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Introduction

Let X be a smooth irreducible complex projective curve of genus

8> whi;h we assume throughout is non-hyperelliptic. Then the canonical
bundle @ on X defines an embedding '

-1
: X > Pg ’
¢Q .

and a famous theorem of Petri [Ptri] states that the homogeneous ideal
IX/IPg_l of X in Pg-l is generated by quadrics unless X is trig-
onal or a smooth plane quintic. Petri's proof — which has been given
modern expositions in [StD], [Mfd2] and [ACGH] — involves explicitly
writing down all the quadrits through X . The argument, although ele-
mentary, is long and (as Mumford pﬁts it) "unavoidably a bit messy".

A cleaner and more conceptual proof was recently given by the first
author in [Grn], where Petri's result is recovered as a special case of
the "Kp 1 theorem". In both proofs the exceptional curves are charac-

terized by the fact that they lie on surfaces of minimal degree inIPg-l.

Our purpose here is to give a new proof of Petri's theorem, not
involving surfaces of minimal degree. While somewhat ad hoc, the
argument is simple and -- once some elementary Koszul-theoretic facts
and secant plane constructions have been reviewed — very quick. The
idea is that to determine whether or not the canonical image of X is
cut out by quadrics, it is enough to compute the number of sections of
a certain vector bundle on X . By taking a suitable filtration of the
bundle in question, one arrives at an approach in which the exceptional

curves are recognized by the absence of certain base-point free pencils
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of degree g~ 1. Specifically, we will prove the following

THEOREM. Assume that g 2 5, and that X carries a line bundle A

of degree g - 1 , with h°(A) = 2, such that both

A and Q8 A"

are generated by their global sections. Then the homogeneous ideal of X
in its canonical embedding is generated by forms of degree two.

It is a more or less standard consequence of the Mumford-Martens theo-
rems that any non-trigonal curve other than a plane quintic satisfies

the hypotheses of the theorem, and so we recover Petri's result,

The cohomological interpretation of Petri's theorem is given in
§1. In an attempt to keep the exposition self-contained; we prove what
we need here from scratch. We indicate in §2 how secant planes to a
canonical curve may be used.to construct filtrations of the vector bun-
dle that governs the curve's syzygies. By way of warming up for Petri,
we use the simplest of these filtrations to deduce Noether's theorem on
the projective normaiity of canonical curves. The proof of the theorem
occupies §3. Finally, in §4 we outline how the theorem implies Petri's
statement., We work throughout over T, and if V is a vector space we
denote by IP(V) the projective space of one-dimensional guotients of
v.

§1. Cohomological Interpretation of Petri's Theorem,

Our goal in this section is to show how Petri's theorem reduces to
a purely cohomological statement (Corollary 1.7). This reduction is in
fact an immediate consequence of general Koszul-theoretic results (see
Remark 1.4 below). The arguments that follow are intended for the bene-
fit of the reader not versed in such matters: we give an elementary
derivation of the facts we use, without however attempting to put them

into a more natural general context (for which c.f. [Grn]).

We start with some notation. Let X he a smooth irreducible pro-
jective curve, and let L be an ample line bundle on X , generated

by its global sections. Thus L defines a morphism

o, + X ————> PH(L) = FF,
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0
where r =h (L)-1, Set
* 1
ML = QL(QPNI)),

so that ML fits into an exact sequence

(1.1) 00— M — 1o(L) 8 > L > 0

¢ %
of vector bundles on X, obtained by pulling back the Euler feQuence
on P¥, Taking wedge products in (1.1) and twisting by Lk~ , one ob-

tains for each k € Z an exact sequence

(1.2)

2 k-1 2,0 k-1 k
O-—>AML8L —>A H(L)@mL —)MLGL———?.O.

Lemma 1.3. Assume that L is normally generated, i.e. that the natural

homomorphisms

o, : sk 1Oy —— woqky

are surjective for all k 2 O (so that im particular 01‘ is an embed-
ding). Let ko be an integer such that the maps

o : a2 w0y 8 Wokly —— HO(ML 8 LK)

determined by (1.2) are surjective for all k 2 kO . Then every mini-

mal generator of the homogeneous ideal of X in. P" has degree k,

or less.

Proof. Letting Ik = ker( p}() denote the degree k piece of the
homogeneous ideal of X, one has the exact commutative diagram

shown at the top of the following page. The vertical maps are de-
fined in the evident way by multiplication, while Rk and Pk are the
kernels of M and Vi respectively; surjectivity on the right
follows from the normal generation of L ., The statement of the Lemma
is equivalent to the assertion that the maps HO(L) 8 Ik —> I

k+1
are surjective for k Z-kO . By the snake lemma, it is in turn

equivalent to verify that the indicated homomorphism a, 3 Rk —> Pk

is surjective.

To this end, note first that the homomorphism
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o
o

v o Y
K
R, ——————> P
A4 A4 0
0 —> H0(L) 8 I —> K(L) 8 s“KO(L)—> ) ek — o
Yi SR "
v v A
(o]
0 > 1 > skl 0y K o pOqk+ly g
k+1
v v
0 0
Diagram to accompany proof of Lemma 1.3
B, : 210wy o s 10wy ——— 10wy o st
determined by
(levz)a a >v18(v2'a)-v28(v1'a)

evidently maps to the subspace Rk = ker( uk) c HO(L) 8 Sk HO(L)
(in fact Bk sur jects onto Rk ). On the other hand, twisting (1.1)
by Lk and taking global sections, one sees that P = HO(MLG Lk).
Furthermore, one has the commutative diagram

B
2210w 8 skl w0y k > R

180, %

. v v
Pow) o ikl ——> Pm el « p .

Ok

But the vertical map on the left is surject\ive thanks to the normal
generation of L. Thus the surjectivity of O, implies (in fact is

equivalent to) the surjectivity of Qs and this proves the lemma.
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Remark 1.4. Lemma 1.3 is a special case of a general theorem to the

effect that syzygies can be computed as Koszul cohomology groups (c.f.
[Grn]). Always assuming that L is normally generated, the result im-
plies in the case at hand that the number of minimal generators in de-
gree k + 1 of the homogeneous ideal of X is given by the dimension

of ker 6k+1 / im Y o where § and Yk, are the maps appearing

k+l
“in the Koszul complex )

k-1. 'k Skbl 0 ksl

Ouk-ly ko 10y 8 #0ky — wOk*ly .

220wy 8 1oL

But evidently

ker 6k+1 / im Y = coker ©

k *

and so one recovers the lemma. (It also follows from the proof of

(1.3) that dim (coker ck ) indeed computes the number of degree

k+ 1 generators of Ix . Note however that the lemma as stated remains

valid if one assumes only that . Py is surjective for k ko-l. )

Remark 1.5. The statement and proof of Lemma 1.3, as well as the facts
quoted in (1.4), hold without change for a projective variety X of
any dimension defined over an algebraically closed field of arbitrary

characteristic.

For the application to Petri's theorem, it will be convenient to
rephrase the hypotheses of the lemma. To this end, let QQ denote the
dual of the rank g-1 vector bundle Mn :

»*
QQ ‘MQ.
Then one obtains from (1.2) exact sequences

(1.6)

0—> qq8 a7 — @) gpat— alq 80t — 0 .

Corollary 1.7. Assume that X is non-hyperelliptic.'and that

0, ,2 -L
H( A QQG @7) =0 for 2 2 1. Suppose furthermore that the map

(1.8) A2H0( g y» > BO( a2q
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deduced from (1.6) is surjective. Then the homogeneous ideal of X in

its canonical embedding is generated by quadrics.

Remark 1.9. It will emerge from (2.4) that the vanishings in the hy-
pothesis are automatic, as is the injectivity of (1.8). Hence in order
to apply the corollary, it is enough to show that

= dim A2 HOQY* [=(8)] .

dim HO(AZQ 7

Q)

Proof of Corollary 1.7. Since X is non-hyperelliptic, ! is normally

generated thanks to Noether's theorem, and thus Lemma 1.3 applies. The
sur jectivity of the maps Ok in the hypotheses of (1.3) is equivalent
to the injectivity of the homomorphisms

k-1

7, 2 HI( A% M )y — 020 8 mlek )

K 2 IRY)

Q

coming from (1.2). But by Serre duality T, mDay be identified with the

transpose of the maps
2-k -
210 )* 8 B2(2°7) —> 10 a2q, 8 277K

determined by (1.6) with £ = k-2. And the surjectivity of these homo-
morphisms for k > 2 follows immediately from the hypotheses of the
Corollary.

§2. Filtrations of MQ and a Proof of Noether's Theorem.

We deal in this section with a non-hyperelliptic curve X and its

canonical embedding
x ¢ PHO(R)) = P&!

As noted in Remark 1.9, in order to prove that X is cut out by quad-
rics, the essential point is to compute h°(A2QQ) . To this end the
strategy will be to construct a suitable filtration of QQ - or
equivalently of MQ -- with line bundle quotients., Such filtrations
arise most simply from secant planes to the canonical curve, and we give
in this section some general remarks on this construction. These are

applied to deduce the projective normality of non-hyperelliptic canon-
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ical curves by an argument that serves as a model for our proof of
Petri's theorem. The material in this section is largely motivational;
the only things really essential for the proof of the theorem in §3

are the definitions and notation summarized in diagram (2.1).

Let D be a non-zero effective divisor on X such that the line

bundle §(-D) is generated by its global sections, and such that
s = hO(Q(-D)) z 2.
def

Thus D spans a (g-1-s)- plane ADC ]Pg'-1 . Intrinsically,

AD is the subspace ]P(WD)C ]P(HO( Q)), where

Wy = 10@) /7 #0¢Q (-D)) .

Since D is naturally a subscheme of ]P(WD) , there is a canonical sur-
jection

uD:WDGEOX—>QOOD

of sheaves on X . Concretely, if D is reduced — which is the only
case we use — to describe up it is essentially equivalent to specify
for each x€D a non-zero linear functional uD(x) :WD —> € defined
up to scalars; one takes uD(x) to be the quotient corresponding to

the point x € P(Wp). Set
Iy = ker (uD) ’

so that ZD is a vector bundle on X of rank g-s. All these
pieces are tied together by the commutative diagram (2.1) of exact
sequences on X shown at the top of the next page. (Note that one
could have used the top two rows of (2.1) to define up and ZD )
Our filtations of MQ arise by filtering — or even decomposing —
ZD . We refer to Remark 2.6 below for a statement of the general con-
struction. For the moment we will content ourselves with illustrating

how the procedure works in the simplest case.

Example 2,2. (Compare [GLP], end of §1) Take D to be the sum of

g -2 general points on X :

D=x1+x2+...+xg_2,
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0 0 0
J J J
— w0 -

0 ——> Mg _py —> K(Q(-D)) 8 6 > Q(-D) > 0
| l l

0 > M, ——> 1o@) 8 Oy > > 0
| T

0 > I ——> W 8 0 D 06 o, > 0
J J J
0 0 0

Diagram (2.1)

where the x;, are distinct and linearly independent in Pg-l, and

ADl\ X = D (as schemes). Then h®(§(-D)) = 2 and hence

MQ(-D) = Q*(D) . Furthermore, we claim that
g~2
) ZD =i21 OX(-xi) .
In fact, let Wi (1 SiASg-—Z ) be the one-dimensional quotient of

WD defined by the point x; € IKWD). Since the x, are linearly

independent, we may identify WD with the direct sum of the Wi .
Then up

uy Wi GE Oi —> 08 Ozx.}. But ker(ui)z Oi(-xi), and (*)

follows. The left-hand colﬁmn of (2.1) thus gives an exact sequence
2 o* o

decomposes as the direct sum of the natural maps

In particular MQ has a filtration whose quotients are the line bun-
dles appearing in (2.3), and in practice we do not use the more pre-

cise information embodied by this sequence.

Corollary 2.4. One has

(a) HO(QQ °] Q-l) =0 forall 221

and
() Ho(A%qq @ o o0 forall L2l .

Proof. Both assertions follow immediately from (2.3).
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Application 2.5: Noether's Theorem. The exact sequence (2.3) -- which

was derived only under the assumption that Q is very ample -~ leads
to a simple proof of the projective normality of non-hyperelliptic
canonical curves. Specifically, as in the proof of Corollary 1.7, note

first that Q is normally generated if and only if the maps

> 10 & (@)

Hl(MQ 8 o)

defined by twisting (1.1) are injective for all k > 1. In view of
Corollary 2.4 (a) it is equivalent by duality to show that the necess-

arily injective homomorphism

Ho@* —— 1(qy)
is surjective. But from (2.3) we get
g-2
h2Qg) & hO@(-xy-..ox ) + {1 h0(8y (x,))
i=

= 2+ (g-2)
- 2o,

which proves Noether's theorem. We remark that this and other classi-
cal results on projective normality have been generalized in [GL] by

taking into account the intrinsic geometry of the curve X .

Remark 2.6. The filtration obtained in Example 2.2 is a special case

of a general construction. Specifically, with notation as above con-

sider a flag of linear spaces

AOCAIQ_...CA = A

g-l-s D

with dim Ai = i, and let Di be the divisor on X defined as the

(scheme-theoretic) intersection
D, = X ﬂAi (0sis g-1-s ).

Set EO =D ., and for i > 0 let Ei denote the (possibly zero)
effective divisor on X determined by the relation
D, =D, +Ei.

i i-1

Then there is a decreasing filtration
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Iy = b2 2 ... DF_ DF =0

of I, by vector bundles such that

D

Fi / F = Ok( --Ei ) .

i+l
We leave the proof to the interested reader; it seems easiest to treat

the one case we need in §3 directly.

Remark 2.7. Identical constructions can of course be made with ) re-

placed by any very ample line bundle L .

§3. Proof of the Theorem.

We suppose now that X is a non-hyperelliptic curve of genus
g 2 5 satisfying the hypotheses of the theorem stated in the Introduct-
ion. Note to begin with that Corollary 2.4(b) gives the vanishings re-
quired in (1.7), while statement (a) of (2.4) shows that the homomor-
phism (1.8) is injective. Hence (1.7) will apply to show that Ix/Ig—l

is generated by quadrics as soon as we verify that
0, ,2
(Mg, ) = (5).

Let A ¢ ngl(X) be the line bundle given in the hypotheses, and
let D be the divisor of a general section of A. Since A is gener-
ated by its global sections, and since we are in characteristic zero,

we may first of all assume that D consists of g-1 distinct points:

D= xl+x2+...+xg_1

Furthermore, no effective divisor properly contained in D can move in
in a non-trivial linear series, for otherwise |D| .would either have
base-points or dimension at least two. The picture in canonical space
pel. ]P(Ho(m), then, is that D spans a (g-3)-plane Ap » whereas
any proper subset of the x, are linearly independent in Eﬁ_l. [Re-
call: an effective divisor of degree k spans a (k-r-1)-plane in

.Pg—l if and only if it moves in a linear system of dimension r. ]

On the other hand, §(-D) = @ 8 A* ig generated by its global

sections, so the discussion in §2 applies and one has the exact sequence
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(3.1) 0 — MQ(-D) _— !"lQ >ZD > 0
from the left-hand column of (2.1). Note that
Moy = (D)
thanks to the fact thét hO(Q(-D)) = 2.
We claim next that ZID fits into an exact sequence
g-3
(3.2) 00— Gx(—xg_z-xg_l) —_ ZD  — i?1 Ox(-—xi) —> 0

(compare Remark 2.6). To see this, consider the divisors

D' =x, + ... + x and E = x

1 8‘3 + x8

Then Q(-D') 1is generated by its global sections: the only potential
base-points are xg_2 and xg_1 , and if either actually occured then
g-2 of the {xi} would lie in the (g-4)-plane AD' spanned by

D' . Thus the discussion in §2 also applies to D', and with notation
as introduced there one constructs in the evident way the commutative

diagram of exact sequences:

0 0
l o
VE A4
(3.3) v 8 6y > Q8 0
I
0———->)3D > W, B O >2868,—>0

! Lo

0—>ZD. >wD'ea:°x > Q8 6, >0,
J J
0 0

wvhere V = HO(Q(—D')) / HO(Q(-D)) ,” and where VE is the homomorphism
induced from the natural map

v .40 '

Vg ¢ H (Q(~-D")) Gm O‘x —> 08 O'E

obtained by evaluating a section of Q(-D') on E. But if

—_ |l —



s € HO(Q(—D')) is a section which doesn’'t vanish on D, then s

\
can't vanish at either of the points x or Xg_p- Thus vg -=

g-2
and hence also vg — are surjective maps of sheaves. Since V is
one dimensional, it follows that ker(vE) = Ok(—E) , and consequently
(3.3) gives the exact sequence

O _—> O’x(‘xg—z—xg_l )

On .the other hand, D' «consists of g-3 linearly independent points

spanning the (g - 4)-plane AD" and so just as in Example 2.2 one

g-3 ,
has ZD,ﬁzigl OX(—xi) . This proves (3.2).

But now the theorem follows at once. In fact, from (3.1) we get

an exact sequence

2 * 2 *
(3.4) 0—> M(L}) —— AMogg—— IF8 D) —> 0,

while (3.2) yields

(3.5)
A2 8 p2 g 8
0 —> M( 8 Oy(x,) ) — p T @ Bylxtx _yix ) =0
i=] i=l
and
L8 Q $* 8 o(-D Q
00— 131 (-D+xi) > D (-D) ——> (—D+x8_2+x8_1)—>0.

Since g 25, all of the divisors appearing in (3.5) are properly con-
tained in D, and consequently each of the corresponding line bundles

has only one section. Thus

WO a%zy) s (853) + (- 3).

On the other hand, hO(Q(—D-rxi)) = 2 for all i, whereas
ho(Q(-D+x8_2+x8_1 )) = h%(R(=D")) = 3, and hence

hO(ZBGQ(—D)) s 2-(g-3)+ 3.
All told, thanks to (3.4) one has

O 1%g) s (83%) + 3(g-3)4+3 = (8

and we are done.



§4. The Exceptional Curves.

Finally, we recall the proof of the following
Proposition 4.1. If X is a non-hyperelliptic curve of genus g 2 3
which fails to satisfy the hypotheses of the Theorem stated in the
Introduction, then X is either trigonal or_a smooth plane quintic.

Proof. (Compare [ACGH, p. 373].) Suppose that W - ngl(x ) 1is an

irreducible component such that a general point of W corresponds

to a line bundle which fails to be generated by its global sections.
Denote by k ( 21) the degree of the corresponding divisor of fixed
points. Since dim W = g~4, there exists a component

W o« ngl_k (X)
with dim W' 2 g-4-k . But a theorem of Mumford [Mfdl] states that
if Wé(X) has an irreducible component of dimension d-3 for some
3 sd s g-2, then X is either trigonal, bielliptic or a smooth
plane quintic (see [ACGH, Chapter IV §5] for an exposition).

It remains to treat the case of bielliptic curves. So assume that

X admits a degree two mapping
78 X—> E,

with E elliptic. Then Mumford's proof shows that an irreducible com-
ponent W wgfl( X ) as above exists if and only if g 2 6, in
which case there is only one such component, parametrizing line bundles

of the form

T*B & Oy (x;+. . 4x with ngé(E), x, eX .

g5
Recalling that Q= n*N for some line bundle N of degree g- 1 on
E [viz. N =det(m,Q) ], it follows that W is mapped to itself by
the involution of Jacg_l(X) taking A to Q8 A%, On the other
hand, a pleasant geometric argument of Shokurov [Shkrv, Prop. 2.5.2]
shows that W is not the only irreducible component of wgil( X).
(Shokurov assumes that g 2 7, but his proof works just as well when
g = 6. An alternative enumerative argument is suggested in [ACGH,

p. 373] . ) Hence there exists a line bundle A on X satisfying
the hypotheses of the theorem, and this completes the proof.
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