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Introduction

Our purpose is to prove a conjecture of Harris and Mumford, as modified by
the first author in [G], to the effect that all smooth curves in a given linear
series on a complex projective K3 surface X have the same Clifford index.
Loosely speaking, this means that if one curve CcX has an exceptional g,
then every C’e|C| carries an “equally exceptional” linear series.

Let C be a smooth irreducible complex projective curve of genus g=2.
Recall that the Clifford index of a line bundle 4 on C is the integer

Cliff(4) =deg(4) —2-r(A),
where r(A4)=h°(A4) — 1. The Clifford index of C itself is defined to be
Cliff(C) = min {Cliff(A4)|h°(4) = 2, h'(4) = 2}

(cf. [M1], [M2], and (0.4) below). This gives a rough measure, from the point
of view of special linear series, of how general C is in the sense of moduli.
Thus Clifford’s theorem states that Cliff(C) =20 with equality if and only if C is
hyperelliptic, and similarly Cliff(C)=1 if and only if C is trigonal or a smooth
plane quintic. At the other extreme, if C is a general curve of genus g then
Cliff(C)=[(g—1)/2], and in any event Cliff(C)<[(g—1)/2]. We say that a line
bundle 4 on C contributes to the Clifford index of C if A satisfies the
inequalities in the definition of CIliff(C); it computes the Clifford index of C if in
addition CIiff(C)= Cliff(A).
Our main result is the following:

Theorem. Let X be a complex projective K3 surface, and let C<X be a smooth
irreducible curve of genus g=2. Then

CIiff(C") = Cliff(C)
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for every smooth curve C'€|C|. Furthermore, if Cliff(C) is strictly less than the
generic value [(g —1)/2], then there is a line bundle L on X whose restriction to
any smooth C'€|C| computes the Clifford index of C'.

So for example one recovers the well-known fact that a curve CcX is
hyperelliptic if and only if every curve C’e|C| is. We remark that the line
bundle L in the second statement corresponds to a divisor arising as a sum of
components of a reducible curve in |C|, i.e. H°(X, *¥(C))%0.

One might hope that if a given curve Cc X carries a g then so too does
every smooth C’e|C|, but Donagi pointed out that this is not the case. In fact,
let n: X >IP* be a genus two K3 surface, ie. a double covering of IP?
branched along a smooth sextic. If EcIP? is a non-singular cubic, then C
=n~'(E) has a g}; on the other hand, a general curve C’e|C| maps isomorphi-
cally by n to a smooth plane sextic, and hence does not carry such a pencil.
The first author proposed in [G,(5.8)] that one should aim for the constancy
of Clifford index, and he noted that the first statement of the Theorem would
follow immediately - at least for ample C - from his conjecture [G, (5.1)] on
the syzygies of canonical curves. (This conjecture remains open, however, and
the results here may be seen as added evidence for its truth.) The second
statement of the Theorem was suggested by Donagi, Morrison and Reid.

Special divisors on curves on a K3 surface X have been considered by a
number of authors starting with Reid [R], who showed that under suitable
numerical hypotheses, a pencil on a curve Cc<X is cut out by on X. Drawing
on Reid’s geometric techniques, Donagi and Morrison, and independently Reid
himself, proved the Theorem when the Clifford index of C is computed by a
pencil. By studying certain vector bundles on X, the second author showed in
[L] that if every member of the linear series |C| is reduced and irreducible,
then the curves in this series behave generically from the point of view of Brill-
Noether theory. Tjurin [T] subsequently gave different proofs of some of the
results of [L], and he found infinitesimal criteria for a g; on C to extend to a
general member of the linear series |C|. (Similar criteria had been obtained by
Donagi and Morrison.) Along somewhat different lines, it is interesting to ask
whether various specific curves can lie on a K3 surface; Wahl [W] has
recently shown that with a few exceptions, complete intersection curves in IP”
(r=3) cannot. Some of Reid’s results have been extended to surfaces other than
K 3’s by Serrano-Garcia [S].

The proof of the Theorem uses the techniques of [L] and (to a lesser
extent) [GL]. The idea is quite simple, but the possible presence of rational or
elliptic curves leads to technical complications which may obscure the moti-
vation for some of the steps. So it seems worthwhile to sketch here in some
detail how the argument would proceed under the simplifying assumption that
X doesn’t contain any smooth curves of genus <1. To begin with, among all
smooth curves in a given linear series on X, fix one - say C - of minimal
Clifford index, and let A be a line bundle computing the Clifford index of C,
with deg(4)<g(C)—1. We may assume that CIiff(C)<[(g(C)—1)/2], and we
are required to produce a line bundle L on X, contributing to the Clifford
index of every curve C’e|C|, such that Cliff(L® 0..) < Cliff(C).
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As in [L] one can canonically associate to the pair (C, A) a vector bundle
E(C, A) of rank h°(4) on X ; this bundle is generated by its global sections, and
one has c¢,(E(C,A)=[C], c,(E(C,A))=deg(4), and h°(E(C,A)=g(C)+1
—Cliff(A). We say that a bundle E on X, of rank =2, is a reduction of E(C, A)
if

(a) There is a map E(C, A)— E surjective off a finite set;
(b) h°(E)=h°(E(C, A)) and h'(E)=h(E(C, A)) for i=1; and
(c) det E=det E(C,A) and 2-rk(E)—c,(E)=2-rk(E(C, A)) —c,(E(C, A)).

These conditions mean that E looks numerically and cohomologically as
though it is of the form E(C,,A4,) for some curve C,€|C|, and some line
bundle 4, on C, with Cliff(4,) < Cliff(4) and r(4,)<r(A).

There are now two main steps to the argument, the first being:

(1) Let E be a reduction of E(C, A) of minimal rank =2. Then there exists a
line bundle L on X, with h°(L)=2, plus a non-zero map L — E.

When rkE=2, this is proved as in [L, (1.3)]; when rk(E)=3, one starts by
observing that there is a section s: Oy — E vanishing at two or more points.
But then in fact s must vanish along a divisor 4, for otherwise the reflexive
hull of coker(s) would be a reduction of E, contradicting minimality. By
construction 4 is non-zero, and so long as X does not contain any rational
curves, it suffices to take L=0,(4).

It is not hard to check that h°(L®0.)=2 and h'(L®O.)=2 for all
smooth C’e|C|, and so it is enough to show that CIiff(L®0.)= Cliff(A)
= CIiff(C). To this end consider the exact sequence

O-L->E—->F-0

deduced from (1), and assume for simplicity that F is locally free. Then F is
generated by its global sections away from finitely many points, and L®det F
=(04(C). Furthermore, if X doesn’t contain any elliptic pencils, the following
general fact automatically applies:

(2) Let F be a vector bundle on X which is generated by its global sections
away from finitely many points. If ¢,(F)*> >0, then h°(det F)=h°(F).

(This holds for globally generated bundles on any regular surface.) But then
g(C)+ 1 —CIiff(4) £h°(E) < h®(L)+ h°(F)
<h®(L)+h°(det F)
<ho(L®0O-)+h°(L* @ o),
while by Riemann-Roch on C’ one has
h(L®O,)+h(L* Q@ we)=g(C)+ 1 —Cliff(LRO,).

The required inequality follows.
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Our exposition proceeds in three parts. In § 1 we prove the basic inequality
(2); when ¢,(F)>=0 the inequality in question fails, but in this case one can
describe the bundles that arise. We define the bundles E(C,A) and their
reductions in §2, and carry out step (1) above. The proof of the theorem
occupies § 3.

§ 0. Notation and conventions

(0.1) We work with varieties defined over the complex numbers.

(0.2) Throughout the paper, X denotes a smooth projective K3 surface. We
say that a coherent sheaf F on X is generated by its global sections away from
finitely many points if the canonical map H°(F)®04— F is surjective off a
finite set. The Riemann-Roch formula for F states that:

X(F)=c1(F)2

—c,(F)+2-rkF.

We freely use Serre duality and Riemann-Roch on X and on curves CcX
without explicit mention.

(0.3) If 7 is a coherent sheaf supported on a finite subset of X, then c,(7)=0
and it follows by Riemann-Roch that c¢,(t) = —length(t). Hence if

0-U->»V->W->1-50

is an exact sequence of sheaves on X, with U,V, and W locally free, and
dim supp(t)=0, then c,(V)=c,(U)+c(U)-c,(W)+c,(W)+length(z).

(0.4) Let C be a smooth irreducible curve of genus g. The inequalities in the
definition of CIiff(C) presuppose that C carries a pencil of degree <g—1, and
hence that g >4. Our results remain valid for all g=2 if we take Cliff(C)=0 for
C of genus 2 or hyperelliptic of genus 3, and Cliff(C)=1 for C non-hyper-
elliptic of genus 3. Note that if 4 is any line bundle on C, then Cliff(w ® A*)
=Cliff(4). Consequently CIliff(C)=min{Cliff(4)|deg(4)<g—1, r(4)=1}. Fi-
nally, observe that for every line bundle A on C, one has

hO(A)+h'(A)=g+ 1 —CIiff(A).

§ 1. A Clifford-type inequality for vector bundles on a regular surface

Our purpose in this section is to prove the inequality (2) from the Introduction.
The result in question is not specific to K3 surfaces, and it it no harder to
work in a more general context.

(1.1) Proposition. Let S be a smooth irreducible complex projective surface with
H(S,05)=0, and let E be a vector bundle of rankn on S. Assume that E is
generated by its global sections, and that H°(E*)=0.
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(i) If ¢,(E)*>0, then h°(E)<h°(det E).

(i) If ¢,(E)*=0 and HY(E*)=0, then E=@04(Z), where X is a smooth
irreducible curve on S which moves in a base-point free pencil.

Remark. In the next section we will recall how under suitable hypotheses one
can associate a vector bundle E(C, 4) to a line bundle A on a curve C on a K3
surface. One has h°(E(C, A))=g(C)+1—Cliff(4) and h°(det E(C, A))=g(C)+ 1.
Hence in this case, the inequality in (i) is precisely Clifford’s theorem.

Proof of Proposition (1.1). Let V < H°(E) be a general subspace of dimension n,
so that V determines a vector bundle map e, : V®¢0s— E. Since E is globally
generated, we may assume by a standard general position argument (cf. [F],
Appendix B) that e, is generically an isomorphism, and that e, has rank
exactly n—1 along the curve I'cS defined by the vanishing of det(e,). Then
coker(ey) is a line bundle B on I', and one has the exact sequence

(1.2) 0->V®0s—E—->B—-0
of Os-modules. Dualizing (1.2) one obtains
(1.3) 0-E*->V*®:0,— N-®B* -0,

where N is the normal bundle to I' in S. Evidently Oy(I')=det E, and so from
the exact sequence 0— Og— Og4(I") > N, —0 we see that what is required for (i)
is to show that h°(E)<1+h°(N;). But since H°(E*)=0, it follows from (1.2)
and (1.3) that

h°(E)=n+h°(B)<h°(N; ® B*)+h°(B).

So for (i) we are reduced to proving the inequality
(%) h®(Nr ® B¥)+h°(B)<1+h°(Np).

To this end, note from (1.2) and (1.3) that both B and N ® B* are generat-
ed by their global sections. Hence the rank two vector bundle B@® (N, ® B¥)
on I' is globally generated, and so a general section determines an exact
sequence 0— 0 — B ® (N ® B*)— N, —0 of bundles on I'. Taking cohomology
yields

(x#) h°(B)+h° (N ® B¥) <h®(Or) + h°(Ny).

Now I' moves in a base-point free linear system thanks to the fact that E is
generated by its global sections (cf. (3.1)(i) below), and if I'-I' =c¢,(E)* >0, then
it follows from the Mumford-Ramanujam vanishing theorem (or directly from
Bertini’s theorem) that H!(@4(—TI))=0. Consequently h°(0;)=1, and (%) then
follows from (**). This proves statement (i) of the Proposition.

Turning to assertion (ii), assume that ¢,(E)*=I"-T'=0. Since I' moves in a
base-point free linear system, and since S is regular, it follows that the mor-
phism @,: S —IP™ determined by I' is composed of a rational pencil; ie. there
is a smooth irreducible curve X< X defining a map @5 : S —IP! with connect-
ed fibres, and '=mZ for some m>0. Keeping the notation introduced above,
we claim:
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(1.4) There exists a subspace ¥V = H°(E) such that the divisor I' =S defined by
the vanishing of det(e,) consists of the disjoint union of m smooth irreducible
curves X2,,..., 2, €|X].

Granting this, the line bundle B on I' is the direct sum B= @ B, of line bundles
B; on ;. But both B and B* ® N.=B* are generated by their global sections,
and it follows that B;=(); for all i. Then (1.3) takes the form:

0 E* > V*®c0s—> @ 0y, 0.
i=1

Since H°(E*)=H'!(E*)=0, p must induce an isomorphism on global sections;
in particular, m=n. But then p decomposes as the direct sum of the canonical
maps p;: Og— Oy, and hence E* = @ker p; = ®0s(— X)), as required.

To verify (1.4), we may argue e.g. as follows. Choose a general subspace
W < H°(E) of dimension n—1. Then W determines an exact sequence

(*) 0> WRclOs—E—1,804mZX)—0,

where Z<S is a finite or empty subscheme representing c,(E), and I, is its
ideal sheaf. Now since E is generated by its global sections, one has the
inequalities ¢,(E)=0 and c¢,(E)* —c,(E)=0; and since ¢,(E)*=0, it follows that
Z=§. With this in mind, let s, be any section of Og(mZX). Then one sees from
(%) that s, lifts to a section se H°(E). On the other hand, if V< H*(E) is the
subspace spanned by s and W, then the divisor defined by the vanishing of
det(ey) is precisely the divisor of zeroes of s,. This implies (1.4) and completes
the proof of statement (ii). []

We will have occasion to draw on the following slight strengthening of (1.1)
for bundles on a K3 surface:

(1.5) Proposition. Let X be a projective K3 surface, and E a vector bundle on
X with H*(E)=0. Then Proposition (1.1) remains valid if one assumes only that
E is generated by its global sections away from finitely many points.

Note that the curve X occuring in case (i1) is elliptic, since these are the
only curves on X which move in a pencil (cf. [St.-D.]). As for (1.5), the main
point to observe is the following:

(1.6) Lemma. Let E be a vector bundle on the K3 surface X which is generated
by its global sections away from finitely many points. Then there exists a
globally generated vector bundle F on X with det F=detE, h°(F)=h°(E), and
W(F)=h\(E) for i=1.

Remark. Note that this result generalizes - and gives a new proof of - the
classical fact ([St.-D.], Theorem 3.1) that a linear system on a K3 surface
without fixed components is actually base-point free. (Take E to have rank 1,
and observe that if F is generated by its global sections, then so too is det F.)

Proof of Lemma (1.6). We prove the lemma first under the additional hy-
pothesis that H°(E*)=0. Denote by V and S, respectively the kernel and
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cokernel of the canonical evaluation map e: H°(E)®¢0,— E, so that one has
the exact sequence

(1.7) 0->V->HYE)®;0x—>E—S;—0

of Oy-modules. By assumption S; is supported on a finite set, and hence
Ext'(Sg,0,)=0 for i<1. Furthermore, V - being a second syzygy sheaf - is
locally free. Thus one deduces from (1.7) the exact sequence:

(1.8) 0 E* > HY(E)* ®0y— V*—> Ry —0,

where R;=Ext*(S;, ). By Serre duality the map H*(E*)— H°(E)* determined
by (1.8) is an isomorphism, and it follows that H°(V*) surjects onto H°(R)).
Since H°(E*)=0, one may thus choose a subspace W < H°(V'*), fitting into an
exact sequence 0— H°(E)* - W— H°(R;)—0, such that W generates V*. Let F
be the dual of the kernel of the surjective map W®c0y,—V*. Thus F is
generated by its global sections, and one has an exact sequence

(19) 0 E* > F* > H(R) @0y — Ry —0.

One sees from (1.9) that det(F)=det(E), h'(E*)=h'(F*) for i<1, and that
h*(E*)<h?*(F*). The assertions of the Lemma then follow by duality. Finally, if
H°(E*)+0, then E=E,@® H, where H is a trivial vector bundle and H°((E,)*)
=0; it suffices to take F=F,®H. []

Proof of Proposition (1.5). If ¢,(E)*>0, the required inequality follows im-
mediately from (1.1) and (1.6). So assume that ¢, (E)*=0, and consider the
vector bundle F constructed in Lemma 1.6. Then Proposition (1.1) applies, and
F=®0,(%) for some elliptic curve X< X. The exact sequence dual to (1.9)
then takes the form

0->H->P042)->E-1-0,

where H is a trivial vector bundle, and dimsupp(r)=0. Now the support of 7
is precisely the set of points at which the vector bundle map v: H—- ® 04(2) on
the left drops rank. But an element in kerv(x) gives rise to a section
se H(@ (X)) vanishing at x, and since ¥ moves in a base-point free pen-
cil, it follows that s must then vanish on a divisor. Hence v either drops rank
on a divisor or not at all, and therefore t=0. But then the vanishing of
HY(E)=H'(E*) forces H=0. []

§ 2. The bundles E(C, A) and their reductions

In this section we study the vector bundles E(C, A), and carry out step (1) of
the argument outlined in the Introduction.

Let X be a projective K3 surface, and C< X a smooth irreducible curve of
genus g. If A is a line bundle on C such that both 4 and w.® A* are
generated by their global sections, then as in [L] one can associate to the pair
(C, A) a vector bundle E(C,A4) on X, of rank h°(A), as follows. Thinking of 4
as a sheaf on X, there is a canonical surjective evaluation map
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e(C,A): H°(A) ®@c0, > A

of Oy-modules. Since A is locally isomorphic to @, it has homological dimen-
sion one over (. Therefore kere(C, A) is locally free, and we take E(C, A) to
be the dual of this kernel:

E(C, A) = (ker e(C, A))*.

We recall the basic properties of these bundles. To begin with, one has by
construction the exact sequence

(2.1) 0— E(C, A)* > H'(A)®c 04 > A -0

of sheaves on X. Since w, =0y, dualizing (2.1) gives:

(2.2) 0 H°(A)* ®c0x — E(C, A) > 0, ® A* -0,

and from (2.1) and (2.2) one deduces:

(2.3) det E(C,A)=04(C), c,(E(C,A)=deg(A);

(2.4) E(C, A) is generated by its global sections [recall: h'(0,)=0];

(2.5) HY(E(C, A)) = H*(E(C, A))=0;
hO(E(C, A))=h°(A) +h'(4)=g(C)+ 1 —Cliff(4) [cf. (0.4)].

Furthermore, one has an exact sequence
(2.6) 0— E(C,0-® A*)* > H°(E(C, A)) ®cOx — E(C, A) -0

(cf. [T], Lemma 1.2.6).

Ideally, one would like to produce the bundle L required by the main
theorem (or a related bundle) as a subsheaf of E(C, 4), where C< X is a curve
of minimal Clifford index in its iinear series, and A is a suitable bundle
computing the Clifford index of C. However, we do not know whether this is
possible. So we try to “cut down” E(C,A4) by modding out by sections
vanishing at two or more points; eventually one arrives at a bundle that does
contain a suitable rank one subsheaf.

We formalize this reduction procedure in the following definition. It differs
slightly from the one given in the Introduction due to the possible presence
here of rational curves.

(2.7) Definition. Let E be a vector bundle on X, of rank =2. We will say that a
bundle E of rank=2 on X is a reduction of E, if it satisfies the following
properties:

(R1) There is a map E,— E which is surjective off a finite set;
(R2) h°(E)=h°(E,), and h'(E)=Hh'(E,) for i>0;

(R3) detE=detE,® Ox(—D) for some effective or zero divisor D;
(R4) c¢,(E)> —4c,(E)+8 - rk(E)=c,(E,)* —4c,(Ep)+8-rk(E,).
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We say that a reduction E of E, is minimal if there is no reduction E, of E,
with rk(E,)<rk(E). (In particular, if rk(E)=2, then E is already minimal.)

Note that if E, is generated by its global sections away from finitely many
points, then so too is any reduction thanks to (R1). Observe also that if E, is a
reduction of E,, and if E is a reduction of E,, then E is a reduction of E,.
Finally, remark that E is a reduction of itself, so any bundle of rank =2 has a
minimal reduction.

The point of this definition is manifested in

(2.8) Proposition. Let C <X be a smooth irreducible curve, and let A be a line
bundle on C, such that both A and w.® A* are generated by their global
sections. Assume that

r(A)z1, deg(4)<g(C)—1 and CIliff(4)<[(g(C)—1)/2].

If E is a minimal reduction of E(C, A), then there exists a line bundle N on X,
with h°(N)= 2, which admits a non-zero map N — E.

Proof. Set E,=E(C, A). To begin with, note that by (R2) and the computations
of H'(E,) above, one has:

h°(E)2g(C)+ 1 —Cliff(4), and H(E)=H?(E)=0.

Furthermore, E is generated by its global sections away from finitely many
points since E, is.

We assume first rk(E)=2, and argue much as in [L, Lemma (1.3)]. Specifi-
cally, we claim that:

(2.9) hW’(EQE*)=2.
In fact, by (R4) and the hypothesis on Cliff(4) one has:

¢ (E)?—4.¢c,(E)+8=c,(Ey)* —4-¢c,(E,)+8r
=2g(C)—2—4-CIiff(A)
>4,
But
Y(EQE*)=2-h°(EQ E*)—h'(EQE*)=c,(E)*—4-¢c,(E)+8

by Serre duality and Riemann-Roch, and this proves (2.9).

It follows from (2.9) by a well-known argument that there is a non-zero
map v: E — E which drops rank everywhere on X. [Take any endomorphism w
of E, wa(const)-1, and set v=w—A-1, where 1 is an eigenvalue of w(x) for
some xeX, Then det(v)e H°(det(E*)® det(E))=H%(®,) vanishes at x, and
hence is identically zero.] Let N =(imv)** be the reflexive hull of im(v). Then
N is a line bundle which sits as a subsheaf of E, whence Hom(N, E)=+0.
Furthermore, v gives a map E — N which is surjective off a finite set. But E is
generated by its global sections away from finitely many points, and hence so
too is N. Therefore h°(N)=2 unless N=0,; but this possibility is ruled out
since H?(E)=Hom(E, 04)* =0. This proves the Proposition when rk(E)=2.
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Assume henceforth that rk(E)=3, and fix once and for all a point x,eX
not lying on any smooth rational curve; this is possible since there are at most
countably many such curves on X. We claim then that:

(2.10) There is a point yeX, y=#x,, plus a section s,e H°(E) vanishing at x,
and y.

In fact, fix an arbitrary point xeX. By (R2), (2.5) and the hypothesis that
deg(A4)=<g(C)—1, one has:

hO(E)2 h°(Eq)=g(C)+ 1 —deg(A)+2r(4) 22 - rk(Ey) =2 rk(E).

Therefore h°(E®1,)=rk(E), where I denotes the ideal sheaf of x. If either
h°(E®]I,)>rk(E), or the subspace H(E®I,)= H°(E) maps by evaluation to a
subsheaf F of E with rk(F)<rk(E), then H°(E®Ix®1y)=i=0 for a general point
yeX. The remaining possibility is that the natural map v: H*(E®I)®c04x—E
is generically an isomorphism. But H*(E)=0, and in particular E is non-trivial.
Thus v drops rank along a curve I'c X, and it suffices to take yel’, and
socker v(y)c H*(E®1).

Let 4= X be the largest effective (or zero) divisor along which the section
So in (2.10) vanishes. Then s,: Oy— E factors through a map s: Oy(4)—>E
which vanishes on a finite (or empty) subscheme Z < X, and one has an exact
sequence

2.11) 05 G E*5 0 (—4)> 0,(—4)—0

defining a sheaf G. Note that G - being a second syzygy sheaf - is locally free,
and that im s* =1,(—4), where I, is the ideal sheaf of Z in X. Dualizing (2.11)
gives the exact sequence

(2.12) 0> 0y(4)—>E—-F—1-0,
where F =G* and t=Ext*(0,(—4),0y). There are now three possibilities:

(i) 4=0;
(i) 4+0, but h°(O(4)=1;
(iii) h°(Ox(4)Z2.

In case (iii), the bundle N = (0,(4) satisfies the assertion of the Proposition, and
we are done. In cases (i) and (ii), the strategy is to show that the bundle F,
which has rank =2, is a reduction of E. This will contradict the minimality of
E, and will complete the proof.

Assume then that 4=0, and let us check that F is a reduction of E.
Properties (R1) and (R3) are evident from (2.12). Turning to (R2), note that
since 4=0, Z contains at least the two points x, and y appearing in (2.10).

Therefore
h°(1,)=0, h*(I,)=1 and h'(I)=1.

Recalling that h°(E*)=h!(E*)=0, it follows from (2.11) that
h°(G)=h'(G)=0, and h*(G)=h*(E*).
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Since G=F* (R2) is then a consequence of Serre duality. Finally, in view of
the fact that c,(E)=c,(F), it is enough for (R4) to show that c¢,(F)<c,(E)—2.
Calculating from (2.11), one finds using (0.3):

c,(E*)=c,(G)+length(Z)=c,(G)+2.

But ¢,(E*)=c,(E) and c¢,(G)=c,(F), and thus F is indeed a reduction of E.
Hence case (i) is ruled out by the minimality of E.

Finally, suppose that 440 and h°(@4(4))=1. Then H?*(04x(4))=0, 4-4<
—2 by Riemann-Roch, and 4 is supported on a union of smooth rational
curves (cf. [St.-D.]). In particular, the point x, does not lie on 4. But s,(x,) =0,
and therefore s must vanish at x,, i.e. x,€Z =supp(t). Turning to the verifi-
cation that F is a reduction of E, (R1) and (R3) are again clear from (2.12).
Referring to (2.11), since Z is non-empty one has

hOU,(=4)=0, h*(I,(=4)=1 and h'(I(-4)z1,

and (R2) follows as above. It remains to check (R4). To this end, let I" be a
divisor representing c,(E). Since E is generated by its global sections away
from finitely many points, I' moves in a linear system without fixed com-
ponents (cf. (3.1)(i)), and hence I' - 4 =0. Computing e.g. from (2.12) one finds:
c,(F)?*=c(E)*=2('-4)+4-4
and
c,(F)=c,(E)—4-(I' — 4) —length(7).
But length(t)=1 since x,esupp(r), and consequently

c,(F)* —4c,(F)=c(E)* —4c,(E)+2(I'- 4)—3(4- 4)+4-length(z)
=c,(E)*—4c,(E)+0+6+4.
This verifies (R4), and thus F is a reduction of E. Again we have a con-

tradiction to the minimality of E, and this completes the proof of the
Proposition. []

§ 3. Proof of the theorem

In this section we complete the proof of the theorem stated in the Introduc-
tion. As always, X is a smooth projective K3 surface.
We start by collecting together some elementary observations:

(3.1) Lemma. Let E be a vector bundle of rank n on X which is generated by its
global sections away from finitely many points. Suppose given an exact sequence

0O>N->E->F->1-0,

where N is a line bundle with h°(N)2>2, F is locally free, and t is supported on a
finite set. Assume that H*(E)=0, and let I be a divisor representing c,(E). Then
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(i) T moves in a linear system without fixed components, and h®(04(I')) = 2.
(i) F is generated by its global sections off a finite set, and N ®detF
=0y (T'). Furthermore, H*(F)=0, h*(F)<h'(E), and h°(det F)=2.
(iii) If C<=X is any curve such that H°(Ox(C —T)) %0, then

(N®O)Zh°(N)22 and h'(N®Og)=h°((det F))=2.

Proof. (i) The first statement follows from the observation that the evident map
A"HO(E)®c Oy - A"E=04(I) is surjective off a finite set. For the second, it is
then enough to show that detE+0,. If V< H°(E) is a general subspace of
dimension n, then the natural homomorphism u: V®g0,— E is injective. But u
cannot be an isomorphism since h?(E)=0, and consequently A"u determines a
section of det E vanishing on a non-zero effective divisor.

(i1) The first assertion is clear. One has c¢,(7)=0 thanks to the fact that 7 is
supported on a finite set, and the second statement follows. Now h?(N)
=h°(N*)=0 since h°(N)=2, and evidently H'(t)=H?(t)=0. Therefore the
homomorphism H'(E)— H'(F) induced by the given sequence is surjective for
i=1 and bijective when i=2. The last assertion follows from (i).

(iii) Let De|C—TI| be an effective (or zero) divisor. By (ii), N*(C)
=(det F) ® O (D) is the line bundle associated to non-zero effective divisor, and
hence H°(N(— C))=0. The first statement follows. For the second, the vanish-
ing of H?(N) (noted above) gives

h'(C,N® 0.) 2h*(X, N(— C))=h*(X,(det F)*(—D))=h°(X,(det F)(D)).
But h°((det F)(D)) = h°(det F) since D is effective. [J

We now turn to the

Proof of the theorem. Among all smooth irreducible curves in a given linear
series on X choose one - say C - of minimal Clifford index. We may assume
that Cliff(C) < [(g(C)—1)/2], for otherwise there is nothing to prove. It suffices
to produce a line bundle L on X, whose restriction to every smooth curve
C’e|C| contributes to the Clifford index of C’, such that

(3.2) Cliff(L ® 0..) < CIiff(C).

Let A be a line bundle on C, with deg(A4)<g(C)—1, computing the Clifford
index of C. Then both 4 and w.® A* are generated by their global sections:
for if not, by removing base-points one would arrive at a bundle with strictly
smaller Clifford index. Consequently we are in the situation of Proposition
(2.8), and there exists a reduction E of E(C, A) and a line bundle N on X, with
h°(N)=2, such that Hom(N, E)+0. Replacing N if necessary by N(4) for some
effective divisor 4, we can assume as in (2.11) and (2.12) that one has an exact
sequence

(3.3) 0->N->E->F->1-0

of Oy-modules, where F is locally free and 7 is supported on a finite set. Recall
that E - begin a reduction E(C, A) - is generated by its global sections away
from finitely many points, and that det E=0,(C —D) for some effective (or
zero) curve Dc X. Furthermore, h°(E)2g(C)+ 1 —Cliff(4), and H'(E)=H?*(E)
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=0. In particular Lemma (3.1) applies, and it follows from statement (iii) of that
lemma that the restriction of N to any smooth C’e€|C| contributes to the
Clifford index of C’. We now proceed in two cases.

Case 1. ¢,(F)*>0. Then Proposition (1.1)(i) applies by virtue of (1.5), and for
any smooth C’e|C|:

g(C)+1 —Cliff(4) <h°(E)

<h°(N)+h°(F) [by (3.3)]
<hO(N)+h°(det F) [by (L.1)(i)]
SHON®OL)+h (N®O.) [by (3.1)(iii)]

g(C)+1—CLff(N®0.) [by (0.4)].

So it suffices for (3.2) to take L= N.
Case 2. ¢,(F)*=0. Then we assert to begin with:

(34) There is a line bundle N, on X, with h°(N,)=2, plus a map
N, —= E(C,w-® A*) vanishing on a finite or empty set.

In fact, H!(F)=0 thanks to (3.1)(ii), and therefore Propositions (1.1)(ii) and (L.5)
show that F =@ 04(X) for some elliptic curve < X. Since E is a reduction of
E(C, A), it follows from (3.3) and property (R 1) in Definition (2.7) that there is a
map u: E(C, A)— 0x(2) which is surjective away from finitely many points. On
the other hand, since 2 moves in a base-point free pencil, the kernel of the
natural map H%0Oy(Z)) ®cOx— Ox(2) is just Oy(—ZX). Therefore, recalling the
exact sequence (2.6), one obtains an exact commutative diagram

0- E(C, 0 ® A*)* ——— H(E(C, A)) ®c Oy —— E(C, 4) -0

| | [

0> Oy(~5) —— HOOxED)®cly —— Ox(E) 0.

The vertical map on the left cannot vanish, for otherwise u would factor
through a non-zero map E(C,A)— H(04(2))®c0y. But this is impossible
since Hom(E(C, A),0,)=0 by (2.5). Thus there exists a non-zero homomor-

phism
v: Ox(2) > E(C, 0, ® A%),

and if 4 is the largest effective or zero divisor along which v vanishes, then
(3.4) follows by taking N,=04(Z + A).
From (3.4) one deduces an exact sequence

(3.5) 0->N,—»E(C,o,®A*) > Fy—>1,—0,

where F, is locally free and 7, is supported on a finite set. Note that Lemma
(3.1) applies to this sequence, and in particular the restriction of N, to any
smooth C’e|C| contributes to the Clifford index of C'. If ¢,(F,)*>0, then just
as in Case 1 one finds that CIliff(N, ® 0) £ Cliff(w ® 4*); but Cliff(w,. ® 4*)
=Cliff(A), so in this case it suffices to take L= N, in (3.2).
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There remains the possibility that ¢,(F,)>=0. Then Fy=F0,(Z,) for some
elliptic curve X, X by Proposition (1.1)(ii), and we claim that in this case
(3.2) holds with L=0,(X,). In fact, let D, be a curve representing c,(N,), and

write
e=deg(w.®A*) and s=h%w.® A*) —1.

Computing first Chern classes in (3.5) one finds
C=D,+s-2,,
and as in the proof of Lemma (3.1)(iii) it follows first of all that
R(O(Z)®0:)22 and hH(04(Z,) ® Op) 22

for all smooth C’e|C|. So we need only check that Cliff(0,(Z,) ® O) < Cliff(A).
Now ¢,(Fy)=0, and so computing from (3.5) and (0.3) one finds:

e=c,(E(C,wp® A¥)2 Dy (s Zo).
Then for any C’e|C]:
Cliff(w,® A*)=e—2s=s-{(D,-Z,) —2}
=s-{(C'-XZ,)—2} [since C' X =D, -Z]
2s- Cliff(0x(Z) ® O.) [since h°(O.(Z,)=2].

But s=h!(4)—1=1 since A contributes to the Clifford index of C, and it

follows that
Cliff(04(Z ) ® O) £ Cliff(w, ® A*) = Cliff(A)

as desired. This completes the proof of the Theorem. []
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