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Introduction

Let X be a smooth irreducible complex projective curve of genus g=2, and let
L be an ample line bundle on X, generated by its global sections. Then L
defines a morphism

¢.: X >IP(H°(L)=TP",

and following Mumford [18] one says that L is normally generated if L is very
ample and if ¢, embeds X as a projectively normal curve. Equivalently, L is
normally generated if and only if the natural maps S™H®(L)— H°(L") are
surjective for all m=>0. Several classical results address the question of when a
given line bundle is normally generated. Most notably, a well-known theorem
of Noether (c.f. [18] or [16]) asserts that the canonical bundle defines a
projectively normal embedding unless X is hyperelliptic, and a result of Castel-
nuovo [3], Mattuck [16] and Mumford [18] states that any line bundle of
degree at least 2g+ 1 is normally generated. More recently, Lange and Martens
[10] have shown that a general line bundle of degree 2g on a non-hyperelliptic
curve is normally generated, and Arbarello, Cornalba, Griffiths and Harris [1]
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have proven that if X is a sufficiently general curve of genus g, then a general

line bundle of degree [3g+2] or greater defines a projectively normal embed-

ding. The diversity of these results leads one to ask if one can obtain a unified

and strengthened statement by taking into account in some quantitative way

the intrinsic geometry of the curve. Our first purpose here is to show that this

is indeed the case, the invariant in question being the Clifford index of X.
Recall that the Clifford index of a line bundle 4 on X is defined by

CIiff(4) = deg(4)— 2 - r(A),
where r(4)=h°(A)— 1. The Clifford index of X itself is taken to be
Cliff (X) = min {Cliff (4)|i°(4) = 2, h'(4)=2}

(cf. [15, 13, 14], and (0.3) below). This gives a rough indication of how special
X is in the sense of moduli. Thus Clifford’s theorem says that CIliff(X)=0 with
equality if and only if X is hyperelliptic, and similarly Cliff(X)=1 if and only if
X 1is either trigonal or a smooth plane quintic. At the other extreme, if X is a

-1
general curve of genus g then Cliff(X):[g—z—], and in any event
CIiff(X) < [%] .

Our first result, which applies when h'(L)<1, generalizes the various theo-
rems stated above:

Theorem 1. Let L be a very ample line bundle on X, with
deg(L) = 2g+1-2-h'(L)—CIiff(X)
(and hence h*(L)<1). Then L is normally generated.

To deduce Noether’s theorem, for instance, one uses the fact that X is non-
hyperelliptic if and only if Cliff(X)>1. Or again, if X is a general curve then
-1
Cliff(X)= [%—]’ and so one recovers the result of Arbarello et al.

The inequality above is in general the best possible. In fact, let us say that a
very ample line bundle L on X is extremal if

deg(L)=2g—2 - h'(L)— Cliff(X),

and if L fails to be normally generated. To get a picture of the situations in
which Theorem 1 is optimal, and in the hope of finding further geometry in
these questions, it is natural to look for examples of curves having a given
Clifford index, but arbitrarily large genus, on which there exist extremal line
bundles. We classify all such infinite families, and at least for extremal bundles
with h' =1 the conclusion seems somewhat amusing:

Theorem 2. There exists an explicit constant N(e) such that if X is a curve of
Clifford index e and genus g> N(e), then:

(@) X always carries an extremal line bundle L with h'(L)=0, but never one
with h'(L)=2;
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(b) X carries an extremal line bundle L with h'(L)=1 if and only if e
=2f =4 is even, and X is a two-sheeted branched covering

n: X - YcIP?
of a smooth plane curve Y of degree f +2.

In fact, although we shall not go into all the details here, one can give a
quite precise description of the extremal bundles.

Theorems 1 and 2 are consequences of a general result on the projective
normality of very ample complete linear series of degree roughly g or greater.
The theme is that the failure of normal generation is accounted for by the
existence of special configurations of points on ¢, (X)<IP’. Specifically, consid-
er a very ample line bundle L on X with deg(L)=2g+1—k. Assume that
2k+1<Zgif h'(L)=0, or that 2k —3<g if h'(L)+0, and consider the embedding

X cIP(H°(L))=IP"
defined by L.

Theorem 3. Under the hypotheses just stated, L fails to be normally generated if
and only if there exists an integer 1 <n<r—2, and an effective divisor D on X of
degree at least 2n+2 such that

(a) HY(X, [*(—D))=0 and

(b) D spans an n-plane A<IP" in which D fails to impose independent con-
ditions on quadrics.

Concerning assertion (b), we mean that H'(A, I ,(2))+0, where I}, , is the
ideal sheaf of D in A. Note that when n=1 this condition is automatic, but for
n=2 it is not enough that X simply have a (2n+ 2)-secant n-plane. Theorem 1
follows immediately by computing the Clifford index of the linear series cut
out on X by hyperplanes through A. As for Theorem 2, the essential point is to
combine a slight strengthening of the result just stated with Castelnuovo’s
bound on the genus of a space curve; our use of Castelnuovo’s bound here was
inspired by the techniques of Martens in [13]. The proof of Theorem 3, which
occupies § 1, is simple but perhaps a bit surprising. The idea is to interpret the
failure of normal generation in terms of extensions of line bundles. One arrives
at a rank two vector bundle E on X, with determinant Q}, having a large
number of sections. The required secant plane then pops out from the existence
of a line sub-bundle of E of suitably high degree.

It seems very likely that Theorem 3 and its corollary Theorem 1 should be
the first cases of a much more general picture of how the geometry of X
influences the whole chain of syzygies associated to a complete linear series.
For instance, we conjecture that if L is a very ample line bundle with
deg(L)=2g+2—2-h'(L)—CIiff(X), then the homogeneous ideal of X in
IP(H°(L)) is generated by quadrics unless ¢, embeds X with a tri-secant line; if
deg(L)=2g+3—2-h'(L)—CIiff(X), then the first module of syzygies among
these quadrics should be generated by relations with linear coefficients unless
X has a 4-secant 2-plane; and so on. Precise statements are given in §3. They
generalize an earlier conjecture of the first author [7] to the effect that one
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should be able to read off the Clifford index of a curve from the minimal
resolution of its canonical ring. In view of the role of the Clifford index in
these conjectural generalizations of several classical results, it seems of interest
to understand this invariant more clearly than one does at the moment. Hence
we have also included in §3 some open problems pertaining to the Clifford
index.

§ 0. Notation and conventions

(0.1) We work throughout over the complex numbers. However the results of
§1 remain valid over an algebraically closed ground field of arbitrary charac-
teristic.

(0.2) X will always be a smooth irreducible projective curve of genus g=2.
We denote by Q the canonical bundle on X. If F is a coherent sheaf on X we
write H'(F) instead of H'(X, F) so long as no confusion can arise; as usual,
h(F) is the dimension of the corresponding cohomology group. We freely use
Riemann-Roch and Serre duality on X without explicit mention.

(0.3) The definition of CIliff(X) presupposes that ng_l(X )=%0, and hence that
g=4. Our results remain valid for curves of genus g=2 if we adopt the
convention that Cliff(X)=0 for X of genus 2 or hyperelliptic of genus 3, and
that Cliff(X)=1 if X is non-hyperelliptic of genus 3. Concerning the inequali-
ties in the definition of CIliff(X), observe that the existence of a line bundle A4
of small degree says nothing about the curve X unless h°(4)=2. On the other
hand, Cliff(4)=CIiff(Q ®A*) for any line bundle 4. So the inequalities in the
definition may be explained as simply a device for preventing such examples
from contributing to the computation of CLiff(X).

(0.4) We will several times use the observation that if 4 is any line bundle on
X, then
ho(A)+h°(Q®A*)=g + 1 — CIliff(A4).

In fact, suppose that 4 has degree d and that h°(4)=r+1. Then h°(Q®A*)
=h!(A)=g—d+r, whence the stated formula.

(0.5) We say that a short exact sequence
(*) 0-F->F->F'->0

of sheaves on X is exact on global sections if (x) induces an exact sequence
0— H°(F')—» H°(F)-» H°(F")—0, or equivalently if the connecting homomor-
phism H°(F")— H'(F’) determined by () is zero.

§ 1. Normal generation of complete linear series

This section is devoted to the proofs of Theorems1 and 3 stated in the
Introduction. Assuming the statement of Theorem 3, we start with the
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Proof of Theorem 1. Suppose to the contrary that L fails to be normally gener-
ated. If 4 is any line bundle of degree 2g —e, then Cliff(4)=e—2-h'(A). Thus
the inequality in the hypothesis is equivalent to the assumption that

(%) CIiff(L) < Cliff(X).

Furthermore, h°(L)=2 since L is very ample, and in view of the definition of
CIiff(X) it follows from (*) that h'(L)<1. Recalling that CLff(X)<(g—1)/2, one
then finds that L satisfies the numerical hypotheses of Theorem 3. Let D be the
divisor of degree >2n+2 whose existence is guaranteed by that theorem. Since
D spans an n-plane in IP(H°(L)), one has

CIiff(L(— D)) < Cliff(L).

Moreover h°(L(—D))=2 and h'(L(—D))=2 thanks to the fact that 1<n<
r(L)—2, and consequently Cliff(X)<Cliff(L(—D)). Thus we have a contradic-
tion to (), and this proves the theorem. []

We turn next to Theorem 3. Recall the assumptions: L is a very ample
line bundle of degree 2g+1—k, where 2k+1<g if h'(L)=0 or 2k—3<g
if h'(L) 0.

Proof of Theorem 3. Suppose first that a divisor D as described exists. Then
thanks to (a) the homomorphism

H'(IP", I (2)) > H' (IP", Iy p(2))

is surjective. Since in any event h'(IP", I, -(2))=h'(A, 1}, 4(2)), it follows from
(b) that X <IP" is not projectively normal.

Assume conversely that L fails to be normally generated. Note to begin
with that the multiplication maps

Hn: HO(L)@H®(L")— HO (L")

are surjective for m>2. If L is non-special this is a well-known general fact (c.f.
[17, Lecture 14]), while for special L it follows in the degree range at hand
from [7, Theorem (4.e.1)]. Hence pu, - which we call simply u - cannot be
surjective. Equivalently, its transpose

u*: HO(LP)*— HO (L @ HO (L)*

has a non-zero kernel.

On the other hand, H°(I?)*=Ext! (L, Q® L*) classifies extensions of L by
Q®L*, and p* is identified (up to multiplication by a non-zero scalar) with
the map

Ext!(L, Q® L*¥)—»Hom(H°(L), H (Q® L*))

which sends an extension of L by Q®L* to the connecting homomorphism it
determines. Hence there exists a non-trivial extension

(1.1) 0->Q®L*>E—>L—0
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which is exact on global sections. Note that det E=(2, and that

h°(E)=h°(L)+h°(Q®L*)=g+ 1 —CIiff(L)
(c.f. (0.4)).

The next step is to produce a sub-bundle of E of suitably large degree. To
this end we use a theorem of Ghione [5, 6], which implies that a rank two
vector bundle F on X of degree d has a line sub-bundle ASF of degree =a
provided that 2a<d—g+1.! In view of the numerical hypotheses of the theo-
rem, it follows that E has a line sub-bundle A4 with

deg(A)=k  if h'(L)=0
or
deg(A)=k—2 if h'(L)%0.

Fixing such a sub-bundle, the situation is summarized by the following dia-
gram, in which (1.1) appears as the horizontal sequence:

(1.2) 0

00— QRI* — E — L. — 0.

QRA*

0

Since deg(A4)>deg(Q® L*)=k—3, the indicated homomorphism 4— L is non-
zero. Hence A=L(-D)

for some effective divisor D on X, and the map a, in (1.2) is just the natural
inclusion L(—D)— L determined by D. The goal now is to show that D has the
properties asserted in the statement of the theorem.

Let n be the dimension of the linear space A< IP(H°(L))=IP" spanned by D.
We begin by proving that deg(D)=2n+2 and that 1 <n<r—2. Recalling that
A=L(—D), it is equivalent (as in the proof of Theorem 1) to verify that

(i) CIlff(4)<Cliff(L) [=k—1-2-h'(L)]
and
(i) 2<h°(A4)<h®(L)-2.

! The assumption in [5] that F be “general” is unnecessary (c.f. [12, §2], but note the misprint

in the definition of p](C, M)). For our purposes here, results of Nagata [19] are also applicable
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But (i) follows immediately from the vertical sequence in (1.2), which gives:
g+ 1—CIUff(L)=h°(E) S h°(A)+ h° (Q® A*) =g + 1 — CIliff(A).

In particular, the lower bounds on deg(A) then force deg(A)> Cliff(A4), and
consequently h°(A4)=2. For the other inequality in (ii) observe to begin with
that D=+0, or else the inclusion A=L(—D)—E would split (1.1). Since L is
generated by its global sections, it follows that h®(A4)=h°(L(—D))<h°(L)—1.
Thus thanks to (i), D must have degree at least two. But this being so, if
h°(L(—D))=h%(L)—1 then L fails to be very ample. Therefore h°(L(—D))<
h°(L)—2, and (ii) is proved.

We next show that D fails to impose independent conditions on quadrics in

A or - what is the same thing - in IP(H°(L)). Denoting by u,, the composition
of the natural maps

evaluation on

HY(L)Y® H°(L)—"— H°(L?) HO(I2®0)),

it is equivalent to show that u,, fails to be surjective. But «, gives rise to an
inclusion H°(L(—D))< H°(L); and setting W, =H°(L)/H°(L(— D)), evaluation
on D yields a homomorphism

pp: HO(L)®@W,—H(L’®0,)

having the same image as p;. So the question is in turn equivalent to proving
that p,, is not surjective.

Consider to this end the following commutative diagram of exact se-
quences:

0
HY(2QUp*—2  HO(L*@ Wy
D D

HO(LZ)* w* HO(L)*®HO(L)*

HO(L*(— D)* —— H*(L)*®@H"(L(— D))*.

0 0

Let ecker(u*) be the element corresponding to the extension (1.1). We claim
that e maps to zero in H°(L*(— D))*=Ext!(L(— D), Q®L*). In fact, by con-
struction a, lifts to a homomorphism &,: L(—D)—E and hence (1.1) induces
the trivial extension of L(— D) by Q®L*. By the diagram, there thus exists a
non-zero element eeker(p}) mapping to e. Consequently p,, is not surjective,
and this completes the proof of assertion (b) of the Theorem.

It remains only to show that H!(L?*(—D))=0. But this is clear, since
[*(-D)=A®L, and

deg(A®L)=(k—2)+(2g+1—-k)=2g—1. O
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(1.3) Remark. Observe for later reference that by varying the numerical hy-
potheses of Theorem 3 one can obtain somewhat stronger bounds in the
conclusion. Suppose, for instance, that e is a fixed non-negative integer and
that L is a very ample line bundle of degree 2g+1—k which fails to be
normally generated. If

(%) 2k+4e+1=g,
then the conclusion of the theorem holds now with
(%) 1<ngr(L)—2—e.

In fact, by virtue of (x) one can assume that the line bundle 4 constructed in
the proof of Theorem 3 has degree =k +2e. Then

k+2e—2- r(4)<CLff(4) < Chff(L) <k —1,
and it follows that h°(4)=e+2. But n=r(L)—h°(A), so this gives ().

We conclude this section with two simple applications of these results and
techniques.

(1.4) Corollary. Let L be a very ample line bundle of degree 2g on X, defining
an embedding X <IP®. Then L fails to be normally generated if and only if X is
hyperelliptic.

Proof. In view of Theorem 1, we need only check that if X is hyperelliptic, then
L cannot be normally generated. But the hyperelliptic pencil sweeps out a two-
dimensional rational normal scroll S <IP® containing X, and S lies on enough
quadrics to force H'(IP% Iyp:(2))%0. (Compare [10, §3] for a more general
result proved along these lines.) []

It was suggested by Lange and Martens [10] that the result of the Corol-
lary should hold. (C.f. also [8] and [9].)

(1.5) Remark. If L is a general line bundle of degree 2g on a hyperelliptic
curve X, giving rise to an embedding X <IP% then X cannot have a (2n+2)-
secant n-plane for any n<(g—2)/2. Hence the least value of n for which
Theorem 3 applies can be arbitrarily large.

(1.6) Corollary. Let L be a very ample line bundle on X of degree 2g—1, with
g=4. Then L fails to be normally generated if and only if either:

(a) X is hyperelliptic;

(b) X is trigonal and L=Q®B*(D), where BeW,(X) and D is an effective
divisor of degree 4; or

(c) X<IP? is a smooth plane quintic with embedding line bundle Be W2(X),
and L=B®N for some line bundle NeW_(X) generated by its global sections.

In case (b) ¢, embeds X with a 4-secant line; in case (c) L defines an
embedding X =IP3 in which X has oo! 6-secant conics. We leave the proof of
(1.6) to the interested reader.
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§ 2. Classification of extremal line bundles on curves of large genus

Let X be a smooth curve of genus g and Clifford index e, and let L be a very
ample line bundle on X of degree

(*) deg(L)=2g—2i—e,

where i=h'(L) is the index of speciality of L. Motivated by Theorem 1, we say
as in the Introduction that such a line bundle is extremal if it fails to be
normally generated. This section is devoted to the classification of extremal
line bundles on curves for which g> N(e), where

e+3
N(e)dffmax{( 5 ), 10e+6}.

Specifically, we will prove

(2.1) Theorem. Let L be a very ample line bundle satisfying (x). Assume that
g> N(e) and that X is neither hyperelliptic nor elliptic-hyperelliptic. Then L fails
to be normally generated if and only if the pair (X, L) falls into one of the three
families listed in the following Table (2.2):

(2.2) Table

X h'(L) dL

L Hasag.,, 0 Embeds X with a 4-secant line

I1. e=2f2z=4;
X is a double covering 1 Embeds X with a 4-secant line
n: X->YcIP?

of a smooth plane curve
Y of degree f+2.

I11. as in 11 0 Embeds X with a 6-secant conic,
but no 4-secant line

Concerning (I) we note that according to a theorem of Martens [13], any
curve of Clifford index e and genus g>(e+3)(e+2)/2 carries a g,,,. We
remark also that each of the families described in (2.2) does in fact occur for
every g> N(e); the construction of the extremal bundles is sketched in (2.5)
below. As for the two classes of curves excluded from the theorem, the
hyperelliptic case is covered by Corollary 1.4 and the observation that no
special line bundle on a hyperelliptic curve is very ample. The situation on
elliptic-hyperelliptic curves is discussed in (2.6). Taken together, these results
constitute the proof of Theorem 2.

Theorem (2.1) depends on the following elementary consequence of
Castelnuovo’s bound on the geometric genus of a non-degenerate space curve.
Martens has used this bound in a similar way in [13]. Recall that a line
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bundle B on X is birationally very ample if B is generated by its global sections
and the corresponding map ¢ is birational onto its image.

(2.3) Lemma. Let X be a curve of genus g, and let B be a line bundle on X
with r(B)=r and deg(B)=2r+e for some e=0. If B is birationally very ample,

then either
r=zg—2e—1 or g=<(e+3)(e+2)2.

We omit the proof.

Proof of Theorem (2.1). It is immediate from Theorem 3 that if L is a very
ample bundle of the stated degree for which ¢, has one of the properties
described, then L cannot be normally generated.

Assume conversely that L fails to define a projectively normal embedding.
Since L 1s very ample and g>(e+3) (e +2)/2, it follows from Lemma (2.3) that

r(Ly=g—i—ezg—2e—1,

1.e. that i<e+ 1. Then thanks to the fact that g> N(e)=>10e+6 we are in the
situation of Remark (1.3). Thus Theorem 3 gives the existence of an integer

1=n<sr(L)—2—e,

and an effective divisor D of degree =2n+2 which spans an n-plane in
IP(H(L)).

Since CIliff(L)=CIliff(X), one must in fact have degD=2n+2, and hence
h'(L(—D))=n+i+1. Setting

(2.4) B=Q®L*(D),

this means that degB=2n+2i+e and r(B)=n+i. In particular CIiff(X)
=CIiff(B), and so B is generated by its global sections.
If r(B)=1 then i=0, B is a g, ,, and we are in case (I). Assuming that
r(B)=2, consider the map
Gp: X >IP"H

We claim, and this is the main point, that ¢ cannot be birational onto its
image. Indeed, if on the contrary B were birationally very ample, then since
g>(e+3)(e+2)/2 Lemma (2.3) would give the inequality

n+i=r(B)=2g—2e—1.

But this contradicts our upper bound on n.

The upshot is that ¢, factors through a branched covering n: X —>Y of
degree m>2, where Y is a smooth curve mapped birationally onto its image in
IP"*! by a line bundle B, with r(B,)=r(B)=n+i, and B=n*(B,):
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If mz3 then Cliff(n*(B,(—y))<Cliff(B)=Cliff(X) for any yeY. But
h°(n*(By(—y))) =2 and h'(n*(B,(—y))) =2, so this is impossible. Therefore m=2,
e=2f is even, and deg(B,)=n+i+f. In fact, for the same reasons of Clifford
index, B, must be very ample and Y<SIP"*' cannot have any (s+2)-secant
s-planes if s<n+i—2. But for s =1, any smooth non-degenerate curve Y = IPs+?
of degree at least s+4 has an (s+2)-secant s-plane; this is standard if s=1, and
one may reduce to this case by projecting from general points of Y. Hence if
n+i=3, then Y must be rational or elliptic normal, and X in turn is hyper-
elliptic or elliptic-hyperelliptic. So we must have n+i=2, and

Y cIP?

is a smooth plane curve of degree f+2=4. If n=1 then i=1 and we are in
case (II); case (III) occurs if n=2 and i=0. In either event it follows from
Theorem 3 that ¢, must have the stated properties, except that in (III) it might
happen that D=F + D’ for some effective divisors F and D’ of degree respec-
tively 2 and 4, where ¢, maps D’ to a line. But then B=B(—F) is a g._ ,, and
we revert to case I. [

(2.5) Remark. The three families described in Theorem (2.1) do in fact occur
for all g> N(e), and we indicate here how the extremal bundles arise. To this
end, note that the previous proof shows exactly what the line bundle

BeWr+i . (X)

2n+2i+e

of (2.4) must be in each of the three cases, and then
(*) L=Q®B*(D)

for some effective divisor D of degree 2n+2 on X. The extremal bundles are
determined via (x) by the following recipes:

Case 1. Take X to be a curve of Clifford index e and genus g> N(e) with a
gl., but no g2, ,; for instance X could be a general (e+2)-gonal curve of the
appropriate genus. Then take

BeW! ,(X) and D=x,+x,+X;+x,,

where the x; are distinct points of X, no two of which lie in the same fibre of

Pp.
For cases II and III one starts with a smooth plane curve
Y<IP?,

of degree f+2=4, with embedding line bundle B,e Wf2+2(Y). Set e=2f, and let
X be any curve of genus g> N(e) arising as a double covering

. X->YcIP?
one checks that Cliff(X)=e.
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Case 11. Take
B=7n*(B,) and D=x, +x,+x;+x,

where the x; are distinct points on X mapping via n to four distinct collinear
points of Y.

Case 111. Take
B=n*By) and D=x;+...+Xx,

where the x; are distinct points on X mapping to six distinct points of Y which
lie on a conic in IP2, but with no four collinear.

In each case the resulting line bundle
L=Q®B*(D)

is very ample, with the appropriate index of speciality; the divisor D spans a 4-
secant line in cases I and II, and a 6-secant conic in case III. Moreover, if D is
reduced these are the only possibilities. (For general D the descriptions become
a bit more involved, and in casel if X has a g2, , then there are some
additional restrictions on D.)

(2.6) Remark. To complete the picture, it remains to describe extremal line
bundles on an elliptic-hyperelliptic curve X, i.e. a curve which admits a degree
two covering n: X — Y, with Y elliptic. Assume that X has genus g > N(2)=26.
First of all, arguing from the proof of Theorem (2.1), one easily shows:

(a) There is no extremal line bundle L on X with h*(L)#0.

By contrast, there are at least two irreducible families of extremal non-
special line bundles on X:

(b) Let L be a very ample line bundle of degree 2g—2 on X, with h!'(L)=0.
Then L fails to be normally generated if and only if either ¢, embeds X
with a four-secant line, or else

(%) det(n, L)=det(n, Q).

In the former case (*) is not generally satisfied, and hence the family of
extremal non-special line bundles on X has one irreducible component
of dimension 5 (parametrizing embeddings with 4-secant lines), and also
one or more (g — 1)-dimensional components defined by ().

In an earlier version of this paper we included a rather lengthy proof of (b)
based on the results and techniques of §1; however Lange and Martens
pointed out to us that the result can be deduced (for a wider range of genera)
from the proofs in their paper [11].

§ 3. Conjectures and open problems

We discuss in this section a number of open questions related to the above
circle of ideas.
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§ 3a. Higher syzygies

Results on normal generation frequently go hand in hand with analogous
statements giving conditions under which a curve is cut out by quadrics (c.f. [18]
and [22]). Until recently, however, the corresponding questions for higher
syzygies seem not to have been addressed. But as some of the results and
conjectures of [7] suggest, it is in fact very reasonable to expect that “lower
order” results will extend in a natural way to higher syzygies, and that
moreover these extensions may shed new light on the classical situations. We
present and discuss here some conjectures along these lines.
We start with some notation. With X and L as in the Introduction, set

R=R(L)=@ H°(L").

Thus R(L) is a Cohen-Macaulay module of dimension two over the homo-
geneous coordinate ring S=Sym(H°(L)). Let E. =E (L) be a minimal graded
free resolution of R(L) over S:

(3.1) 0-E, ,»E ,—>..»E—->E;,->R-0,

where each E,=E,(L) is a direct sum of twists of S, and r=r(L). As we are
dealing with complete linear series, one has:

(i) E,=S®E,, with E,=®S(—aq,;) and all a,;=2;
and, for i>1,
(i) E;=®S(—a;), whereall q;2i+]1.
The natural way to extend the various classical results alluded to above is

to ask when the first few terms in E (L) are as simple as possible. Specifically,
we ask whether, for a given integer p=0, L enjoys the following property:

E,(L)=S and

N .
(N) E(L)=®S(—i—1) (e all g;=i+1) for 1<i<p.

Thus, very concretely:

(N,) holds for L iff L is normally generated;

(N,) holds for L iff L is normally generated, and the homogeneous ideal of
X in IP(H°(L)) is generated by quadrics;

(N,) holds for L iff (N,) and (N,) do, and the module of syzygies among
quadratic generators Q,€l . is spanned by relations of the form

ZLiQi=0’

where the L, are linear polynomials;

and so on. Property (N,) is what Mumford calls “normal presentation” in
[18]; in the terminology of [7], (N,) is equivalent to the vanishing of the
Koszul cohomology groups K; ;(L) for i<p and j22.
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The theorem of Castelnuovo-Mattuck-Mumford on projective normality
was generalized to higher syzygies by the first author in [7]:

(3.2) If deg(L)=2g+1+p, then L satisfies property (N,).

In particular, one recovers a result of Fujita [4] and St. Donat [23] to the effect
that if deg(L)=2g+2, then X is cut out by quadrics in IP(H°(L)). The exam-
ples for which (3.2) is optimal have been classified by the authors, and one
finds:

(3.3) If deg(L)=2g+p, then property (N,) fails for L if and only if either:
(a) X is hyperelliptic; or
(b) ¢, embeds X with a (p+2)-secant p-plane, i.e. H°(L®Q*)+0.

(When p=0, the statement in (b) should be interpreted to mean that ¢, is not,
in fact, an embedding: compare Corollary (1.4) above.) The proof will appear
elsewhere.

In light of Theorem 1, the natural generalization of (3.2) and (3.3) is the
following:

(3.4) Conjecture. Assume that L is very ample, with
deg(L)=2g+1+4p—2-h'(L)— CIiff(X).
Then property (N,) holds for L unless ¢, embeds X with a (p+2)-secant p-plane.

In fact, one would hope for a more precise statement along the lines of
Theorem 3.

A particularly interesting case of (3.4) is when L=®. Then the conjecture
states that the canonical bundle satisfies (N) for p<CIiff(X). On the other
hand, it was shown in the appendix to [7] that (N) does not hold for € if
p=CIliff(X). Hence (3.4) contains as a special case the “Noether-Enriques-
Babbage-Petri” conjecture of the first author:

(3.5) Conjecture ([7, Conjecture (5.1)]. The Clifford index of X is equal to the
least integer p for which property (N,) fails for the canonical bundle €.

In other words, knowing the Clifford index of X should be equivalent to
knowing the degrees of the terms in the minimal resolution of its canonical
ring. The conjecture would generalize - and clarify - Petri’s theorem [20] that
the homogeneous ideal of a non-hyperelliptic canonical curve X is generated
by quadrics unless X is trigonal or a smooth plane quintic, i.e. unless CIliff(X)
=1. The conjecture has been verified by Schreyer [21] for g <8.

In a somewhat different direction, there is a conjecture which would give a
complete picture of the grading of the resolution (3.1) when deg(L) is large
compared to 2g. In particular L will be non-special, and then it is elementary
that there are only two degrees in which generators of E,(L) might occur.
Specifically, so long as h!(L)=0 one has:

S ®S(—i—1)
E,= @ and E;= ® if i>1,
®S(-2) ®S(—i—2)
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although it is not necessarily the case that summands of both degrees are
actually present. In fact, always assuming that h'(L)=0, one finds from (3.2)
that

E,=S if 0=5(r—1)—g and E=®S(—i-1) for 1<ig(r—1)—g,

where as usual r=r(L). On the other hand, Schreyer observed that if
deg(L)=3g—2 then for every i=r—g the module E,(L) must have some
S(—i—2) summands (this follows, e.g., from (3.3)). This leaves undetermined
only whether or not, for a given integer 1<q=<g, E, (L) has generators in
more than one degree. More precisely, we ask whether L satisfies the following
property for some 1 <g=<g:

M,) E(L)=®S(—-i—2) for i=zr—gq.

In the terminology of [7], (M) is equivalent to the vanishing of K; ;(L) for
izr—q and j+2.

To interprgt property (M,) somewhat more geometrically, recall that by
Serre duality E.(—r—1) is a minimal resolution of the S-module

W=W(L)=@ H(Q®L").

(This module was studied by Arbarello and Sernesi in [2].) Hence if L is non-
special, then:

(M,) holds for L<>the map H°(L)® H°(Q)— H°(L ® Q) is surjective;
1

(M,) holds for L<>(M,) does, and if wy, ..., wgeHO(Q) is a basis, then all
relations of the form

Y. Pw;=0eW(L), where PeS*H°(L),

are already generated by those relations in which the P are linear poly-
nomials;

and so on. The “K, ; Theorem” of [7] gives a geometric criterion, in a more
general setting, for the failure of (M) or (M,). In particular, one finds:

(3.6) If deg(L)=2g+1, then (M,) fails for L if and only if X =IP*;
If deg(L)=2g+2, then (M,) fails for L if and only if X carries a gj.

This suggests:

(3.7) Conjecture. If deg(L) is sufficiently large compared to 2g, then property
(M) fails for L if and only if X carries a g;, i.e. a line bundle A with deg(A)=q
and r(A)=1.

Ideally deg(L)=2g+ ¢ (and hence also deg(L)=3g) would do; one certainly
wants a bound independent of g. Then (3.7) would have the surprising con-
sequence that one could read off the “gonality” of a curve from the minimal
resolution of any one line bundle of sufficiently large degree. One implication
in the statement is known: it is elementary that if X carries a g}, then no line
bundle of degree =2g+q can satisfy (M,). However we remark that of the
three conjectures presented here, this is the one of which we are the least
convinced.
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$ 3b. The Clifford index

Our results for projective normality, and the conjectures just stated, suggest
that the Clifford index is an important invariant of a curve for questions of an
algebraic nature involving complete linear series. Hence it seems worthwhile to
understand this invariant as closely as possible. Martens [13, 14] has taken
some basic steps in this direction, but much remains to be learned. To begin
with, it is not known that there even exist curves of arbitrary Clifford index

0<e= [g;] for a given genus g. The obvious thing to expect here is:

(3.8) Conjecture. Given an integer 0<e< [g—z——], if X is a sufficiently general
(e+2)-gonal curve of genus g, then Cliff(X)=e.

The issue of course is to rule out the possibility that Cliff(X)<e; this is
elementary if g is reasonably large compared to e (e.g. g >4e).
Define the Clifford dimension of a curve X to be the integer

A is a line bundle on X,
r(X)=min{r(A4)|with h°(4)=2, h'(4)=2,;.
s.t. Cliff(X)=CIliff(A4)

In other words, the Clifford dimension of X is the least dimension of a linear
series which computes the Clifford index of X. For instance Martens’ theorem
[13] states that if X has Clifford index e and genus g>(e+3) (e+2)/2 then r(X)
=1, while if X is a smooth plane curve then r(X)=2. Martens has pointed out
that it is very rare to find a curve with Clifford dimension =3. For if r(X)
=r2=3, and if X<IP" is embedded by a line bundle computing Cliff(X), then
evidently X cannot have any (2r—2)-secant (r—2)-planes. But a formula of
Castelnuovo counting the number of such planes (c.f. [14] or [1]) then puts
severe restrictions on the possible genus and Clifford index of X. Martens uses
these ideas to prove the remarkable fact [14]:

(39) r(X)=3 if and only if X is the complete intersection of two cubic
surfaces in IP3.

In a letter to the authors, Martens also points out that the example in (3.9)
should be merely the first in an infinite family:

(3.10) Problem (G. Martens). Show that for each r =3 there exist smooth curves

Xclpr
with: .
deg(X)=4r-3 r(X)=r,

g(X)=4r—2, CIlff(X)=2r—3.

As Martens notes, one would expect such curves to be half-canonically
embedded and projectively normal. In fact, it seems very likely that the desired
curves will exist on suitable K3 surfaces S<IP’, but it’s not immediately clear
how to verify that the candidates have the stated Clifford index and dimension.
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(3.11) Problem. Is it true that any curve X with Clifford dimension r(X)=3 is
in one of the families specified in (3.10)?

This might seem like too much to expect, but in view of (3.9) there doesn’t
appear to be any reason not to hope for a simple picture. Furthermore, a home
computer was used to make numerical calculations based on Castelnuovo’s
secant-plane formula. It turned out that for r=4 and 5, and g <100, there were
no other possibilities except for a few with deg(X)=g—1, some of which could
be ruled out for non-numerical reasons. An affirmative solution to (3.11)
together with a proof of (3.5) would yield an essentially complete list of all
curves for which the minimal resolution of the canonical ring has a given
grading. Presumably a positive solution to (3.11) would also imply Conjecture
(3.8), at least if one had a good enough understanding of the linear series on
the curves in (3.10).

Acknowledgement. We are grateful to L. Ein, D. Eisenbud, D. Gieseker, J. Harris, and especially to
G. Martens, for valuable discussions and encouragement. We also wish to thank S. Kleiman for
pointing out to us Castelnuovo’s work in this area.

References

1. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves, vol. I
Berlin-Heidelberg-New York-Tokyo: Springer 1984

2. Arbarello, E., Sernesi, E.: Petri’s approach to the study of the ideal associated to a special
divisor. Invent. Math. 49, 99-119 (1978)

3. Castelnuovo, G.: Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva
algebrica. Rend. Circ. Mat. Palermo 7, 89-110 (1893)

4. Fujita, T.: Defining equations for certain types of polarized varieties. In: Complex Analysis and
Algebraic Geometry, pp. 165-173. Cambridge: University Press 1977

5. Ghione, F.: Un problem du type Brill-Noether pour les fibrés vectoriels, Proc. of the 1982
Ravello Conference. Lect. Notes Math. 997, 197-209 (1983). Berlin-Heidelberg-New York:
Springer 1983

6. Ghione, F.: La conjecture de Brill-Noether pour les surfaces reglées. Proc. of the Week of
Algebraic Geometry, Bucharest 1980. Teubner-Text Math. 40, 63-79 (1981)

7. Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19,
125-171 (1984)

8. Homma, M.: On projective normality and defining equations of a projective curve of genus 3
embedded by a complete linear system. Tsukuba J. Math. 4, 269-279 (1980)

9. Homma, M.: On the equations defining a projective curve embedded by a non-special divisor.
Tsukuba J. Math. 3, 31-39 (1979)

10. Lange, H., Martens, G.: Normal generation and presentation of line bundles of low degree. J.
Reine Angew. Math. 356, 1-18 (1985)

11. Lange, H., Martens, G.: Normal generation of line bundles of degree 2p—2 on curves.
(Preprint)

12. Lazarsfeld, R.: Some applications of the theory of positive vector bundles, Proc. of the 1983
C.IM.E. conference on complete intersections. Lect. Notes Math. 1092, 29-61 (1984). Berlin-
Heidelberg-New York-Tokyo: Springer 1984

13. Martens, G.: Funktionen von vorgegebener Ordnung auf komplexen Kurven. J. Reine Angew.
Math. 320, 68-85 (1980)

14. Martens, G.: Uber den Clifford-Index algebraischer Kurven. J. Reine Angew. Math. 336, 83-90
(1982)

15. Martens, H.H.: Varieties of special divisors on a curve, II. J. Reine Angew. Math. 223, 89-100
(1968)



90

16.
17.
18.
19.
20.

21
22,

23.

M. Green and R. Lazarsfeld

Mattuck, A.: Symmetric products and Jacobians. Am. J. Math. 83, 189-206 (1961)

Mumford, D.: Lectures on curves on an algebraic surface. Ann. Math. Stud. 59 (1966)
Mumford, D.: Varieties defined by quadratic equations, Corso C.I.M.E. 1969, in Questions on
algebraic varieties. Rome: Cremonese 30-100 (1970)

Nagata, M.: On selfintersection number of vector bundles of rank 2 on Riemann surface.
Nagoya Math. J. 37, 191-196 (1970)

Petri, K.: Uber die invariante Darstellung algebraischer Funktionen einer Verinderlichen.
Math. Ann. 88, 242-289 (1922)

Schreyer, F.O.: Syzygies of curves with special pencils. Thesis Brandeis, 1983

St. Donat, B.: On Petri’s analysis of the linear system of quadrics through a canonical curve.
Math. Ann. 206, 157-175 (1973)

St. Donat, B.: Sur les equations definissant une courbe algébrique. C.R. Acad. Sci. Paris, Ser. A
274, 324-327 (1972)

Oblatum 2-XI-1984

Note added in proof

Ballico has proven conjecture (3.8) (to appear). Schreyer informs us that conjecture (3.5) fails for
the generic curve of genus 7 in characteristic 2.



