm,)-regular.
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For example, suppose that X = IP" consists of d straight lines. Then X is d-
regular. In general this is optimal, for if there is a line L ¢ X meeting each of
the components of X at distinct points, then X is not cut out by hypersurfaces
of degree d —1 (compare §3). By contrast, when X is the union of d generic
lines, Hartshorne and Hirschowitz [11] have shown that the map

HO(IP", Op,(n)) > HO(X, Ox(n))

has maximal rank for all n, so that generically one has a much better reg-
ularity result.

(2) In the situation of Lemma 1.7 it is amusing to vary the filtration (1.8) while
twisting by a fixed line bundle. Suppose, for example, that X <IP" is a smooth
non-degenerate curve of degree d and genus g. At least in characteristic zero,
so that not every secant line is multi-secant, one sees that for almost all
choices of r—1 points P, ..., P_,€X there is a filtration (1.8) with
Fi/Fi“:{@X(_P") %f 1<isr-1
Ox(=1)®0x(2P) if i=r
(project from the P). In particular, by taking the P. sufficiently generally, it
follows that H!'(X, M(1))=0 provided that r—1>g. This in turn implies that if
r=g+1, then the natural map

(%) H'(IP", S(1)@H (P, Op.(n))— H' (IP", Fy(n+1))

is surjective for n=0. So for example if X <IP? has genus two or less, then the
Horrocks-Hartshorne-Rao module @ H'(IP?, #,(n)) of X (cf. [17]) is generated
by its degree one piece. Similarly, if X <IP" is defined by the complete linear
system associated to a line bundle of degree d=2g+1, then r=d—g=g+1,
and so we recover from (¥) Mumford’s theorem [15] that X is projectively
normal. .

§ 2. A Rationality Theorem

We begin in this section the classification of all curves for which Theorem 1.1
is optimal, i.e, all (d+ 1 —r)-irregular curves. The final list is summarized in a
table at the end of §3. Our immediate goal is to show that with one
exception such a curve must be rational:

Theorem 2.1. Let
XclPr  (r=3)

be a (reduced, irreducible ) non-degenerate curve of degree d and geometric genus
g. If g=1, then X is (d+ 1 —r)-regular unless it is an elliptic normal curve.

Remark. If X is elliptic normal, so that d=r+1, then evidently (4,) fails. On
the other hand, X is projectively normal, and property (C,) holds provided
that r =3 (cf. (2.3) below).
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Unfortunately, there are a few examples where there does not exist a line
bundle A with h°(4)<d+ 1 —r satisfying the hypotheses of Proposition 1.2 (e.g.
an elliptic quintic in IP?). It is simplest for Theorem 2.1 to argue directly. As in
§1, let X be the normalization of X, so that X has genus g=1. Denote by p:
X - 1P’ the natural map, and set Oz(1)=p* Op.(1).

Lemma 2.2. There exists a line bundle A on X of degree g—1 such that h°(A)
=1. For any such line bundle, and any n>0,

h°(A(=n)=0 and h'(A(n))=0.

Proof. A sufficiently general effective divisor of any degree <g corresponds to
line bundle 4 with h°(4)=1. A non-zero section of A(—n) would give rise to
an inclusion 0— 0z(n)— A4, but since h°(@z(n))>1 when n>0 this is absurd.

When A has degree g— 1, h®(Q;®A*)=1 and the same argument shows that
h'(A(n))=0 for positive n. N

Fix a line bundle A4 as in the Lemma, and set
E=@1H°(1P', Py A(n) [=®1H°(X, A®0Oz(n)],

so that E is in the natural way a graded module over the homogeneous
coordinate ring S=k[T,, ..., T,].

Lemma 2.3. E admits a minimal free resolution of length r—1 having the
following numerical type:

0= S(—r— 1)@=~ (=)= §" 2 (=r+1)— ...
o SM(=2) > ST (- 1)@S - E 0.

Proof. E is a Cohen-Macaulay module of dimension two, so in any event has a
free resolution of length r—1.

By Lemma 2.2, E has one generator, say e, in degree zero and none in
negative degrees. Since X <IP" is non-degenerate, there are no relations of
linear dependence among the elements T -e, ..., T,-ecE,. Hence by Lemma 2.2
and Riemann-Roch, we require d —r — 1 new generators in degree one. Similar-
ly, it follows from duality that Ext5™!(E,S(—r—1)) vanishes in negative de-
grees, has one generator in degree zero, and d —r— 1 in degree one. Therefore a
minimal resolution of E must be of the form

0-S(—r=1)@S" " H=r®DS(—¢,_1,;,_)>DS(—¢,_5; )~
Jr-2

Jr-1
@S (—cy ;) > @DS(—cp )BT (= 1)BS - E—~0
J1 Jo
for suitable integers c, ; . Furthermore, by minimality the numbers

w,=min{c, ;,} and v,=max{c, ;}
Jxe Jk
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are strictly increasing for 1<k<r—2. But in view of the remarks above, the
first module of syzygies of E vanishes below degree two, i.e., u;=2, and
similarly v,_,<r—1. Hence u,=v,=k+1 for 1<k=<r—2, and by the same
token the terms DS(—c¢, ;) and @S(—c,_, ; _,) do not actually appear. W

Proof of Theorem 2.1. If X is elliptic normal there is nothing to prove.
Assuming that X is neither rational nor elliptic normal, we have d —r>2.

Consider (for r=3) the resolution of p, A obtained from Lemma 2.3 by
sheafifying:

2 O (—2) = 07 (= 1)@D Opr > p, A 0.
The non-zero section of p, A4 gives rise to a homomorphism 0— ¢y —-p, A, and
if u denotes the composition of v with the projection 04 "~'(—1)@Op.

—0%-7"1(—1), then one obtains the following commutative diagram of exact
sequences of sheaves on IP":
0

0 Opr — (y —>0

| !

0— K— Op(—2) —— 03, (- 1)®Op, ——— p, A —0

0

0—> N—s 0B (-2)—“— 04""'(—1) ——cokers—0.

0 0

Here K and N are of course defined as the kernels of v and u respectively.
Note that coker u =cokers is supported in a finite set.

The snake lemma shows that N/K=~.#,. Hence to prove the (d+1—r)-
regularity of 4,, it suffices to establish:

() K is (d+2 —r)-regular;
and
(i) N is (d+1—r)-regular.

Assertion (i) is clear: H'(IP", K(n))=H?*(IP", K(n))=0 for all neZ by construc-
tion, H*(IP", K(d—1—r))=H'(IP",p, A(d—1—-r))=0 by Lemma 2.2 since d—1
—r>0, and the remaining vanishings follow from the fact that p, A is sup-
ported on a curve.

Turning to (ii), consider the Eagon-Northcott complex (0.5) constructed
from u. Twisting by Op.(d —r—1), it takes the form

(*) o OM(—d)> .. > OM(—d— 1 +7)—Es O (—2) —2> 047~ 1 (= 1).
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Thus Ime¢ is a subsheaf of N, and N/Ime - like all the homology of (x) - is
supported on the zero-dimensional set Supp(coker u). So it suffices to verify the
(d+1—r)-regularity of Im e. But this follows from Lemma 1.6. W

Remarks. (1) If X <IP" is rational (ie., X =IP!) but singular, then X satisfies
(B,_,), and is (d+1—r)-regular provided that d>r+1. Indeed, we may con-
struct a partial desingularization X’— X of X such that X’ has a single simple
node or cusp. Thus X' has arithmetic genus one, and w, =0,.. Then the
prev10us arguments go through with 4A=0,, and E= (—DH oapr, p*A(n)) where
p': X'—>1P" denotes the natural map.

(2) A similar approach can be used to prove the (d —1)-regularity of a rational
curve X < IP" (resolve p, Opi(d—2), as in § 1).

§ 3. The Existence of Secant Lines

The present section is devoted to the analysis of (d+ 1 —r)-irregular rational
curves, completing the proof of the results stated in the Introduction.

We begin with some remarks on secants. Let X<IP" (r=3) be a non-
degenerate curve of degree d. One says that a linear space LcIP' is n-
secant to X if

dim, (Op./ Iy + I ) Zn.

If X has an n-secant line, then evidently X cannot be cut out by hypersurfaces
of degree n—1. In particular, any non-degenerate X <IP" with a (d+2—r)-
secant line L is (d+ 1 —r)-irregular. Such a curve is necessarily rational (clearly)
and smooth (e.g., by Remark! at the end of §2). Examples exist for any
d=r=3.

Our object now is to show that (almost) all (d+ 1 —r)-irregular rational
curves arise in this manner:

Theorem 3.1. Let X<IP" (r=3) be a non-degenerate curve of degree d, and
assume that X is rational (i.e., that its normalization X is IP'). Then X fails to be
(d+ 1 —r)-regular if and only if either:

(1) d=r, i.e., X is a rational normal curve,
(i) d=r+1,
or
(i) d>r+1, and X has a (d+2—r)-secant line.

Remark. The case d=r+1 is exceptional. If X is smooth, then clearly property
(B,) fails whether or not X has a trisecant line. On the other hand, if X is
singular, then (B,) holds but h'(X, 04) %0, ie., (4,) fails. We will see, however,
that (C,) is satisfied unless X has a trisecant.

Proof. In view of what has already been said, it remains only to prove the
existence of a (d+2—r)-secant line when d>r+1 and X is (d+ 1 —r)-irregular.
Moreover by the first remark at the end of the previous section we may
assume that X is smooth. We use the notation introduced in the proof of
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Proposition 1.2: in particular, p: IP' = X —»IP" denotes the evident map, and M
=p* Q4. (1).

We assert to begin with that the decomposition of M into a direct sum of
line bundles must take one of the following forms:

(1) M=0L7*(—1)®0p:(—a)®0Op:(—b) (a,b=2),
or
(2) M=0 (—1)®Op:(—d—1+7).

Indeed, X being non-degenerate, all the summands of M have negative degree.
On the other hand, H'(IP!, 1> M®Up:(d —r))+0 by Proposition 1.2 since X is
(d+ 1 —r)-irregular. Recalling that M has degree —d, it follows that M must
contain Op:(—1) as a summand at least r—2 times, as claimed. We treat the
two cases (1) and (2) separately.

Case (1). Set A=0p,(d—r) and consider the diagram (1.5) arising in the proof
of Proposition 1.2. Taking direct images as in that proof, and using the
decomposition (1) of M, one finds the following diagram of sheaves on IP’,
whose top row is exact:

HY(P!, > M@ A)®, Op-(—3) —2— H (P, A2 M@ A)®, Up-(—2)
(*) - —R'f, F 0.
H'(P, 0y %(—a—b—1)@A)®; Up.(—3)

Observe that R'f, # must be supported on a set of dimension at least one;
otherwise, as noted following the proof of Lemma 1.6, the arguments of §1
would apply to give the h°(IP!, A)-regularity of X. The goal now is to show

that .
L =Supp(R" f, #)

is a (d +2 —r)-secant line to X.
To this end we analyze the map w in (x). Use the decomposition (1) of M
and (1.4) to construct the commutative diagram

0—— OL73(=1) — Vp1 > E >0
0O—— M > Vi > Opi(d) — 0

defining a vector bundle E of rank three and degree r—2 on IP'. Then IP(E)
[=Proj(Sym(E))] embeds naturally in IP(Vp,)=IP!xIP", and the graph I' of p
sits in IP(E) via the quotient E — Op:(d)—0. Comparing the Koszul complex (1.5)
with the evident Koszul resolution of Op g, on IP* x IP’, and bearing in mind the
splitting (1) of M, one finds that

cokerw=R'f, (Op®N),

where N is a line bundle on IP! x IP". In particular, coker w is supported in the
locus on IP" over which the projection IP(E)—IP" fails to be finite. This is in
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any event a linear space, of dimension one less than the number of trivial
summands of E. But E is non-trivial for reasons of degree (when r>3), and so
Supp(coker w) has dimension <1. On the other hand, L < Supp(cokerw) and
dim L= 1. Therefore L=Supp(cokerw) is a line, and E=03.@0p:(r—2); L is
the image of the divisor Y=IP(O0@® ) =IP(E) under projection to IP":

P'=T cP(E)2P(0®0)=Y
NEN
Xec P =2 L

But Y intersects I' in a divisor of degree d+2—r. Since X is smooth by
assumption, it follows that L is (d +2—r)-secant to X, as desired.’

Case (2). Much as above, define E to be the cokernel of the composition
Ot (=) > MV =0t
so that E is a vector bundle of rank two and degree r—1. As before, IP(E)
embeds in IP' x IP", and the graph I' of p sits in IP(E). Denote by SSIP" the
rational normal scroll arising as the image of the projection IP(E)—1IP’", and let
t: IP(E)—IP! be the bundle map. Note that .[cl((Qn,(E)(l))Z:r—l, and that I'
<IP(E) is the divisor of a section of t* Opi(d+ 1 —r)@Op (1)
Consider the decomposition of E as a sum of line bundles:
E = @nﬂ((l)@@n)i(b)

0<asgh, a+b=r-—1.

with

If a=0, then S is a cone and X is singular when d>=r+1. So we may assume
that a=1, in which case S~IP(E) and X is smooth. The vanishing of
HY(X,0y(d—r—1)) is then automatic if d>r+1, and we may suppose that
H'(IP", #4(d—r))*0. Recalling that S is projectively normal, it follows that
H'(S, £y s(d—1)#0. But Iy s(d—1)=t* Opi(r— 1 —d)®@Op g, (d —r—1), and so
ty(Fys(d 1) =Sym* ="~} (Ops () ® Ops (5) ® Ops(r — 1 — ).
Then #ys(d —r) has non-vanishing H' if and only if
d-r-1)(@a-1xz0.

Provided that d>r+1, this forces a=1. But when a=1, the line bundle
t* Op(2—1)®0p (1) has a section whose divisor L is a line in IP". Com-
puting intersection numbers on S, one has

#(-L)y=d+2—r,

so L is (d+2—r)-secant to X, and we are done. W

! One may verify that in Case (1),

(P, Sx(d—r)=1
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The theorem stated in the Introduction is now proved.
Remarks. (1) In case (2), the computation just completed shows that if
h'(IP", #4(d—r)) %0, then h'(IP", #,(d—r))=1 unless r=3, in which case X lies
on the smooth quadric IP(Op:(1)® Up:(1)) =S and h'(IP", Fy(d—r))=d—3.
(2) For the Corollary in the Introduction, it remains to analyze property (C)
for a rational curve X <IP" of degree d=r+1. Keeping the notation of the
previous proof, we are necessarily in case (2), and there are three possibilities:

(1) a=0 (<X is singular)

(i) a=1 (<> X has a trisecant line)

(i) a>1 (<X is smooth and has no trisecant).
We assert that (C,) holds in cases (i) and (iii); it obviously fails when X has a

trisecant line. In fact, since the scroll § is itself 2-regular, it is equivalent to
verify that the homomorphism

HO(S, jx/s(z))®H0 (S, Os(n)) > HO(S, Fys(n+ 2))
is surjective for n>0. One has
HO(S, Sy,s(m) = H°(IP*, Sym” ™ (Op:1(a) ® Ups (b)) ® Ops( —2))
HO(S, O(n) = H°(IP*, Sym” (Up: (@)D Op1 (D)),

and writing R for the graded polynomial ring in two variables, the question is
in turn equivalent to the surjectivity of the evident map
n+1

(Ra-2@Rb_2)®Sym"(Ra@Rb)_’l@)Rm+ 1-Da+lb—2"

But this is clearly surjective if a=0 or a>1 (whereas when a=1 the /=0 term
on the right is not in the image).

It is amusing to tabulate the data we have collected. The chart on the
preceeding page shows the various possibilities for a (d + 1 —r)-irregular non-
degenerate curve of degree d in IP".

Table of All Non-degenerate (d + 1 —r)-Irregular Curves X <IP" (r=3) of Degree d

Cd+1—r Bd—r Ad-l—-r
d=r: X rational normal No 0 d—1
d=r+1: X elliptic normal or rational
X elliptic normal Yes 0 1
X rational, singular Yes 0 1
X rational, smooth 3 tri-sec line No 1 0
7 tri-sec line Yes 1 0
d>r+1: X rational, smooth, with a (d+ 2 —r)-secant line
r=3 X =smooth quadric No d-3 0
X ¢smooth quadric No 1 0
r=4 No 1 0

The first column of data indicates whether or not property (C,, ,_,) is satisfied. The entries in the
columns B, , and A,_,_, give respectively the dimensions of the groups H!(IP", #y(d—r)) and
H2(IP", #y(d~1-7)) (these being the superabundances measuring the failure of the corresponding
property)
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§ 4. Open Problems

We discuss in conclusion some open questions.

(1) The fact that the extremal examples in the main theorem and its corollary
are smooth rational curves suggests that one should have progressively
stronger regularity estimates as the curve X <IP” becomes in some sense increas-
ingly complex. The most naive hope might be for an estimate in terms of the
genus g of X, but even for curves on a smooth quadric surface there is no non-
decreasing function f(g), going to infinity with g, for which property (B,) holds
for n=d+1—r—f(g). A more promising invariant is the integer

e(X) g max {n| H! (X, 0 (m) %0},

so that for example e(X)= —1 if and only if X is smooth and rational.

Conjecture. For a non-degenerate curve X <IP" of degree d, property (B,) is
satisfied for
nzd—r—e(X).

When r=3 the conjecture has been proved by the first and third authors (to
appear), to whom it is due. The conjecture would imply Theorems 1.1 and 2.1.

(2) The thrust of our classification results is that the failure of a curve X <IP”
to satisfy (B,_,) is accounted for by the presence of a (d +2—r)-secant line. We
may ask whether the same phenomenon persists for curves for which (B,) fails
provided that n is not too small. Specifically, one might venture the

Conjecture. For ngﬁ——(r—3), (B,) fails (essentially) if and only if X has an (n
+ 2)-secant line.

The equivocation is to allow for the possibility of minor exceptions such as
the situation with rational curves of degree d=r+1. The conjecture has been
verified for X <IP® and n>d—4. We refer the reader to the survey [21] for
further discussion.

(3) Practically nothing is known in the way of reasonably sharp explicit
regularity results for varieties of dimension two or more. It would be prema-
ture to suggest any conjectures, but a number of possibilities present them-
selves. As Eisenbud among others has remarked, an extremely optimistic hope
might be that if X<IP" is a reduced, irreducible, non-degenerate variety of
dimension m and degree d, then perhaps X satisfies (B,) for n=d+m—r, and
hence is (d+m+1—r)-regular. This is checked for certain projections of ra-
tional scrolls by Meadows [13], and it would be instructive to work out other
examples. Even substantially weaker results and estimates would be of interest.
For example, it is elementary that a variety X <IP" as above is cut out by
hypersurfaces of degree d, at least if it is smooth (cf. [15], proof of Theorem 1).
Is X in fact d-regular? Another interesting problem, suggested by Rao, is to
generalize Castelnuovo’s geometric argument [3] to varieties of dimension two
or more. Finally, in thinking about how the techniques above might generalize,
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one is led to ask the following question: given a homomorphism

u: Ope(— 1" >0,

is # =F°(u)< Op, a-regular? (This would imply Eisenbud’s estimate for smooth
varieties ruled over a curve.)
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Oblatum 19-VII-1982

Note Added in Proof

We would like to call the reader’s attention to very interesting work by M. Green (Koszul
cohomology and the geometry of projective varieties, to appear), which among other things
generalizes and clarifiés some of the results of [15].



