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INTRODUCTION

Our purpose is to study the cohomological properties of topologically trivial
holomorphic line bundles on a compact Kihler manifold. (See [GL1, GL2] for
our prior work on this topic.)

Let M be a compact connected Kihler manifold and, as usual, let PicO(M )
denote the complex torus parametrizing isomorphism classes of topologically
trivial holomorphic line bundles on A . We are interested in the analytic sub-
varieties S'(M), S. (M) C Pic’(M) defined by

S'(M) = {L e Pic"(M) | H'(M, L) # 0},
S (M) ={L € Pic®(M) | ' (M, L) > m}.

m

The study of these varieties was originally suggested by the work of Catanese
[C1] and Beauville [B1], and we attempt to understand the questions that they
asked in both [GL1] and this paper.

One of the main results of [GL1] was that if

a,: M — Alb(M)
is the Albanese map of M, then Si(M ) is a proper subvariety of PicO(M ) if
i <dim(a, (M)).

The technique was to study the first order deformation theory of the cohomology-
groups in question.

Here we consider the higher order deformation theory, and we find that
all the higher obstructions to deforming a cohomology class vanish automat-
ically along “straight lines” in PicO(M ), where “straight line” means the im-
age of a straight line in H 1(M , @,,) under the canonical exponential map

Received by the editors March 1, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 14C30.

The first author’s research was partially supported by NSF Grant DMS 88-02020.
The second author’s research was partially supported by NSF Grant DMS 89-02551.

©1991 American Mathematical Society
0894-0347/91 $1.00 + $.25 per page

87

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



88 MARK GREEN AND ROBERT LAZARSFELD

H' (M, Oy) — Pic’(M) . This leads to the following result:

Theorem 0.1. Let M be a compact Kéihler manifold, and Z a positive-dimen-
sional irreducible component of §'(M) or S, (M) for some m. Then

(1) Z is a complex subtorus of Pico(M )3

(2) There exists an analytic variety N with dim(N) < i and a dominant
analytic map f: M — N with connected fibers such that Z C y +
f*(Pic*(N)) for some y € Pic®(M);

(3) N has maximal Albanese dimension, i.e. if a,, is the Albanese map for
any smooth model N of N, then dim(ay(N)) = dim(N).

When i = 1, Beauville [B2] proved—as conjectured in [GL1]—that S l(M )
consists of pullbacks of bundles from irrational pencils of genus > 2, together
with a finite number of isolated points.l His method, involving a “twisted”
version of Castelnuovo’s Lemma about two 1-forms on a Kahler manifold that
wedge to zero, is quite different from the techniques of this paper. However,
when i > 1, it is fairly easy (see Example 5.2) to construct examples where M
is the Cartesian product of a surface and a curve for which the line bundles in a
positive-dimensional component of SZ(M } do not pull back from a variety of
dimension 1 or 2; such components consist of a constant line bundle tensored
with a family that does pull back from a surface or a curve.

The proof of Theorem 0.1 builds on the deformation theory developed in
our earlier work, but incorporates higher obstructions. The essential point is
Theorem 3.2, in which we obtain a formula for computing locally the higher
direct image sheaves of a family of topologically trivial line bundles. The result
is that in the neighborhood of a given bundle L € PicO(M ), these direct images
are computed by a complex Dz (&) constructed formally from the cohomology
of L. As a matter of expository preference, we develop this obstruction theory
in the context of the Dolbeault cohomology, but it is equally possible to work
in a purely finite-dimensional setting.

In the situation of Theorem 0.1, we have the inequalities

dim(a,,(M)) — i < dim(a,,(M)) — dim(a,(N))
< dim(Alb(M)) — dim(Alb(N))
< codim(Z).

We therefore obtain our earlier result from [GL1]:

Corollary 0.2. .
codim(S'(M)) > dim(a,, (M)) —i.

Theorem 0.1 has some interesting applications. One is the problem of gener-
alizing the Castelnuovo-DeFranchis lemma to the case when one has a compact

' Note added in proof. The results of [B1] have been supplemented and corrected in Beauville,
“Annulation du H' pour les fibrés en droites plats,” preprint.
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HIGHER OBSTRUCTIONS TO DEFORMING COHOMOLOGY GROUPS OF LINE BUNDLES 89

Kihler manifold M and holomorphic forms w € HO(Q}W) and f§ € HO(Q;W)
such that wA B =0, but # is not of the form wAy forany y € HO(QZI) . We
show in Theorem 5.3 that this forces w to pull back from an analytic variety
N with dim(ay(N)) = dim(N) < i by an analytic map f: M — N . There are
easy examples on a product of three curves (Example 5.2) to show that § does
not necessarily pull back.

Another application is that one obtains restrictions on the fundamental group
of compact Kihler manifolds. The main idea is that for any finitely pre-
sented group G, one can mimic the definition of S ! (M) using group cohomol-
ogy to define an object S 1(G). These are subvarieties of the character group
Hom(G, Sl) of G, and must turn out to be translates of subtori if G = = (M)
for a compact Kihler manifold M . These varieties are easily calculated given
a presentation of the group, and rarely turn out to be subtori.

We want to mention that another interesting and closely related case in which
higher obstructions are known to vanish automatically occurs in the work of
Goldman-Millson [GM].

Both in originating the problem and at numerous steps along the way,
Catanese and Beauville have inspired and influenced this work, both through
their papers and private conversations on several continents. There has been a
constant interweaving of our points of view, which in many ways, has resuited
in a better paper.

1. THE O-OPERATOR FOR THE POINCARE BUNDLE
We consider the Poincaré line bundle
P M x Pic(M)

(defined up to tensoring by line bundles on Pic(M)), where M is a compact
Kihler manifold, and Pic(M) denotes some component of the Picard torus of
M. Let ¢,,0,,..., ¢>q be harmonic (0,1)-forms on M representing a basis
for H 1(M , @) - Choose a cover by polydiscs U, for M. Let y € Pic(M) and
denote the corresponding line bundle by L, - M. Let g, 8 be the transition
functions for Ly with respect to the cover U, .

The exponential sheaf sequence gives a canonical map

H' (M, 8,)--Pic’(M).

If ¢ isa 8,,-closed (0,1)-form representing an element of H l(M , Oy), then
we may write

¢=0,(4,) onU,
where 1 is a &> function on U, . Then using the proof of the Dolbeault
isomorphism, the transition functions g 8 for the bundle associated to 7(¢)

may be taken to be
8.p = exp(2nv-1(4, - /lﬂ)).
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90 MARK GREEN AND ROBERT LAZARSFELD

Proposition 1.1. Consider the map
C? -2, Pic(M)
defined by

q
(s tysenn s r—>y+r<z )

¢ = 5M(Ai’a) onU_,

where 4; , isa % function on U, Then transition functions for (idety)*(ga)
are

Let

8,5 =exp (27t\/_2t(l ))gaﬂ

Further,
5L

vty .. ,tq)

=8, +)_1;(re)).
j

Remark. Note that although £ is only defined up to twists by line bundles on
Pic(M), this ambiguity disappears when it is pulled back to M x C?.

Proof. The formula for the transition functions follows from the formula given
above for transition functions for 7(¢).

For a general analytically varying family of analytic line bundles L,, as
treated in [GL2], we may write

8.5(1) = 7,(18,5 07,07,

where
y,(): U, —C

are £ maps depending analytically on ¢. If
ved (M, L),

then we can represent i by

v, €47'(U,),
satisfying

Vo = 8ap(t)¥y -
We may identify this with an element 7 € A% i(M , Ly) by taking

v, =707y,
Now

B W = 7,078, (7,(009,).

Thus we have the fundamental formula:

8, =8, +7,(07'0

8Loya(t).
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In the case of the Poincaré bundle above, we may apply this formula. Since

in this case
7,(t) = exp (thlj,c) ,
J

we obtain the desired formula for the J-operator, which completes the proof
of the proposition. 0O

2. THE RELATIVE DOLBEAULT COMPLEX

Let M be a compact Kihler manifold; Z a complex manifold; and & —
M x Z an analytic line bundle. Let p;: M xZ - M and p,: M xZ — Z be
the canonical projections. Decompose the d-operator on .#-valued (0, i)-forms
as

d=0,,+09,,
where 5M comes by differentiation with respect to the M variables and 52
comes by differentiation with respect to the Z variables. Now we introduce
the sheaves .9/,,2;’2 1z(Z) as defined by

Hgiizz(U. L) ={w €T(U, &7, (0, Ty " © 2)) | 8,9 = 0}
Lemma 2.1.
‘g?q N MxZ/Z(g))—

forall i and all q > 0.
Proof. This follows by using a partition of unity on M. O

Lemma 2.2. The sequence

0-20Z) - MxZ/Z(g) MxZ/Z("CZ)

is exact.
Proof. This is just the §-Poincaré lemma with analytic parameters. The same
proof works. 0O

Let o 0
s 1 s
Ayrvz)z (&)= pZ*MMxZ/Z(“?) .
Note that

o) * (0, [)*
AMxZ/Z(U Z)={y eT(p; (), ngz(PzT,(u "o )| d,w =0}.
This gives a complex of sheaves of &,-modules (A?u; 2/z (Z), 9, -

Proposition 2.3. . .
Ry (L) 2 X (A3 2,2(L)).

Dy*
Proof. The sheaves in the exact sequence of Lemma 2.2 are all sheaves of p; g,-
modules, and ,, is a map of p; &,-modules. The proposition is a consequence
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92 MARK GREEN AND ROBERT LAZARSFELD

of the spectral sequence relating the direct image sheaves of an exact sequence,
taking note of the vanishing of the higher direct image sheaves of all but the
left-most term. O

We now take Z to be the n-ball with coordinates ¢,,... , ¢, , since our
considerations are local. We make the assumption that we have a family of
topologically trivial bundles, i.e. that

cl(.i’lMx{o})=0.

The bundle % — M x Z gives an analytic map f: Z — Pic’(M) with f(0) =
y. Let ¢,,...,¢, bea basis for the harmonic (0,1)-forms on M. We can

write
q
10 =1,( > 409,),
i=1

where the f(f) are analytic functions vanishing at the origin. The computation

of §1 gives that
Oy = 5Ly + /\ (Zfi(t)d’i) ’
i
where the last term is to be interpreted as
v (S awe)av.
i

We may summarize these remarks as

Proposition 2.4. In the situation just described, A?”’; 2)z (&) is isomorphic to

the complex
AT L)oo, — A (L)eg, — AT (L)ea, -,
with differential 5, + N, f:(1)9,) .

3. THE DERIVATIVE COMPLEX OF SHEAVES
AND DEFORMATIONS OF COHOMOLOGY GROUPS

Let M be a compact Kihler manifold and . — M x Z a family of topo-
logically trivial analytic line bundles parametrized by the ball Z . Furthermore,
let ¢,,... , ¢, becoordinateson Z; L, = Z| Mx{t} L = L correspond to the

point y € PicO(M); and ¢,, ..., ¢q be a basis for the harmonic (0,1)-forms
on M. The map ¢+~ L, gives an analytic map t: Z — PicO(M )}, which is

given by
tor, (‘;Jzum) ,

where the f; are analytic functions vanishing at the origin.
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HIGHER OBSTRUCTIONS TO DEFORMING COHOMOLOGY GROUPS OF LINE BUNDLES 93
The derivative complex of sheaves D} (%) of the line bundle . at L is the
complex
- H(Led, - H ()80, - H(L)8d, -,

where the differential is a wedge product with

Zfi(t)qsi.

Lemma 3.1. Let M be compact Kéhler and L € PicO(M). If g € A% Y (M) and
VS Ao”(M , L) are harmonic, then ¢ Ay is harmonic, and

[1Alw]1=0 in H*'(M, L)

if and only if .
oAy =0 ind>"' (M, L).

Proof. Since L € PicO(M ), it has a unitary flat connection. By Hodge theory
for such bundles, when we conjugate we have

$eH'(M,Q)) and yeH'(M,Q,(L").
So @ A ¥ is holomorphic, and hence its conjugate ¢ A ¥ is harmonic. Now
[PINlv]l=0&[pAy]=0e¢Ay =0,
which concludes the proof. 0O

Theorem 3.2. Let £ — M x Z be a family of topologically trivial line bundles
on a compact Kdihler manifold M parametrized by the ball Z . Keeping the
notations used above, we have

(B, Lo = (F(DL(Z)))y

where the subscript 0 means stalk at zero.
Proof. Let A° be the complex A?M’;Z 1z(Z) . We know that

i ~ i, (e
A () =7 A).
Let H; denote the complex
- H '®6,-H e®0,-H "0, .,

where Hz represents the L-valued harmonic (0, i)-forms, and the differential

18
A ( 2,: f;(z)¢,.) .

This is a complex by Lemma 3.1 and a subcomplex of 4° by Proposition 2.4.
There is a map of sheaves of @,-modules

o ' (Hy) - #'(4°).
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94 MARK GREEN AND ROBERT LAZARSFELD

The kernel and cokernel of «; are coherent sheaves. We want to show that q;
is an isomorphism on the stalks at 0.

Let m=(¢,, ..., t,) denote the maximal ideal at 0 in (&), . This induces a
filtration on H; and A°. By the spectral sequences for these filtered complexes,

we obtain filtrations on # i(Hz) and #'(4°), which makes
a; Z(H) - 2 (4

into a filtered complex. The spectral sequence for this filtered complex gives a
filtration on ker(c,) and coker(q,).

Let v € gr (coker(c;)) be a nonzero class. By the spectral sequence for the
cohomology of the complex

o #(Hy) - 24,
this class is represented by a nonzero element of gr’ (# i(A’)) . By the spectral
sequence for the cohomology of the complex A°, this in turn is represented

by a nonzero element of gr’ (Ai). Furthermore, any other element of m’ 4
representing this class must be nonzero in gr’(4'). Thus we may represent ¥

by a form
I
Y owt,
I
where y, =0 for |I| <p and y, # 0 for some I with |I|=p. Let
I
fi()=>"a; ,t,
I
where we have a; o= 0. Since

By, +Y Y. a4 6 AW =0,
i J+K=I
and the second term is zero if |I| = p, we conclude that both terms are zero in
that case, and thus dy, =0 for |I| = p. For |I| = p, we may write
Wy =0,+0u;,

where ¢, is harmonic and y, is . We may now change y by subtracting
the differential of ,
>yt

l=p
so that y, = g, for |I| = p. The differential of

Y ot

[Il=p

Yo gnat = Y ay,r.

I+i=J,|J|=p+1 [J]|=p+1

is
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Both sides of this equation are 0 since the left-hand side is harmonic and the
right-hand side is J-exact. Thus the differential of

Z a,t’
|=p
is 0, and so we may change y by
PO
[I|=p

so that now w, = 0 for all I with |I| < p. This is a contradiction. We
conclude that
gr’ (coker(a;)) =0
for all p > 0, and therefore coker(c;), =0.
Now let v € gr’ (ker(a ;)) be a nonzero class. By the same argument as for the

cokernel, every element of H£ representing ¥ must be nonzero in gr’ (Hi) .
Let v be represented by an element,

I
2wt
1
Here v, is harmonic for all 7 and y, =0 for |I| < p, and some v, # 0 for

some I, with |I,| = p. Further, thereisa 4 € A'"! whose differential is v . We

change A by the sum of the differential of an element of A% and something
harmonic so as to make the smallest |I| for which 4; # 0 a number k that is
as large as possible. This does not change the class in ker(a;) represented by
w . Note that k exists and satisfies k < p, since otherwise ¥ would be zero in
gr’(H;). If now A, =0 for |I| <k, and A, is not harmonic for some I with
|I| = k , then dA, = y, for |I| = k. Since one side of the equation is harmonic
and the other is J-exact, both are zero. We may now write 4, = 7, + du, for
all I with |I| = k, where 7, is harmonic and 4, is smooth. We now change

A by subtracting the harmonic form }_,_, 7 ,tl and subtracting the differential
of 3ok Itl . We have now increased k, which is a contradiction. O

Now let us take Z to be one-dimensional and . — M x Z the bundle
coming from the “straight line” f: Z — PicO(M ) given by

£ty =1,(19),
where ¢ is a harmonic (0,1)-form. We have the derivative complex
Dy =D;(Z)®C,/m
that is the complex of vector spaces
o BTN D) S H(L) - H(L) = -

where the differential is A¢ . This is the derivative complex considered in [GL1].
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96 MARK GREEN AND ROBERT LAZARSFELD

Corollary 3.3. Let ¥ — M xZ be a “straight line” family of topologically trivial
line bundles as above. Let L, = 2|, (,,. Then on a neighborhood of 0,

#, L= (K'©0,/m)o (H' (D) ®0,),
where K' is the kernel of the map
H'(L)22 (L),

In particular, there exists a punctured neighborhood U of the origin in Z so

that ' .
H'(L) = H'(D})
forall teU.
Proof. Given any complex V* of vector spaces with differentials

Ay i ,
consider the complex _

V' =v*eCl]
with differentials ‘ _

A =14
Then it is an elementary fact that
H'(7*) = (ker(4') ® Cl1)/(1)) & (H'(V*) @ C[1]).
On a punctured neighborhood of zero, the sheaves 3?;2*(3 ) are all locally

free, and therefore compute the pointwise cohomology groups H' (L,). O

4. PROOF OF THE MAIN THEOREM

We are now ready to complete the proof of the main theorem. Let M be a
compact Kéhler manifold and suppose that m is a positive integer for which
dimS, (M) > 0: fix some irreducible component Z C S, (M) of positive
dimension. (Note that Si(M ) = Sf (M), so that there is no loss in generality
in treating this case.) There is a Zariski open subset Z;, of Z on which the
dimension hi(M , L,) is constant, and we may assume by changing m if nec-
essary that hi(M ,L,) = m for t € Z;,. Fix any smooth point y € Z,, and
given ¢ € H 1(M , @,) , denote by D;(y) the derivative complex that appears
in Corollary 3.3, and by l¢(y) the “straight line” through y in the direction ¢.
Then

1,(y) = {y +7(19) | t € C} C Pic’(M).

If T C Z is asmooth curve through y with tangent vector ¢, then the func-
tion A'(M, L,) is constant for ¢ € T near y, and therefore, the differentials
in D;(y) vanish (c.f. [GL1, Theorem 1.6]). Thus,

$ € T,(2) < h'(Dyy)Zzm=h'(M,L).
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On the other hand, it follows from Corollary 3.3 that if hi(D;(y)) > m, then
hi(M, L,) > m for every point ¢ € 1¢(y). Hence,

PET,2)=1,0)CZ.

The fact that this is true for y in a Zariski open subset of Z implies that Z
is a translate of a subtorus of PicO(M ).

Let Z be the dual torus to Z. Since Alb(M) is dual to PicO(M ), the
inclusion Z C PicO(M ) yields by duality an analytic map 7: Alb(M) — Z.
Let

u:M—2Z
be the composition of 7 with the Albanese mapping M — Alb(M), and N
be the image of the Stein factorization of #. Thus N is a compact connected
analytic variety admitting a finite mapping N — Z, and one has an analytic
map f: M — N with connected fibres. As N maps finitely to a torus, it is clear
that (any smooth model of) N has maximal Albanese dimension. It remains
to show that N satisfies the other statements of Theorem 0.1.

We argue first that dim N < i. To this end, keeping the notation introduced
at the beginning of the proof, fix harmonic (0,1)-forms

brsbyr e s b €AV (M)

on M representing a basis for Ty(Z }, and let v € Ao’l(Ly) be a nonzero
harmonic Ly-valued (0, i)-form on M . As we noted above, the fact that ¢, €
T,(2) implies that the derivative complex D;i (¥) has vanishing differentials,
means that

¢; Ay =0 Vi=1,2,... ,k.

Equivalently, if
w;=¢¢ HM,Q,) and f=yeH (M, Q,L"),

then
a)j/\,B=0 forj=1,2,...,k.

Now consider a general point x € M, and let
r = dim(span(w,(x), w,(x), ... , W (x))).

The map u arises by integrating the one-forms w,, and hence rank(du,)=r,
whence r = dimu(M) = dim(N). On the other hand, if we trivialize L, near

x , we may regard f(x) as a nonzero element of AiT; (M) for which
w(x)AB(x)=0 forj=1,2,... k.

It follows from the following elementary Lemma 4.1 that r < i, and thus
dim(N) < i, as claimed.
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Lemma 4.1 (c.f. [GL1]). Let V be a finite-dimensional vector space, with

Vi, Uy, ... , U, linearly independent elements of V. Let 0 # B € AV
satisfy
'uj/\ﬂ=0 forj=1,2,...,r.
Then r<i.
[Proof. Let v, v,,... ,v, be part of a basis for V. One immediately sees

that g is of the form v, A--- Av, Ao, from which the inequality follows.]

It remains to show that Z C y, + f *(Pico(N)) for some y, € PicO(M). In
fact, it follows by double duality from the construction that the map u: M — Z
induces on Pic’ an inclusion v: Z = Pico(Z ) — Pico(M ) that coincides with
the original embedding Z C Pico(M ) up to translation by some point y, €
PicO(M ). By definition, however, u factorizes as the composition M — N —
7, and hence v factors through the induced map f*: PicO(N ) — PicO(M ).
The assertion follows.

This completes the proof of the main theorem. 0O

5. EXAMPLES AND FURTHER APPLICATIONS

Example 5.1. We start with an example to show that it is possible that a positive-
dimensional component of S'(M) is contained only in a translate of the pull-
back of Pic” of a lower-dimensional variety. Let X be an algebraic surface so
that S 1(X ) consists of isolated points, and contains an element L other than
the trivial bundle (see [B1]). Note that X cannot have any irrational pencils
of genus > 2. Let C be a curve of genus > 2, and put M = C x X, with
projections p, , p,. Thus Pic’(M) = Pic’(C) x Pic’(X). Then S*(M) con-
tains p;S Le) x p, L as an irreducible component. By the remark above, it is
impossible for this component to be the pullback by a map from C x X to a
curve C’' of some family of line bundles on C’. If there were an analytic map
h: CxX — X' toasurface X’ so that the component of S*(M) just described
pulls back from Pic’(X’), we would have a surjective map Pic’(X’) — Pic®(C).
Since X has no irrational pencils of genus > 2, the map X — X' must be
dominant, so PicO(X ) = PicO(X ) must be injective. Up to isogeny, PicO(C)
occurs as a factor of PicO(X ). By varying C, we can be sure that this does
not happen, as there are only countably many such factors. As a result, for
manifolds of dimension > 3, Beauville’s theorem [B2] does not hold in its
full strength—there are positive-dimensional components of S° (M) that do
not pull back from a curve or a surface.’ However, these components are a
constant bundle tensored with a family of bundles that does pull back from a
lower-dimensional variety. This explains the form taken by the main theorem.

A classical lemma of Castelnuovo and DeFranchis states that if @ and » are
linearly independent holomorphic one-forms on a compact Kahler manifold M

2See the footnote on page 2.
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such that w Ay =0, then @w and 7 pull back from a curve C of genus > 2
under a surjective holomorphic map f: M — C. As is clear from [GL1] and
especially Beauville’s work [B2], this lemma and its twisted analogue are closely
related to the fact that any positive-dimensional component of SI(M ) pulls
back from a curve. Hence it is natural to ask whether there are analogues of
Castelnuovo’s lemma for forms of higher degree. The next example shows that
the most naive possible generalization fails.

Example 5.2. Let C,, C,, C; be curves of genus > 2 and set M = C| x
C, x C;, with p,, p,, p; the projections. Let 4,,4, € HO(QIC‘) be linearly
independent 1-forms vanishing at exactly one common point, u € HO(QICZ);
and 7 e H(QL ). Also let

B =DpiA, ADyl+ DAy AD3T;

w=pA.
We notice that
oA =0.
On the other hand, it is impossible to finda y € H O(lew) such that
B=wAy,

for then # would vanish on p, ! (div(4,)) , and this does not happen. Further-
more, f does not pull back from an analytic map from M to a surface, since
then every component of the zero locus of § would have dimension at least
1, whereas f vanishes at isolated points. Thus, the natural generalization of
Castelnuovo’s Lemma does not hold for k-forms with & > 1. Notice, however,
that @ does pull back from an analytic map from M to a lower-dimensional
variety. Indeed, this is essentially a general fact:

Theorem 5.3 (Generalized Castelnuovo Lemma). Let M be a compact Kdhler
manifold of dimension n and L € PicO(M ). Let w € H° (QL). Consider the
complex A*

0— HY(L)22H (L e Q)% .- 2%H (X, Lo Q},) — 0.

Then
k

H' (A =0,
unless there exist a complex manifold N of dimension < k and a meromorphzc
map f: M — N such that @ = f*@, where & € H (Ql) Furthermore, N
has the same dimension as the image of its Albanese map.

Remark. Referring to pulling back forms under a meromorphic map, we mean
the followmg By resolving the indeterminacies of f one obtalns amap f M-
N, with M smooth. The assertlon is that w pulls back to M from N . Note
that H'(M, Q),) = H(M, Q}).
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Proof. Let ¢ = @ € Hl(ﬁM) and v = B € H*(M, L") be an element repre-
senting a nonzero class in H k(A_') . If we deform the bundle L on M along
the straight line in the direction ¢, the first obstruction to deforming the class
w vanishes. By Corollary 3.3, the entire straight line lies in S'(M), and so by
the main theorem (and its proof) we obtain an analytic variety N finite over a
torus Z,a map f: M — N, and a one-form @ on Z that pulls back to w.
If N is a desingularization of N, then @ pulls back from Alb(N) and hence
from N itself. O

We remark that there is another direction in which one can generalize Castel-
nuovo’s Lemma due to Ziv Ran [R]:

Ran’s Theorem. Let M be a compact Kéhler manifold and o, w,, ... , o,
be linearly independent elements of H 0(M , Q}w) such that

a)l/\a)z/\m/\wkH:O,

and so that no collection of k linearly independent forms in the spanof @, ... ,
Wy, wedges to zero. Then there exists a complex torus T and an analytic map
f: M — T such that f(M) is a proper analytic subvariety of T of dimension
< k. Further, there exist 4, € HO(QIT) such that w, = f"4, for i=1,... , k+
1.

There are some highly interesting results along these lines that follow from
both Catanese [C2], who has applications to moduli of irregular varieties, and
Peters, who has applications to infinitesimal Torelli for irregular varieties.

We now present some applications to the fundamental group of a compact
Kéhler manifold.

Definition. Let G be a finitely presented group. For y: G — S' a character,
let Vx be the associated G-module, so that V;( is a one-dimensional complex
vector space. The ith cohomological support varieties of G are the sets

'G)={xeG|H(G,V,)#0},
Sn(G) = {x € G |h'(G, V,) = m}.

Lemma 54. Let M be a compact Kéhler manifold. Then if we let
tH' M, 8" - H' (M, &) 2 Pic"(M)
denote the natural isomorphism, then
S'(r (M) =" (S' (M) u-S'(M)).

Proof. If G = m,(M), then associated to x € G we have the local system L,
on M . Recall then, that

1 ~ gyl
H'(G,V)=H'(M,L).
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[In fact, let =: M — M be the lrlgiversal cover of M, and consider the dou-
ble complex K**Y = C”(G, A%(M, n"L,)). The standard associated spectral

sequences have
! R TF *
E)*=H'(G,H'M,n L))

g [ HU L) =0
2 0, otherwise.
Since H(G, H*(M, z"L,)) = H'(M, C)°, we see that 'E3*° = H?(G, V,)

for all p. Since also 'Eg R , the claim follows.]
On the other hand, we have the Hodge decomposition

H'M,L)=H'M,L)eHM,Q,®L),
where Ly is the flat analytic vector bundle on M associated to the local system
Lx; thus Lx = 1(x). Conjugation gives a complex anti-linear isomorphism
c: HO(M , Qzlw ® Lx) ~H l(M , L;) . The proposition now follows. O

The following theorem was found by a different method by Gromov [Gr].
There is a related result of Siu [S] and Beauville.

Theorem 5.5. Let M be a compact Kihler manifold, and G a quotient of
n,(M). Assume that G has a presentation with g generators and r relations.
If

g>r+2,
then there exists an algebraic curve C of genus at least (g —r)/2 and a surjective
analytic map f: M — C. Moreover, if G = n,(M), then the image of the
Albanese map a: M — Alb(M) is a curve.
Proof. First we show thatif g >r+2, then S ! (G) = G . To this end, suppose
that y: G — s'isa unitary character of G, and let V, be the corresponding
one-dimensional representation. Recalling that

ZNG, V) ={f1 G=V, | f(xy) = f(x) + 2(x)fD)},
we see that a one-cocycle for G is determined by its values on the generators,
and that each relation imposes at most one linear condition on these values.
Hence
dimZz'(G, V) > g-r.
Since
BY(G, V,) = {(x - 1)(const)}

has dimension < 1, one has dimHl(G, I/;() >g-—r—1 forevery y € G.
Hence under the assumptions of the theorem, S 1(G) =G as claimed.

Now suppose that p: n,(M) — G is a surjective homomorphism. Then the
induced map p*: H l(G, VX) - H 1(7z1(M ), V;* x) is automatically injective. It
follows that R

dim(S” (z,(M))) > dim(G) > (g - ).
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This guarantees by the main theorem (or by Beauville’s work) that there exists
an analytic map f: M — C with C a curve of genus at least (g —r)/2. If
G = n,(M), then

S' (M) = Pid® (M),
and we know that this implies that the Albanese image of M isacurve. O

Theorem 5.6. Let M be a compact Kihler manifold with G = n (M). Then
S l(G) and S,ln(G) SJor any m > 1 are unions (translates) of subtori in G.

Proof. Since SI(M ) is a union of complex subtori of PicO(M ),and —-S 1(M )
also is, the result follows, since G = PicO(M ). O

6. FURTHER REMARKS AND OPEN PROBLEMS

Although in this paper we have concentrated on developing a higher obstruc-
tion theory for families of topologically trivial line bundles, there is a nice higher
obstruction theory on compact Kihler manifolds for families of analytic vector
bundles. For a family V, of vector bundles on M parametrized by the disc,
there is a spectral sequence E?’? such that

Ef’q = Hp+q(V0) forp >0,
and such that for ¢ in some punctured neighborhood of 0,
EP = HP™(V)) forp >>0.

For a family of line bundles L,, if
Oy =8, +2 8,0,
J

and if v € A4%! (M, L;) is a §-closed form, then

dy=9¢,Ay.
If this represents zero in cohomology, then

¢, ANy =-04,.
Then

dy=¢, ANy +d NA,.
If this is —04, , then
Ay =¢; ANy + I, NA + 0, A4y,

and so on. In the case where we consider “straight lines” in PicO(M ), we may
take all the 4, to be zero. Of course, it is usually quite subtle to compute the
differentials of this spectral sequence when the line bundles are not topologically
trivial. On the other hand, much of what we have done in this paper extends
to the case of unitary flat vector bundles.
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Returning to the case of topologically trivial line bundles, if we consider
» o o
S,)(M)={LePic (M) |h'(Qy®L)>m},
then the spectral sequence for computing the higher obstructions is (after con-
jugating) the spectral sequence that appears in the proof of (3.4) in our paper

[GL1]. This spectral sequence degenerates at the E, term, and this has the
following consequence:

Theorem 6.1. Let M be a compact Kdhler manifold. Then every irreducible
component of S\:/(M) is a complex subtorus of Pic’(M).

The varieties S,';;j (M) are no longer birational invariants of M. On the
other hand, one might hope for some geometric explanation of them.
Another interesting question concerns the properties of the sheaves %p'z*(.‘f )

computed by the derivative complex of sheaves DZ(J ). We would make the
following conjecture:

Problem 6.2. If dim(a,,(M)) = dim(M), then for the universal family of topo-

logically trivial line bundles .& — M x PicO(M ), is it true that
i
.92;2*(3 )=0
for i < dim(M)?

It would be interesting to have more examples of the varieties an(G). In
particular, are there some candidates for fundamental groups of compact Kéhler
manifolds that can only be eliminated by this method?
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