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Introduction

Our purpose is to prove a rather surprising result concerning the ramification of
branched coverings of IP".

Let X be an irreducible projective variety of dimension n over an algebrai-
cally closed field k, and let f: X—IP" be a finite morphism. Denote by d the
geometric degree of f, i.e., the separable degree of the extension k(X)/k(IP") of
function fields. Recall that this degree is characterized by the fact that almost all
points of IP" have precisely d preimages in X. For each xe X, one can define the
local degree e (x) of f at x, which may be thought of as the number of sheets of
the covering X — IP" that come together at x. When X is a non-singular complex
variety, e(x) coincides with the usual topological local degree.

Our main result generalizes the classical fact that any non-trivial irreducible
covering of IP" ramifies:

Theorem 1. There exists at least one point xe X at which
e;(x)2min(d, n+1).

The theorem asserts, for example, that if f: X —IP" has geometric degree =n+1,
then n+1 or more branches of the covering must come together at some
point of X.

As a simple application of Theorem 1, we deduce

Theorem 2. If X is normal, and admits a branched covering f: X —IP" of geometric
degree <n, then X is algebraically simply connected.

It follows for instance that if X is an n-dimensional abelian variety, then any
finite morphism f: X—IP" must have geometric degree at least n+1. For
complex tori, this fact was noticed by Sommese et al. ([BE, §4]).

The paper is divided into two parts. The first is devoted to the definition and
formal properties of the local degree. Much of this section can be skipped by the
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reader interested only in the case of complex varieties. Proofs of the theorems
appear in §2, where our basic tool is the remarkable connectedness theorem of
Fulton and Hansen ([FH]).

We wish to thank M. Anderson, W. Fulton, J. Hansen and R. MacPherson for many valuable
discussions. We have also greatly profited from comments by P. Deligne on an earlier version of this
paper. In particular, P. Deligne suggested the definition of the local degree which we adopt, pointing
out that it leads to a sharper and more geometric reformulation of our original results.

§ 1. The Local Degree

By way of motivation, we review briefly the definition of local degrees in the
complex case, referring to [M, Appendix to Chap. 6] for details. Consider a
finite surjective morphism f: X — Y of irreducible complex varieties, and assume
that Y is normal. Given xeX, let y=f(x). For a sufficiently small connected
neighborhood U(y) of y in the complex topology, the inverse image f~'(U(y))
will split up into a disjoint union of neighborhoods of the preimages of y:

U= I1 U, (L.1)
f&x)=y
The local degree e (x) of f at x can be defined as the “degree” of the map
res(f): U(x)—>U(y), ie., as the number of preimages in U(x) of a generic point
of U(y). This integer has also a simple analytic interpretation. Namely, if K
denotes the field of fractions of 05" Y, then e (x)=dimg (07" X ®0any K).

In the abstract case, one can proceed quite similarly; implicit use of the étale
topology substitutes for the classical topology. Throughout the remainder of this
section, we deal except when otherwise indicated with separated noetherian
schemes, and call them simply schemes.

Let f: X— Y be a finite morphism of schemes, with Y integral. Denote by y
the generic point of Y. We define the geometric degree deg f of f by setting

deg,f= Y. [k(x): k)],
Sx)=y
where the sum is taken over all xe{f ~!(y)}. (If f is not dominating, put deg_f
=0.) Observe that if Y'— Y is a dominating morphism, with Y’ integral, and if
[ X xyY'—Y'is the induced map, then deg, f’'=deg, f.

Let © be an algebraically closed field, and let X: Spec(Q2)— X be a geometric
point of X located at xe X. X determines an embedding of k(x) into its separable
closure in Q, and we denote by ¢ X the corresponding strict henselization of
0.X (cf. [EGAIV.188], [SGA 4 VIII] or [R, Chap.8]). We set X(x)
—Spec((O X), so that there is a natural map X(X)— X. Recall that X(X) is
noetherian (since X is).

We henceforth consider a finite morphism f: X —Y, with Y integral and
normal. Let X be a geometric point of X, and let j=foX. Then f induces a finite
map f;: X(%)— Y (), and since Y is normal, Y(j) is integral. Set

e(X)=deg,(f>)-
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The integer e (X) depends only on the image of X, and given xeX we put
e (x)=¢, (%) (1.2)

where X is any geometric point located at x. Provided that x lies in some
irreducible component of X dominating ¥, we have e, (x)>0. If f,_, denotes the
composition X, ~—~X—Y, then e,  (x)=e,(x): When x is a closed point of a
complex variety X, one sees by passing to completions that (1.2) agrees with the
analytic definition indicated above.

If y: Spec(£2)— Y is a geometric point of Y, then

XxyY(5)= [ X

fox=}y

as Y(J)-schemes, the sum being taken over all geometric points X: Spec(2)— X
such that fox=y (c.f. [SGA 4, VIIL.5.4]). Since the natural map Y(y)— Y is
dominating, one obtains

Y e/(X)=deg,f. (1.3)

Sox=y

Hence

2, [k(x): k(y)], es(x)=deg, f (L4

Sfx)=y
for any yeY.

We shall need one more preliminary fact, which is the étale analogue of (1.1).
Specifically, let y be a geometric point of Y. Then there exists a connected (and
hence normal and integral) étale neighborhood q: V— Y of y having the follow-
ing property:

There 1s a commutative diagram of cartesian squares:

X x, Y (5)—— v . x

YG) — VY (-

with geos the natural map, such that the map r establishes a bijection between
the connected components of X x ; Y(j) and those of U.

This is proved by a standard limit argument using [EGA 1V.8.4.2], the
construction of the strict henselization of a local ring, and [R, p. 55]. We omit
details.

Lemma 1. The function x+—e(x) is upper semicontinuous on X.

Proof. Given xy,eX, we will show that e (x)<e,(x,) for all x in some neigh-
borhood of x,. Choose a geometric point X, located at x,, and let y,=f°X,.
Apply the construction (1.5) to the geometric point 7,. X(%X,) is a connected
component of X x , Y(¥,), and we denote by W the connected component of U
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containing the image of X(X,). We then obtain a commutative diagram

X(X)—— W—L0 X

o]

Y(io) — V——Y

the left-hand square being cartesian, with p and q étale, g finite, and V integral
and normal.

Since Y(y,)— V is dominating we get deg,(g)=deg,( fe)=e(xo), while it
follows from (1.4) that e, (w)<deg,(g) for all weW. On the other hand, since p
and q are étale, one has e,(w)=e,(p(w)) for all weW. In short, e (x) <e,(x,) for
all xeIm(p). But Im(p) is an open neighborhood of x,. QED.

One further property of the local degree will be needed in §2. For simplicity,
we assume that all schemes involved in the following lemma are separated and
of finite type over an algebraically closed field. As usual, we consider a finite
morphism f: X— Y where Y'is integral and normal.

Lemma 2. Let T be an integral variety with generic point t. Let ¢,, c,: T—>X be
distinct morphisms, with foc, =foc,, such that c,(t,)=c,(t,) =X, for some closed
point t,eT. Then

es(xo) Zes(cy (1) +e,(c, (1))

Proof. ldentifying closed points with the natural geometric points they de-
termine, consider the set-up of (1.5) applied to y,=f(x,). Pick a point v,eV over
Yo, and let uy=(v,, xo)eU. It is enough to exhibit distinct geometric points i,
it,: Spec(2)— U located at generizations of u,, with g'oii, =g'oii,, such that
p'o; 1s situated at c,(t) (i=1, 2). For then the assertion follows from (1.3) much
as in the proof of Lemma 1.

Let h=foc,. Replacing T first by its normalization and then by a suitable
connected component of T x,V, we may assume that there is a mapj: T—V
with j(t,)=v, and gqoj=h. Then there exist morphisms d;: T— U (i=1, 2) such
that p'od,=c; and g'od,=j. Note that we have d,(t,)=d,(t,)=u,. If t is a
geometric point centered at f, then the hypothesis that the morphisms c; are
distinct implies that ¢, ot=c,ot. Taking it;=d,ot thus gives the required geo-
metric points of U. QED.

§2. Proofs of Theorems 1 and 2

In this section we shall deal with varieties over an algebraically closed field k,
and with closed points. Keeping this convention in mind, consider a finite
morphism f: X—Y of geometric degree d, where Y is irreducible and normal,
and every irreducible component of X dominates Y. Then (1.4) reads simply

ﬂg; ye r(x)=deg, f, (2.1)
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and all of the local degrees are positive. Hence # {f~'(y)} <d for every yeY,
and indeed the geometric degree is characterized by the fact that # {f ~!(y)} =d
for almost all yeY. In particular, if Y’ is an irreducible normal subvariety of Y,
and if f': X’=f"1(Y)> Y’ denotes the induced map, then deg f’ <deg, f Ob-
serve finally that for xeX’, one has e, (x)<e(x), with equality if and only if
deg, f' =deg, f. (The inequality follows from (2.1) if x is the only point in X lying
over f(x), and in general one uses (1.5) to reduce to this case.)

Now let X be an irreducible projective variety of dimension n, and let
f: X—1IP" be a finite morphism of geometric degree d. For /=0, we introduce
the sets

R,={xeX|e (x)2¢+1}.

By Lemma 1, these ramification loci are closed in X.

Theorem 1. If /<min(d—1,n), then R, is non-empty and has at least one
irreducible component of codimension <¢ in X.

Proof. Induction on n, the case n=1 being treated at the end of the proof. So
take n=2, and comsider f: X—IP" as above. For a generic hyperplane
IP"~!cIP", the inverse image X'=f"'(IP"~!) is irreducible (cf. [J, Cor. 6.11]),
and f'=res(f): X’—>IP"~! has geometric degree d. Since then e, (x)=e,(x) for
all xeX’, it follows by induction that R, has an irreducible component of
codimension <7 in X for each /<min(d—1,n—1). So we may assume that
dzn+1, and we need only show the existence of a point xe X at which e (x)=n
+1.

This will follow from the Fulton-Hansen connectedness theorem ([FH]),
which asserts that if V is an irreducible projective variety of dimension >n, and
if F: V—IP"xIP" is a finite morphism, then the inverse image F~!(4pn) SV of
the diagonal 45.<IP" x IP" is connected. We choose an irreducible component S
of R, _, of dimension =1 and apply the connectedness theorem to the map

F=fxf|S: X xS—IP"x IP"

Observe that the diagonal 4= S xS embeds in X xS as an irreducible com-
ponent of F~(4p.).

If F~'(4pn)=4s we are done, for in this case e (x)=d=n+1 for every xeS.
So we may assume that A4S F~!(4p.). The connectedness of F~'(4p.) then
implies that there exists an irreducible component T of F~!(4p.), T+ 4, such
that T meets 45. Choose a point t,=(x,, Xxo)edsNT. Projection onto the factors
of X x§ yields distinct morphisms c¢,: T— X, ¢,: T>S< X, with foc,=foc,.
We have e (c,(t))=1 and e (c,(t))=n for all teT, and so we conclude from
Lemma 2 that e (xo)=n+1, as desired.

Finally, to prove the theorem in the case n=1, one applies the connectedness
theorem to the map f x f: X x X —»IP! xIP}, and argues as above. QED.

Remark. Concerning the dimensions of the sets R,, the second author has
established the following result, which generalizes Zariski’s theorem on the
purity of the branch locus.
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Let f: X—Y be a finite surjective morphism of irreducible varieties, with X
normal and Y non-singular. Define ramification loci R,= X as above. If R,*,
then every irreducible component of R, has codimension <¢ in X.

Details will appear elsewhere.
As a corollary of Theorem 1, we prove

Theorem 2. Let X be an irreducible normal projective variety of dimension n.
Assume that X admits a finite mapping f: X —IP" of geometric degree d <n. Then
X is algebraically simply connected.

Proof. Suppose to the contrary that g: Y— X is a connected étale covering of
degree at least two. As X is normal, Y is irreducible, and the composition h
=fog: Y IP" has geometric degree >d. Then since d <n, one has min(deg,(h)
—1,n)=d. Therefore, by Theorem 1, we may choose a point yeY at which
e,(y)=2d+1. Since g is étale, e, (y)=e (g(y). But e (g(y)=deg,f=d, a
contradiction. QED.

Remark. Theorem 2 is an indication of the fact that the existence of a finite
morphism f: X"—IP" of low degree places topological restrictions on X anal-
ogous to those imposed on small codimensional subvarieties of projective space
(c.f. [B], [H]). Indeed, the second author has proved the following Barth-type
theorem for branched coverings of CIP":

Let X be a connected complex projective manifold of dimension n, and let
f: X—IP" be a finite holomorphic mapping of degree d. Then the induced maps

f*: H(P", C)— H(X, C)
on cohomology are isomorphisms for i<n+1-—d.

The proof will appear in a forthcoming paper.
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