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INTRODUCTION 

A recent connectedness theorem [19] has been applied to a number 

of questions in algebraic geometry. It was originally used to prove 

several surprising results about subvarieties of, and mappings to, 

projective space [19, 20]. Shortly thereafter, it led to the solution 

of Zariski's problem on coverings of the plane branched along a node 

curve [16]. Deligne [i0, ii] then generalized the connectedness theo- 

rem to a statement about the topological fundamental group ~i as 

well as z0 ' and used this to prove Zariski's assertion that the fun- 

damental group of the complement of a nodal plane curve is abelian. 

He later showed [12] how a conjecture since proved by Goresky and 

MacPherson [23] leads to the introduction of higher homotopy groups 

into the setting of the connectedness theorem. Along different lines, 

F. L. Zak [65] has used the connectedness theorem to establish a 

striking result on tangencies to subvarieties of projective space, 

from which he obtains a proof of Hartshorne's conjecture [34] on 

linear normality. 

Our purpose is to give an exposition of this circle of ideas, 

especially the new contributions of Deligne. Drawing on his tech- 

niques, we also extend several of the corollaries of [19] and [20] to 

For example: the topological case. 

(1) If X ~ PC m is a closed irreducible subvariety o9 

dimension n , and if 2n > m , then X is simply 

connected. (§5) 

Any n-dimensional normal variety which can be expressed (2) 

(3) 

as a branched covering of pn with no more than n 

sheets is simply connected. (§6) 

If X, Y c r m are irreducible Subvarieties, with X 

normal, and if dimx + dim Y > m , then X n Y is 
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connected, and the natural map ~l(XnY) + ~I(X) is 

surjective. (§4) 

Using in addition the theorem of Goresky and MacPherson [23], we prove 

(4) Let X be a compact local complete intersection 

variety of pure dimension n , let f : X + pm be 

a finite morphism, and let y c pm be a closed 

local complete intersection of pure codimension d 

Then the induced homomorphisms 

f, : ~i(X ' f-l(y)) ~ ~i(Pm , y) 

are bijective for i ~ n - d , and surjective if 

i = n - d + 1 (§9) 

When Y is a hyperplane, this yields the Lefschetz hyperplane theorem 

for local complete intersections. Taking Y = X c ~m , one finds 

that ~i(P m , X) = 0 for i < 2n - m + 1 , which strengthens results 

of Barth, Larsen, and Ogus [5, 7, 44, 52]. 

Here is an overview of the contents and organization of these 

notes. The first two sections are devoted to Bertini-type theorems on 

the connectedness of linear sections of an irreducible variety: §I 

treats intersections with a generic linear space, and in §2 we pass to 

the limiting situation of an arbitrary linear section. Over the com- 

plex numbers, one obtains information on fundamental groups by apply- 

ing these connectivity results to covering spaces of the varieties in 

question. 

The connectedness theorem, proved in §3, asserts in its simplest 

form that if X is a complete irreducible variety, and if 

f : X + 1 Dm x pm 

is a morphism such that dimf(X) > m , then the inverse image f-l(A) 
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of the diagonal £ c pm × pm is connected. Moreover in the complex 

case, the homomorphism zl(f-l(A)) ÷ ~I(X) is surjective provided 

that X is locally irreducible in the classical topology. The proof 

we present is due to Deligne, and simplifies previous arguments. In 

brief, one uses a basic construction to pass from the given map f to 

a morphism f* : X* + p2m+l , X* being a { -bundle over X The 
m 

assertions on f-l(A) reduce to the analogous statements for f*-l(L) 

where L c p2m+l is a certain linear space of dimension m , and 

here the Bertini theorems apply. 

In §§4 - 7 we discuss applications of the connectedness theorem 

to the geometry of projective space. The simplest of these (§4) con- 

cerns the intersection of two irreducible subvarieties X, Y c pm : 

by considering the natural embedding X × Y c--~ ~ m × pm , one finds 

that X n Y is connected if dim X + dim Y > m We turn in §5 to 

the singularities of a finite mapping f : X n ÷ pm , the basic result 

being that if 2n > m , then f must ramify unless it is an embedding. 

The proof involves an application of the connectedness theorem to the 

map F = f × f : X × X ~ ~m × ~m ; roughly speaking, if P, q 5 X 

are distinct points with the same image, the connectivity of F-I(£) 

allows one to degenerate (p, q through double points of f to a 

pair (p*, q*) with p* = q* , where f will ramify. This result is 

used to study the singularities and fundamental groups of subvarieties 

of small codimension in projective space, and to investigate the de- 

generation of secant and tangent varieties. Section 6 centers around 

a theorem to the effect that if f : X + pn is a branched covering 

of degree at least n + 1 , then there exist points on X at which 

n + 1 or more sheets of the covering come together. We also discuss 

a generalization of this result, due to Deligne, to possibly infinite- 

sheeted coverings. In §7 we give an exposition of the work of F.L. 

Zak on tangencies to smooth subvarieties X n ~ ~m Zak's result 
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bounds the dimension of the locus along which a fixed linear space is 

tangent to X Using this, he is able to deduce that X is lin- 

early normal if 3n > 2(m-l) , as conjectured by Hartshorne. We pre- 

sent a new proof of Zak's theorem on linear normality which emphasizes 

the role of the connectedness theorem. 

In §8, we turn to Zariski's problem on the fundamental group of 

the complement of a nodal curve C c ~2 In the algebraic case, 

one wants to show that every (tamely ramified) covering of p2 

branched along C is abelian. An argument of Abhyankar reduces this 

to the assertion that the inverse image of every component of C is 

irreducible, which is proved using the connectedness theorem. A gen- 

eralization of the argument yields Deligne's result, in the complex 

case, that ~I(P 2 -C) is abelian. 

Deligne's extension of the connectedness theorem to higher homo- 

topy groups is described in §9. The basic ingredient here is a non- 

compact generalization of the Lefschetz hyperplane theorem due to 

Goresky and MacPherson. As an application, one obtains a strengthened 

and unified formulation of several well-known results on the topology 

of projective varieties. 

Finally, we list in §i0 some open questions. 

For accounts of related work, and historical remarks, we refer 

the reader to the notes at the end of each section. 

One of the pleasant features of the connectedness theorem is its 

elementary nature, and we have tried to reflect this in our presenta- 

tion. Except in §9, the exposition is largely self-contained. While 

theorems are stated in reasonably full generality, further hypotheses 

- sufficient for the main applications - are made in some of the 

proofs. In addition, many of the arguments are given here only for 
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the complex case, with references indicated for the extensions to 

arbitrary ground fields. 

Preliminary versions of a number of sections were circulated in 

[17]. These have been revised and updated in the present notes. 

Besides the crucial correspondence from Deligne, and the letter 

from Zak, this work and its presentation have benifitted from communi- 

cation with many others, including: M. Artin, S. Bloch, T. Gaffney, 

N. Goldstein, M. Goresky, P. Griffiths, H. Hamm, J. Hansen, R. Hardt, 

J. Harris, R. Hartshorne, K. Johnson, J. P. Jouanolou, A. Landman, 

L~ D~ng-Tr~ng, R. MacPherson, R. Mandelbaum, B. Moishezon, D. Mumford, 

C. Peskine, R. Piene, D. Prill, J. Roberts, K. Saito, A. Sommese, 

J. Stormes, B. Teissier, K. Vilonen, and O. Zariski. 

50. Notation, Conventions, and Preliminary Facts. 

0.i. Unless otherwise stated, a variety is an irreducible algebraic 

variety. The assertion that a space is connected includes the state- 

ment that it is non-empty. 

0.2. Grassd(Pm) denotes the Grassmannian of co___dimension d linear 

spaces in the projective m-space pm 

0.3. Given maps f : Y ÷ X and g : Z + X of topological spaces, 

Y ×X Z denotes the fibre product of Y and Z over X Recall 

that, by definition, 

Y ×X Z = {(y,z) E Y × Z I f(y) = g(z)} 

0.4. Any statement labeled (A) refers to varieties over an arbitrary 

algebraically closed field, and to the Zariski topology. In asser- 

tions labeled (B), the ground field is ~ , and the topology is the 

classical one unless otherwise indicated. We will refer to these 

respectively as the "algebraic" and "topological" settings. 
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0.5. All spaces that occur when we are working in the classical 

topology are Hausdorff and locally path connected, and when connected 

will possess universal covering spaces; we let z : X ÷ X denote the 

universal covering of X If X is a complex analytic space, 

carries a natural analytic structure, defined by the requirement that 

be a local analytic isomorphism. 

0.6. In the topological setting, if f : Y + X is a continuous map, 

with X connected, we write 

~i (Y) )~ z I (X) 

to mean that the induced homomorphism f. from ~l(Y,y) to 

~l(X,f(y)) is surjective for some y in Y When Y is connected, 

this is independent of the choice of y We will frequently use two 

elementary facts: 

0.7. 

(i) 

(2) 

If g : Z ÷ Y and f : Y + X are given, and if 

~l(Z)--~ ~l(X) , then ~I(Y) ,) ~l(X) 

Given f : Y ÷ X , with X and Y connected, the 

following are equivalent: 

(i) ~l(Y) --9~ ~l(X) ; 

(ii) for any connected topological covering 

X' + X , the induced covering Y x X X' + Y 

is connected; 

(iii) Y x X is connected. 
X 

Algebraic varieties enjoy the following connectivity property: 

(A) I_~f X is an (irreducible) variety, and Z ~ X 

closed algebraic subset, X- Z is connected. 

In fact, X- Z is an irreducible variety. The same is true when X 

is an irreducible analytic space, and Z is a closed analytic sub- 
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space; this follows easily from the corresponding local statement 

proved in [28, p. i15]. 

(B) If X is an irreducible complex variety whose univer- 

sal covering ~ is an irreducible analytic space, 

then for any closed analytic subspace Z ~ X , 

~i (X-Z)--~ ~I(Z) 

Indeed, by the previous remark (X- Z) ×X ~ is irreducible. 

To make use of (B), we will frequently need to know that ~ is 

irreducible. The simplest way of arranging this is to require that X 

be locally irreducible in the classical topology (unibranch in the 

terminology of algebraic geometry): for then X is likewise locally 

irreducible, and being connected, it is irreducible. For example, any 

normal variety has this property. The reader will note that whenever 

we assume a variety is locally irreducible, it would actually be 

enough to suppose that its universal covering space is irreducible. 

§i. Generic Linear Sections 

Statement (A) of the following result is a classical theorem of 

Bertini; the second assertion is due to Deligne [ii]. 

THEOREM 1.1. Let X be a variety, and f : X + ~m a morphism. 

Assume as always that X is irreducible, and in (B) suppose in addi- 

tion that X is locally irreducible as a complex analytic space. Fix 

an integer d < dimf(X) Then there is a non-empty Zariski-open set 

U ~ Grassd(Pm ) such that for all (m- d) - planes L i_nn U : 

(A) f-l(L) is irreducible; 

and 
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(B) Zl (f-i (L)) ;3 Zl(X) 

Proof. We will make the additional assumption that f is generic- 

ally finite-to-one (See [39] and Ill] for the general case.) 

Note that it suffices to prove the theorem for any non-empty 

Zariski-open subset X- Z of X For (A) this follows from the 

fact that for generic L every irreducible component of f-l(L) has 

dimension strictly greater than that of Z n f-l(L) For (B) it 

follows from (0.7). 

Let n = dimX We will first prove the theorem when m = n , 

so that f : X + ~n is dominating. This special case contains the 

heart of the argument. Replacing X if necessary by an open subset, 

we may assume that there exists a hypersurface B c pn such that f 

realizes X as a (connected) topological covering space of pn _ B 

CLAIM. For any line I c ~n meeting B transversely, 

f-l(£ _ Z n B) is connected. 

The claim is proved much as in [8, p. 192] and [48, p. 68] Choose a 

im n _ point O ~ B Then (via projection from O) the lines through 

O are naturally parametrized by a projective (n-l)-space 1 Dn-I 

Consider the sets 

X* = {(x,l) I f(x) e £i} _c X × pn-i 

P = {(y,l) I y ¢ £1} _c (I Dn -B) × 1 Dn-I 

{f-l(o) } - 

Now over 

X* is irreducible - it is the blow-up of X at the points 

and the map f* = f× id : X* + P is a topological covering. 

the open set T ~ ~n-i of lines through 0 meeting B transversely, 

the projection pr 2 : p ÷ ~n-i restricts to a topologically locally 

trivial fibre space: the fibres are spheres with deg(B) points 
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removed. Hence h = pr 2 o f* : X* + pn-i is likewise locally tri- 

vial over T Moreover h-l(T) c X* is irreducible since X* is. 

On the other hand, for a fixed point O' c f-l(o) , the map I ÷ (0',i) 

defines a section of h Since a locally trivial fibration between 

connected spaces which admits a section necessarily has connected fi- 

bres, we conclude that f-l(l I - Ii n B) is connected for all I ~ T , 

which proves the claim. 

It follows that if L' c pn 

which contains a line meeting B 

is a linear space of codimension d 

transversely, then f-l(L' L' n B) 

is connected; being non-singular, it is irreducible. This proves 

assertion (A) of the theorem in the case m = n Note that we have 

not used the fact that the covering f of pn _B is finite sheeted. 

In view of (0.6), statement (B) thus follows by applying the above 

argument to the composition fo~ : X ÷ X ~ pn _B 

Next consider the general case f : X ÷ ~m Let y = f(X) 

After possibly replacing X by an open subset, we may assume that Y 

is an irreducible, locally closed subvariety of pm of dimension n . 

Fix a linear space M c pm of codimension n + 1 disjoint from the 

Zariski-closure Y of Y We assert: 

(*) For almost every L c ~m of codimension d containing 

M , f-l(L) is irreducible, and zl(f-l(L)) )~ ~I(X) 

Indeed, consider the linear projection PM : ~m_M + ~n centered at 

M There is a natural isomorphism 

Grassd(~n) ~ {L e Grassd(~ m) I L 2 M} 

given by L' + pM-I(L ') So the assertion follows from the case 

m = n of theorem, applied to the generically finite map 

pMof : X + pn 
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It follows from (*) that there is a dense set of Grassd(P m) 

for which statements (A) and (B) of the theorem hold. This suffices 

purposes. To produce a Zariski-open set U ~ Grassd(~ TM) for later 

with the desired properties, choose a Zariski-open V ~ GrasSn+l(P m) 

consisting of linear spaces M c ~m disjoint from Y , and such that 

the universal quotient bundle on Grassn+l(P m) trivializes over V 

Then the projections from M considered above fit together to form a 

finite morphism ~ x V ÷ ~n × V Choose a divisor B c pn × V such 

that the composition 

f×id 
X x V ) y x V + pn x V 

is a topological covering over the complement of B After shrinking 

V if necessary, S gives rise to a family {B M f ~n~ • V of hyper- 

surfaces of some degree b , parametrized by V Then we may take 

U to consist of all L c ~m containing an M in V such that the 

corresponding L' • Grassd(Pn) contains a line meeting B M trans- 

versely in b points. | 

NOTES. (1). Proofs of the Bertini theorem (A) over abstract ground 

fields were given by Akizuki, Matsusaka, and Zariski. Jouanolou has 

recently written a complete, modern, and elementary account of these 

Bertini theorems. [39]. 

(2) Deligne [ii] deduces (B) from the "Zariski hyperplane theo- 

rem," which has been given modern proofs by Hamm and L~ [31] and by 

Cheniot [9]. 

(3) Examples show that the local irreducibility hypothesis can- 

not be dropped in (B). (Cf. §6, Note 2). 
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§2. Arbitrary Linear Sections. 

~{hile it is certainly not the case that an arbitrary linear sec- 

tion of an irreducible variety remains irreducible, one does have the 

following result: 

THEOREM 2.1. Let X be a variety, f : X ÷ 1 ~m a morphism, and 

L c pm an arbitrary linear subspace of codimension d , with 

d < dim f (X) 

(A) If X is complete, then f-l(L) is connected. 

More generally, if f is proper over some open 

set V c 1 =m and if L c V then f-l(L) is 
r 

connected. 

(B) I_ff X is locally irreducible, then for any neigh- 

Proof. 

borhood U of L in pm 

~l(f-l(u)) 

For (A), let W [ Grassd(P m) 

one has 

,~ ~I(X) 

be the open subset consisting 

of linear spaces contained in V , and let 

Z = {(x,L') e X× W I x • f-l(L')} 

Z arises as an open subset of a Grassmannian bundle over X , and 

hence is irreducible. Moreover, since f is proper over V , the 

projection pr 2 : Z ~ W is likewise proper. Consider its Stein fac- 

torization 

q r 
Z ÷ W' ~ W 

(cf [27, III.4.3.3]) ; q has connected fibres and r is finite. By 

Theorem I.I(A), r is generically ene-to-one. But r is surjective 
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and W is normal, so it follows that in fact r is everywhere 

one-to-one. Hence f-l(L') is connected for every L' in W 

By Theorem I.I(B), any neighborhood of U of L contains linear 

L' for which ~l(f-l(L')) ~ ~I(X) , and (B) follows. spaces 

RE~RK 2.2. In case f-l(L) is non-empty, a sharper form of (B) 

will be needed: 

. f-i (B') For any x ~ (L) , the homomorphism ~l(f-l(u),x) ÷ Zl(X,x ) 

is surjective. 

In fact, by Theorem I.I(B) we may choose a point x' £ f-l(u) in the 

same path component as x , such that f(x') lies on a linear space 

! L' with f-l(L') irreducible and ~l(f-l(L/),x ') + ~l(X,x') surjec- 

tive. Then zl(f-l(u),x ') ,~l(X,x') , and (B') follows. 

NOTES. (i). The proof of (A) follows Jouanolou [39], who simplified 

considerably the argument in [19]. It turns out that the result was 

known previously. The earliest reference we are aware of is 

[26, XIII.2.3], where Grothendieck deduces it from an analogous local 

theorem, proved using the machinery of local cohomology. 

Grothendieck's method has been applied and extended by others, includ- 

ing Hartshorne, Ogus, Speiser, and recently by Faltings [14]. 

(2). By a more careful application of Theorem I.I(B), Deligne 

[Ii] shows that there are in fact arbitrarily small neighborhoods U 

of L such that f-l(u) is connected. 

(3). Goresky and MacPherson [23] have proved a conjecture of 

Deligne's which extends (B) to higher homotopy groups. (See §9.) 
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§3. The Connectedness Theorem 

The following theorem expresses a basic property of projective 

space. As subsequent sections will show, it has numerous geometric 

and topological consequences. 

THEOREM 3.1. Let X be a variety, and let 

morphism with dime,-X I- > m Denote by A 

pm x ~m 

f : X ÷ pm x ~m be a 

the diagonal in 

(A) 

(B) 

[19]) If X is complete, then f-l(A) is connected. 

[i0, ii]) If X is locally irreducible, and if U 

is any neighborhood of A in pm x pm , then 

~l(f-l(u)) ;.~ Zl(X) 

Proof. (Deligne [12]). The idea is to pass from the diagonal embed- 

ding £ c pm x ~m to a linear embedding L m c ~2m+l To this 

end, let [x] = [x 0 ..... x m] and [Y] = [Y0 ..... Ym ] be 

coordinates on the two factors of pm × ~m , and introduce the 

coordinates Ix,y] = [x 0 ..... Xm,Y 0 ..... ym ] on ~2m+l Denote by 

V the complement in p2m+l of the two linear spaces 

x 0 = ... = x m = 0 and Y0 = "'" = Ym = 0 Then there is a natural 

map 

p : V ÷ 1 Dm x pm 

given by [x, y] + ( [x] , [y]) , which realizes V as a C*-bundle 

over pm x ~m Let L c V be the m-dimensional linear space 

defined by xi = Yi (0sism) ; observe that L maps isomorphically 

to the diagonal A c ~m x ~m Given f : X ÷ ~m x pm , set 

X* = X x]?m x ]~m V , 
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and let q : X* + X and f* : X* + V denote the projections. The 

situation is summarized in the following diagram: 

~2m+l 

X* 

m v 

L , ~' 

PIL 
A 

q ) x 

P ]~m ]?m 

Note that X* is irreducible, and that aimf*(X*) > m + 1 

Since L maps isomorphically to A , q gives rise to an iso- 

morphism f*-l(L) ~ f-l(A) If X is complete, then f* is pro- 

per, and the Bertini theorem (2.1(A)) for arbitrary linear sections 

applies to give the connectivity of f*-l(L) This proves (A) . 

Turning to (B), let U* = p-l(u) , so that U* is a neighbor- 

hood of L in ~2m+l Consider the commutative square 

-i 
~i (f* (U*) 

~ l ( X  ~ ) 

> ~l(f-l(u) ) 

]~ ~i (X) 

The bottom horizontal map is surjective since X* is a C*-bundle 

over X , and the vertical homomorphism on the left is surjective by 

Theorem 2.1(B). Hence ~l(f-l(u))--9~ ~I(X) , as desired. | 

REMARK 3.2. In (B), if f-l(A) is non-empty, then the homomorphism 

~l(f-l(u),x) ÷ ~l(X,x) is surjective for any x e f-l(A) In view 

of Remark 2.2, this follows immediately from the proof of the theorem. 

COROLLARY 3.3. (B). In the situation of Theorem 3.1(B), assume in 
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X is complete. Then 

nl(f-l(A)) ~I(X) 

Proof. Choose a neighborhood V of f-l(A) in X such that f-l(£) 

is a deformation retract of V Since f is proper, there exists a 

neighborhood U of the diagonal A with f-l(u) c V Fix 

x c f-l(A) , and consider the homomorphisms 

nl(f-l(£) ,x) ~ Zl(V,x) 

\ Y \  
~i (f-i (U) ,x) ~ ~i (X,x) 

induced by inclusions. The top horizontal map is an isomorphism, 

while the bottom is surjective by Remark 3.2, and the corollary 

follows. | 

REMARK 3.4. The connectedness theorem extends to more than two fac- 

tors: one considers a morphism f : X + (pm)r 

with dimf(X) > (r - l)m , and the small diagonal A = pm in (pm)r 

Then statements (A) and (B) of Theorem 3.1 and the assertion of 

Corollary 3.3 hold (cf. [19]). This may be proved as before by pas- 

sing from the diagonal A ~ (pm)r to a linear space L m _ c pr(m+l)-i 

NOTES. (i) A different proof of Theorem 3.1(A) was given by Barth 

in 1969 [4], although he only stated a special case of the theorem; 

Barth's argument was rediscovered in [19]. It depends upon construct- 

ing a birational correspondence between pm x ~m and p2m which 

reduces the assertion for the diagonal to the corresponding statement 

for a linear space L m c ~2m (B) is due to Deligne [i0, ii], who 

originally proved it using the birational correspondence. The proof 

of the connectedness theorem presented above was given by Deligne [12] 
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in the course of extending the theorem to higher homotopy groups 

(cf §9). 

(2) In the situation of Theorem 3.1(B), Deligne shows as before 

that there are arbitrarily small neighborhoods U of the diagonal 

such that f-l(u) is connected [ii]. 

(3) Observe that Deligne's construction in the proof of the 

connectedness theorem reduces a general intersection in projective 

space to an intersection with a linear space. This can be used to 

give a simple proof of the refined B6zout theorem announced at the "end 

of [19]. See [18, §6] for details. 

(4) Mumford [49] has given an alternative proof of Theorem 

3.1(A) in characteristic zero. He shows that if a simply connected 

algebraic group G acts transitively on a complete variety Z with 

connected stabilizer H , and if y c Z is a closed subvariety such 

that the H-orbit of the tangent space T Y at a generic p c Y is 
P 

Zariski-open in Grass(TpZ) , then for any proper morphism f : X + Z 

with X irreducible and dim f(X) > codim(Y,Z) , f-l(y) is con- 

nected. Applying this to G = SL(m+I)× SL(m+I) acting on pm × ~m 

gives 3.1(A). Mumford proves his result by considering the variety 

V = { (x,y,o) e X x y x G I of(x) = y} 

He shows that the projection p : V ÷ G is surjective, and that if 

V' c V is the set where p is not smooth, and S c G is the locus 

over which some component of the fibre is contained in V' , then 

codim(S,G) ~ 2 Using a Stein factorization and purity of the 

branch locus, it follows easily that all fibres of p are connected, 

in particular p-l(e ) = f-l(y) 

(5) Hansen [32] has extended Theorem 3.1(A) to Grassmannians. 

He proves in fact that if F is any flag manifold of subspaces of 

pm , and if f : X ÷ F × F is a proper morphism with 
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codim(f(X) , FxF) < m , then f-l(A F) is connected. Examples show 

that this result is sharp. Hansen's argument uses the geometry of 

Grassmannians to reduce to the connectedness theorem for projective 

space. 

(6) Faltings [14] generalized a local theorem from [26], and 

used this to give a new proof of Theorem 3.1(A) . 94ore recently, he 

has generalized the connectedness theorem to other homogeneous spaces 

[15]. Specifically, let Z = G/P , where G is a connected semi- 

simple linear algebraic group over a field k of characteristic zero, 

and p c G is a parabolic subgroup. Denote by £ the minimum rank 

of the simple factors of G when k is extended to its algebraic 

closure. Faltings shows that if X is a proper irreducible k-scheme, 

and if f : X ÷ Z × Z is a morphism, then f-l(£) is non-empty if 

codim(f(Z) , XxX) ~ £ , and connected if codim(f(Z) , X×X) < Z In 

particular, he recovers Hansen's result on flag manifolds (at least in 

characteristic zero). 

§4. Intersections 

~Je present in this section the simplest applications of the con-" 

nectedness theorem. 

THEOREM 4.1. Let X and Y be complete varieties, and let 

f : X + pm , g : y ~ pm be morphisms such that 

dimf(X) + dim g(Y) > m Then 

(A) ([19]) X x~m Y is connected. 

If also X and Y are locally irreducible, then 

(B) ~l(X x~m y) ~ ~l(X x y) 

In particular, if X, Y c ~m are closed irreducible subvarieties 

with dimX + dim Y > m , then Xn Y is connected. 
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Proof. Apply Theorem 3.1 and Corollary 3.3 to the morphism 

F = f× g : X× Y ÷ pm × pm noting that F-I(A) = X xpm y 

RE}~RK 4.2. Like Theorem 3.1, this result extends to more than two 

factors: if fi : Xi + pm (isi~r) are proper morphisms, and if 

dimfi(Xi) > (r -l)m , then X 1 ×pm ...xpm X r is connected. If 

in addition each X i is locally irreducible, then 

~l(Xl xlDm ...×i ~m Xr)---~Zl(X 1 ×...xX r) 

COROLLARY 4.3. Let X be a complete variety, let f : X ÷ pm 

morphism, and let y [ pm be a closed subvariety. If 

be a 

dimf(X) > codim(Y , ~?m) • then 

(A) ([19]) f-l(y) is connected. 

If in addition X is locally irreducible; then 

(B) ~l(f-l(g)) ~ ~l(X) 

Proof. Statement (A) is an immediate consequence of Theorem 4.1. For 

(B), let Y* be the normalization of Y , and g : y, + pm the 

induced map. Then one has the commutative diagram 

Zl(X ×pm Y*) ) ~l(X× Y*) 

~ l ( f - l ( Y ) )  ~ ~ l ( X )  

S i n c e  X and Y* a r e  l o c a l l y  i r r e d u c i b l e ,  Theorem 4 . 1 ( B )  a p p l i e s  t o  

show t h a t  t h e  t o p  h o r i z o n t a l  homomorphism i s  s u r j e c t i v e .  But  t h e  

p r o j e c t i o n  ~ l ( X X  y*) ÷ ~ l ( X )  i s  a l s o  s u r j e c t i v e ,  and  t h e  C o r o l l a r y  

follows. • 

NOTES. (I) Hironaka and Matsumura [36] had proved assertion (A) of 

the Corollary when f is surjective. The theorem stated by Barth in 
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[4] was the special case of the corollary in which f is the normali- 

zation of a subvariety of pm A related result was proved by 

Rossi [58]. 

(2) The Corollary and the connectedness theorem suggested the 

conjecture in [19] that if f : X ÷ Z is a morphism between complete 

varieties, and if Y Z-~ Z is a subvariety with ample normal bundle, 

then f-l(y) would be connected (but possibly empty) provided that 

dimf(X) > codim(Y,Z) However Hansen observed that examples of 

Hironaka and Hartshorne (cf. [33, p. 199]) give counter-examples to 

this conjecture. 

§5. Singularities of Mappings to Projective Space. 

In this section we apply the connectedness theorem to study sin- 

gularities of mappings f : X + ~m The philosophy here is that 

under mild hypotheses, such singularities must occur. 

THEOREM 5.1. ([19]) (A). Let X be a complete variety of dimension 

n , and let f : X + pm be an unramified morphism. If 2n > m , 

then f is a closed embedding. 

Recall that a morphism f : X + Y is unramified if the sheaf of rela- 

1 
tive differentials ~X/Y is zero. The exact sequence 

i i 
f*Z + ~X ÷ ~X/Y ÷ 0 

shows that f is unramified if and only if the canonical map 

is surjective. When X Y are non-singular 1 
f*~ ÷ ~X and this is 

equivalent to requiring that the induced maps on tangent spaces be 

injective, i.e. that f be an immersion in the sense of differential 

topology. 



Proof of Theorem 5.1. 
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Y 

is the ideal sheaf of 
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Given a morphism f - X + Y , the diagonal map 

as a closed subscheme A X of X ×y X If I 

1 
A X i n  X Xy X , t h e n  g2X/Y c a n  b e  i d e n t i f i e d  

with I/I 2 It follows that f is unramified if and only if A x 

is an open (as well as a closed) subscheme of X ×y X (cf [27, IV. 17. 

4.2]) . 

The theorem now follows by applying Theorem 4.1(A) to the product 

of f with itself: since 2n > m , X ×pm X is connected. On the 

other hand, A x is a connected component of X ×~m X thanks to the 

fact that f is unramified, and hence £X = X ×~m X Therefore f 

is one-to-one. But a one-to-one unramified morphism is a closed em- 

bedding (cf. [27, IV.8.11.5 and IV.17.2.6]). | 

As a first consequence, one has 

COROLLARY 5.2. ([19]) (A) Let X c pm be a closed subvariety of 

dimension n , with 2n > m If X is not normal, then the normali- 

zation map X* + X must be ramified. | 

For example, let X be a singular surface in ~3 with ordinary 

singularities, i.e. a double curve C (along which a local analytic 

equation for X is xy = 0 ), a finite number of triple points (with 

local equation xyz = 0 ), and a finite number of pinch-points (with 

2 2 
local equation z = xy ) . The normalization X* of X is non- 

singular, and the map X* + X ramifies precisely over the pinch- 

points of X Hence X must have pinch-points. In fact, every 

connected component of C must contain pinch points, as one sees by 

normalizing over individual components of C 

Similarly, if X is a non-singular three-fold, and if 

f : X + p4 is a generic projection, then the curve of triple points 
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(if non-empty) must meet the curve of pinch points. This follows from 

the connectedness of F -I(A) for F = f× f × f : X× X× X ÷ 1 D4 × ~4 × i~4 . 

COROLLARY 5.3. 

dimension n 

Let X ¢ pm be a closed (irreducible) subvariety of 

If 2n > m , then 

(A) ([19]) X has no non-trivial finite ~tale CoVerings, 

i.e. z~ig(x) = 1 

(B) X is simply connected. 

Proof. 

Let Y' 

Y' + X f-~ m is unramified, and hence Y' ~ X by Theorem 5.1. 

provides a section of p , so it is trivial. 

(A) Suppose that p : Y + X is a connected etale covering. 

be an irreducible component of Y The composition 

This 

(B) Let 

first that 

f : X* ÷ X be the normalization of X We claim 

(*) The homomorphism f, : ~l(X*) + ~I(X) is tr£vial. 

To see this, consider the commutative diagram 

Zl(X* ×]pm X*) >~l(X*× X*) = Zl(X*) × ~l(X*) 

I 6, I f*×f* 

ZI(X) - ) ~l(X× X) = ~I(X) × ~I(X) , 

where 6, is the hom0morphism induced by the diagonal embedding 

6 : X = X ×~m X~_~ XX X Since X* is locally irreducible, the 

top horizontal map is surjective 5y Theorem 4.1(B), which implies that 

Im(f,× f,) ~ Im(6,) But this is only possible if f, is trivial: 

for if e e Im(f,) then (e,l) e Im(d,) , i.e. e = 1 

The remainder of the argument is similar to the proof of (A) . 

Specifically, it follows from (*) that the universal covering 

: ~ ÷ X induces a trivial covering X* x x X ÷ X* on X* The 
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normalization map f therefore factors through ~ The image 

X' ~ ~ of X* is an irreducible closed subvariety of ~ The map 

X' + X is unramified, and thus an embedding by Theorem 5.1. Hence 

sections, and so is trivial, g 

By way of application, suppose that X is a non-singular 

n-dimensional variety (n~2) , and that f : X +'p2n-i is a finite 

morphism with only ordinary singularities, so that f is an isomor- 

phism onto its image X c ~2n-i except along a double curve C c X 

For example f might be a generic projection. Let C be the image 

of C in X Then the fact that HI(X) = 0 (by Corollary 5~3), 

plus the observation that H,(X,C) ~ H,(X,C), imply that the homo- 

morphism 

ker(HiC ÷ HIC) )HI(X) 

is surjective. Thus if the irregularity of X is large, C must 

have large genus. 

Especially when X is singular, it can be difficult to deter- 

mine from geometric hypotheses whether a morphism f : X + ~m is 

r~nified, which limits the applicability of Theorem 5.1. However for 

many purposes a somewhat more flexible notion is sufficient. Let us 

say that a morphism f : X ÷ Y is weakly unramified if A X is a con- 

nected component of X Xy X , ignoring scheme structures; f is 

weakly ramified in the contrary case. Loosely speaking, f : X + Y 

is weakly ramified if there exists a pair (p,q) of distinct points 

on X with the same image in Y , such that (p,q) can be continu- 

ously degenerated through pairs of distinct double points of f to a 

pair (p*,q*) with p* = q* For example, any generically one-to- 

one morphism from a curve to a surface will be weakly unramified, 

although it may well be ramified. As an immediate consequence of 
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Theorem 4.1(A) and this definition, one has 

PROPOSITION 5.4. Let X be a complete variety of dimension n , and 

f : X ÷ ~m a weakly unramified morphism. If 2n > m , then f is 

one-to-one. 

We will apply this result to study tangent and secant varieties. 

Let X c ~r be a closed subvariety of dimension n , and denote 

by G the Grassmannian of lines in pr 

Xx X - A x to G which takes a pair (x,y) 

and y extends to a morphism 

The morphism from 

to the line through x 

: X x X + G , 

where X x X is the blow-up of X × X along the diagonal (see [38]). 

Let P(X) be the exceptional divisor of this blowing-up; set 

S = ~(X × X) , and T = ~(P(X) ) Then S c G is an irreducible 

variety of dimension ~< 2n , consisting of all secant lines and their 

limits. These limits are parametrized by the closed algebraic subset 

T c G , which has dimension ~< 2n - 1 When X is non-singular, 

P(X) is the projectivized tangent bundle of X , and T consists of 

all tangent lines; when X is singular, not all Zariski tangent lines 

in general belong to T 

Let F = { (p,£) E pr × G I P c Z} be the natural incidence cor- 

respondence, and let Pl : F ÷ 1 Dr , P2 : F ÷ G denote the projec- 

tions. The secant variety 

-i 
Sec(X) = PlP2 (S) 

is the closure of the union of all secant lines. Similarly, we set 

-i 
Tan(X) = PlP2 (T) 



50 

It is evident from this construction that Sec(X) c pr 

cible variety of dimension ~ 2n + 1 , and that Tan(X) 

algebraic subset of Sec(X) of dimension ~ 2n 

is an irredu- 

is a closed 

COROLLARY 5.5. ([19]) (A) Either 

(i) dim Tan(X) = 2n and dim Sec(X) = 2n + 1 

or 

(ii) Tan(X) : Sec(X) 

Proof. Suppose to the contrary that Tan(X) ~ Sec(X) , but that 

dim Tan(X) < 2n Then we may choose a linear space L c ~r of 

codimension ( 2n such that L meets Sec(X) but not Tan(X) 

Projection from L gives a finite map f : X ÷ pm , with 

m s 2n - 1 Since L does not meet Tan(X) , f is weakly unrami- 

fied. On the other hand, since L meets Sec(X) - Tan(X) , f can- 

not be one-to-one. But this contradicts Proposition 5.4. B 

NOTES. (i) The special case of Corollary 5.5 when X n is a sub- 

variety of ~2n was discovered by K. Johnson in 1976 [38]. Johnson 

proved the expected formulas for the obstruction cycles to projections 

being unramified or one-to-one, generalized to singular varieties. A 

formal calculation showed that for projections from ~2n , the 

vanishing of these two homology (or rational equivalence) classes is 

equivalent. Since positive algebraic cycles on a projective variety 

cannot be homologous to zero without vanishing, it followed that if 

the projection is weakly unramified, then it must be one-to-one. The 

connectedness theorem grew out of the attempt to extend Johnson's 

remarkable result. 

Other cases of Corollary 5.5 had been proved before [19] by B. 

Moishezon and D. Mumford (n=2), and J. Harris (n=2,3). For non-sin- 

gular X , the corollary was discovered independently by F. Zak [65]; 
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secant varieties play a crucial role in his proof of Hartshorne's con- 

jecture on linear normality (cf. §7). P. Griffiths and J. Harris [25] 

have given an illuminating local analysis of varieties with degenerate 

secant and tangent varieties. 

(2) Special cases of Corollary 5.3 go back to Picard, who proved 

that a non-singular surface in ~3 is simply connected. From the 

contemporary point of view, it is a standard consequence of the 

Lefschetz hyperplane theorem ([47]; cf. also §9) that any hypersurface 

of dimension at least two is simply connected. In the algebraic set- 

ting, Abhyankar [i, IIp. 75] proved the (algebraic) simple-connectiv- 

ity of certain singular hypersurfaces, and Grothendieck [26] subseq- 

uently extended the Lefschetz theorem to the abstract case. 

Corollary 5.3(B) was proved by Barth and Larsen [7] for non-sin- 

gular X 5.3(A) was established by Ogus [53] when X is a local 

complete intersection in characteristic zero, and by Hartshorne and 

Speiser [35] when X is Cohen-Macaulay in characteristic p 

Our proof of Corollary 5.3(B) follows suggestions of Deligne for 

simplifying the argument in [17]. Higher homotopy analogues of this 

result are described in §9. 

§6. Branched Coverings of Projective Space. 

In this section, the connectedness theorem is used to study the 

ramification of branched coverings of projective space. 

Let X be a complete variety of dimension n , and let 

f : X ÷ ~n 

be a finite morphism. Denote by d the (geometric) degree of f , 
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i.e. the number of preimages of a general point of pn For each 

x • X , let ef(x) be the local degree, or ramification index, of f 

at x : if f is locally* e-to-one near x , then ef(x) =def e 

Thus ef(x) counts the number of sheets of the covering that come 

together at x One has 

for each y c pn 

ef (x) = d 

xef -I (y) 

The following theorem generalizes the classical fact that every 

irreducible covering of projective space must ramify. 

THEOREM 6.1. ([20]) (A) There exists at least one point x e X at 

which ef(x) >- min(d, n + i) 

The proof will yield a stronger statement. Namely, consider the sets 

R l = {x • X i ef(x) > £} 

These ramification loci are closed algebraic subsets of X : for if 

U c X £+I is the set of (£+l)-tuples of distinct points with the same 

image in pn , then R£ = U n A x We will show that in fact 

for £ < min(d - i, n) 

Proof of Theorem 6.1. 

codim(R£ , X) ~ £ 

The argument is by induction on n , the case 

n = 1 being the fact that p1 is algebraically simply connected. 

If n ~ 2 , the inverse image X' = f-l(L) of a generic hyperplane 

L c pn is irreducible (Theorem I.I(A)). By induction, the theorem 

* In the classical topology over ~ , in the ~tale topology otherwise. 
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is valid for the covering f' : X' + L= ~n-1 , and ef, (x) - ef(x) 

for x £ X' and generic L It follows that codim(Rz,X] 6 £ 

when Z ( min(d - 1 , n - i) It remains to show that R is non- 
n 

empty if d > n + 1 

To this end, pick an irreducible component S of Rn_ 1 of 

dimension at least one, and apply the connectedness theorem to the map 

F = f× flS : X× S + pn × ]?n 

Note that A S ~ S× S embeds in X x S as an irreducible component of 

F-I(A) If F-I(A) = A s , then el(x) = d ~ n + 1 for all x ~ S 

So we may assume that A S ~ F-I(A) , in which case the connectivity of 

F-I(A) implies that there is an irreducible component T # A S of 

F-I(A) which meets A s Choose a path (~(t),~(t)) in T ~ X x S 

from a point not in A S to a point (x,x) e A S Then since f is 

locally at least n-to-one at each point B(t) , n + 1 or more sheets 

of the covering must come together at the limit point x | 

Deligne has given a topological generalization of this result: 

THEOREM 6.2. ([12]) (B) Let H c pn 

let 

be a closed algebraic set, and 

f : X ÷ ]?n_ H 

be a connected topological covering of degree d , with d possibly 

infinite. Set e = min(d, n + i) Then there exists a point y E H 

over which at least e sheets of the covering come together. More 

precisely, if Be(y ) is an arbitrarily small s-neighborhood of y 

with respect to some metric on ~n , then there is a connected com- 

ponent V o_ff f-iBs(y ) such that the covering 

f]V : V ÷ BE(y) - Be(y) n H has degree ~ e . 
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Sketch of Proof. Induction on n , the case n = 1 being clear. So 

assume that d ~ n + 1 , that over a generic hyperplane n sheets 

come together, and - by contradiction - that more never do. This last 

hypothesis allows one to extend f to a ramified covering f : ~ ÷ iDn~ 

over a small open set in 1 Dn , T is a disjoint union of finite 

branched coverings. Let R c X be the locus where n sheets come 

together. One shows that Y = f(R) is analytic (hence algebraic), of 

dimension at least one, and that R ÷ Y is a topological covering 

c y over some smooth irreducible Zariski-open subset Yo - 

---i 
Fix a connected component R ° of f (Yo) , and consider the 

topological covering 

÷ (pn _ H) × Y F = f× TIR ° : X× R o o 

By Theorem 3.1(B) and Note 2 in §3, there are neighborhoods U of the 

diagonal A c pn x ~n , contained in arbitrarily small c-neighbor- 

hoods A e of A , such that this covering remains connected over 

(pn _H) x Yon U Choose points b E R ° , and 

a' , b' e f-iB (f(b)) n X , such that (a',b) , (b',b) c F-I(u) , and g 

such that a' and b (resp. b' and b) lie in different (resp. the 

components of ~-iBc(f(b)) Then we can find a path same) connected 

(e(t), 8(t)) in X× R ° joining (a',b) and (b',b) , such that 

(*) dist (~(e(t) ) , f(~ (t))) < g 

for all t On the other hand, using again the assumption that no 

more than n sheets come together, one verifies that if (e(t),B(t)) 

is a path in X x R satisfying (*) , then for sufficiently small g 

the set 
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I e(t) and 8(t) lie in distinct | 
t 

connected components of f-l(Be(f~(t))) 

is both open and closed. (It suffices to take e small enough so 

every x c R , ~-iB2s(f(x)) contains as a connected compon- that for 

ent a neighborhood V(x) of x such ti~at the covering 

V(x) ÷ B2e(~(x)) has degree n .) Thus we arrive at a contradic- 

tion. 

COROLLARY 6.3. Let X be a locally unibranch (e.g. normal) projec- 

tive variety of dimension n which admits a branched covering 

f : X ÷ ~n of (geometric) degree d ~ n Tilen: 

(A) ([20]) X has no non-trivial @tale coverings, i.e. 

~ig(x) = 1 . 

(B) X is simply connected. 

Proof. (A) Suppose to the contrary that g : Y + X is a connected 

6tale covering of degree at least two. Then Y is irreducible since 

X is locally unibranch, and fog : y ÷ ~n has (geometric) degree 

> d Hence by Theorem 6.1, and the hypothesis that d ~ n , there 

exists a point y ~ Y at which efg(y) ~ d + 1 But 

efg(y) = ef(g(y)) , since g is 4tale, whereas ef(x) ( d for all 

x { X , a contradiction. 

(B) Following a suggestion of Deligne's, consider the universal 

covering z : [ + X There is an algebraic set H c ~n such that 

the composition ~ ÷ X + ~n restricts to a connected topological 

covering of ~n _ H Arguing as in the proof of (A), it follows 

that ~ is trivial. 

For an alternative argument, note that by what was proved in 
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Theorem 6.1, there exists an irreducible set S c X of dimension at 

least one such that f is one-to-one over f(S) ; one may take S to 

be an irreducible component of Rd_ 1 = {x • Xlef(x) = d} Hence if 

S* is the normalization of_ S , one has S* ×~n X ~ S* . Theorem 

4.1(B) then implies that the natural homomorphism 

~I(S*) ÷ ~l(S*x X) = ~I(S*) × ~l(X) 

is surjective. But this is only possible if Zl(X) = 1 ; for if 

~ Zl(X) were a non-trivial element, then (l,e) • ~I(S*)× ~I(X) 

would not be in the image of ~l(S*) | 

NOTES. (i) Concerning the ramification loci R 1 , it is shown in 

[46] that if f : X ~ Y is a branched covering with X normal and Y 

non-singular, and if R 1 [ X is non-empty, then every irreducible 

component of R~ has codimension ~ £ in X This generalizes 

Zariski's theorem on the purity of the branch locus, and can be used 

to give an alternative proof of Theorem 6.1. 

(2) In contrast to the corresponding statement (Corollary 5.3) 

for subvarieties of projective space, it is not true that an arbit- 

rarily singular variety which admits a branched covering f : X ÷ ~n 

of degree ~ n is simply connected. This is shown by an example due 

to A. Landman. Start with a covering f' : X' ÷ ~n of degree 

d ~ n , with X' normal, and let X be the variety obtained by 

identifying two points of X' lying in the same fibre of f' Then 

f' induces a covering f : X ÷ ~n of degree d , but ~I(X) is 

non-trivial. If d ~ n - 1 , this also gives an example of a situa- 

tion where the homomorphism ~l(f-l(L)) + Zl(X) fails to be surjec- 

tive for a generic hyperplane L c pn (compare Theorem I.I(B)). 

(3) Gaffney (unpublished) and Hansen [32] have given extensions 
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of Theorem 6.1 and Corollary 6.3 to the case of finite maps 

f : X n ÷ ~m The complications that arise when m > n are indi- 

cated by the fact that there are several different notions which 

generalize the degree and local degrees of a branched covering. 

§7. Zak's Theorem on Tangencies and Hartshorne's Conjecture 

In a recent letter [65], the Soviet mathematician F. L. Zak 

sketched a remarkable result concerning linear spaces tangent to a 

subvariety X c pm , and indicated how it leads to a proof of 

Hartshorne's conjecture on linear normality. This section is devoted 

to an exposition of Zak's work. J. Roberts and independently J. 

Hansen have reconstructed the arguments suggested in Zak's letter. 

Pending Zak's publication of his results, we refer the reader to 

Roberts' notes [57] for detailed arguments. 

We adopt the convention that when we deal with a subvariety X 

of projective space, it is assumed to be non-degenerate, i.e. not 

contained in any hyperplane. 

Zak's theorem on tangencies 

Let X c pm be a smooth projective variety of dimension n ~ For 

x ~ X , T c pm denotes the projective tangent space to X at x 
X - 

One says that a linear space L [ pm is tangent to X at x if 

T c L When L is a hyperplane, it is equivalent to require that 
X -- 

x be a singular point of the divisor Xn L 

Zak's first main theorem bounds the dimension of the locus on X 

along which a given linear space is tangent: 

THEOREM 7.1. ([65]) (A) Fix a linear space L c pm of dimension k 

(n ~ k ~ m - i) Then {x e XIT x[ L} has dimension < k - n 
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Before proceeding to the proof, we give several striking corollaries, 

also due to Zak [65]. 

COROLLARY 7.2. (A) The Gauss map X + Grass(P n , pm) defined by 

x + T is finite. 
X 

COROLLARY 7.3. (A) 

Then Y is non-singular in codimension 2n - m - 1 

Since Y is Cohen-Macaulay, it follows for instance that if 

2n - m ~ 2 , then every hyperplane section of X is normal (and in 

particular, being connected, is irreducible). 

COROLLARY 7.4. (A) Let X* c ~m* be the dual variety of X c ~m 

Then dimX* > n 

Let Y be an arbitrary hyperplane section of X . 

Recall that X* is by definition the set of hyperplanes tangent to X 

at some point. 

Proofs of Corollaries. The first two corollaries are immediate con- 

sequences of the theorem in the cases k = n and k = m - 1 respec- 

tively. For (7.4 , consider the incidence correspondence 

p = { (x,L)ITx ~ L} ~ X × pm* 

The first projection realizes P as a pm-n-i -bundle over X , and 

hence dimP = m - 1 The dual variety X* c pm* is the image of 

P under the second projection. But according to the theorem, the 

fibres of P + X* all have dimension ~ m - n - 1 , and the result 

follows. | 

We remark that the bounds in Theorem 7.1 and Corollary 7.4 are 

achieved for the Segre variety ~I × pn-i c p2n-i 

Proof of Theorem 7.1. Suppose to the contrary that there is an 
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irreducible component S [ {x • XIT x[ L} of dimension > k - n We 

claim first that there exists a linear space V c pm of codimension 

k + 1 , disjoint from X and L , such that the projection 

~V : X + L centered at V is not one-to-one over ~v(S) To ver- 

ify this, observe that X { L , since X spans ~m , and choose 

points x • X- L , s ~ S Because T does not contain the line 
S 

x--{ , x--s cannot lie in X Then fixing a point p • x--{ , with 

p ~ X , one may take V to be a generic (m-k-l)-plane through p 

As dim X × S > k , the connectedness theorem applies to the fin- 

ite map 

F : ~V × ~vIS : X× S ÷ L× L = pk × iDk 

The choice of V guarantees that F-I(A) does not consist only of 

the diagonal A S [ X x S Then since F-I(£) is connected, the~e 

exists a smooth curve T , plus a morphism T ÷ F-I(A) whose image 

meets, but is not contained in, A S This gives rise to a family of 

pairs 

{ (xt' st) }t~T _c X ×iDk S 

parametrized by T , such that x t # s t for almost all t E T , but 

: = s* for some t* ~ T As t + t* the secant with xt, st, 

lines xts t degenerate to a tangent line Z* ~ Ts,X On the other 

hand, when x t @ s t the secants 

V , and hence so too must l* 

joint from V , a contradiction. 

xts t meet the center of projection 

But Z* [Ts, [ L , and L is dis- 

| 

REMARK 7.5. It is amusing to note that when X c pm is a non-dege- 

nerate complete intersection (i.e. the transversal intersection of 

m- n hypersurfaces of degrees ~ 2), then one has a stronger result: 
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(*) A hyperplane can be tangent to X at only finitely 

many points. 

If X is a hypersurface, this is Theorem 7.1; the point is that the 

same statement holds for complete intersections of any codimension. 

To verify (*), consider the incidence correspondence p c X × pm* 

arising in the proof of Corollary 7.4. (*) is equivalent to the 

assertion that the second projection z : p ÷ ~m* is finite. Now 

P = P(N*(1)) , where N is the normal bundle to X , and ~ is the 

morphism defined by 0p(1) on P (cf. [13, Exp. XVII]). But the hypo- 

theses on X imply that N(-I) is an ample vector bundle. Hence 

0p(1) is an ample line bundle, and so ~ is finite. 

Hartshorne's conjecture on linear normality. 

Recall that a non-singular variety X c pm is linearly normal 

if X c pm is not the projection of a (non-degenerate) embedding of 

X in ~m+l Alternatively, X c pm is linearly normal if and 

only if the natural map 

H°(l Dm , 01~(i)) ~ H°(X, 0X(1)) 

is surjective. From this second description one shows, for example, 

that complete intersections are linearly normal. Motivated by the 

conjecture that a subvariety of projective space of sufficiently small 

codimension is a complete intersection, Hartshorne [34] was led on the 

basis of a few examples to make the following conjecture: 

If X c ~m is a non-singular closed subvariety of dimension 

n , and if 3n > 2(m- i), then X is linearly normal. 

Zak succeeded in using his theorem on tangencies to give a proof of 

Hartshorne's conjecture. Equivalently, setting r = m + 1 , we may 
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THEOREM 7.6. (~65~) 

81 

(A) If X c pr is a smooth, closed, (non-de- 

generate) subvariety of dimension n , and if 3n > 2(r- 2) , then 

Sec(X) = ~r 

We will present below a proof (in the complex case) based on the con- 

nectedness theQrgm. However we cannot resist first sketching the 

beautiful argument outlined in Zak's letter. We omit proofs, which 

are given by Roberts [57]. 

The connec%imn between Hartshorne's conjecture and Zak's theorem 

on tangencies comes from 

PROPOSITION 7.7. (A) Let X c ~r be a smooth projective variety of 

dimension n If dimSec(X) = Z < r , then there exists a hyper- 

plane L c ~r which is tangent to x along an algebraic subset 

Z c X of dimension > 2n + 2 - r 

Theorem 7.6 follows (with a small argument) from the Proposition and 

from Theorem 7.1. The Proposition, in turn, revolves around a differ- 

ential study of the secant variety Sec(X) The main point, which 

as Roberts observes goes back to Terracini [64], is the following 

LEMMA 7.8. Let X c ~r be a smooth n-dimensional variety, and let 

x, y ~ X be distinct points. 

(A) If p lies on the secant line xy , and p @ x,y , 

then 

where 

Sec(X) 

(B) 

(*) 

TpSeC [ ~r 

at p 

Span(Tx,Ty ) ~ TpSeC , 

denotes the Zariski tangent space to 

For generic points x, y £ X , and p • xy , equality 
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holds in (*) . 

(Compare [25, (6.2)].) Returning to the situation of the Proposition, 

the idea is that any point p c Sec(X) - X lies on a family of sec- 

ant lines having dimension at least (2n+ I) - I ~ 2n + 2 - r By 

the lemma, one obtains a subset Z c X of dimension ~ 2n + 2 - r p - 

_ But dimSec(X) < r , and such that T x c TpSec for every x c Zp 

hence for generic p e Sec(X) , T Sec is contained in a hyperplane, 
P 

yielding (7.7). 

The remainder of this section is devoted to an alternative app- 

roach to Theorem 7.6. The method is to focus on the variety Trisec(X) 

of trisecant 2-planes to X c pr , and its relation with Sec(X) 

We verify first that Sec(X) = pr if and only if Sec(X) = Trisec(X). 

Then we use the connectedness theorem to show that this latter criter- 

ion holds if 3n > 2(r- 2) We henceforth work over C 

Given a smooth projective variety X [ ~r of dimension n , 

let Trisec(X) c pr be the Zariski closure of the union of all 

trisecant planes xyz , where x, y, z ~ X are distinct non-collinear 

points. Trisec(X) is irreducible, of dimension ~ 3n + 2 , and 

Sec(X) c Trisec(X) We start with a Terracini-type lemma, analogous 

to the one stated above. 

LEMMA 7.9. Let x I , x 2 , x 3 c X be distinct non-collinear points of 

X , and let p be a point on the plane XlX2X3 Assume that p 

does not lie on any of the lines x.x Then 
i 3 

(*) 
Span(Txl , Tx2 , Tx3 ) c _ TpTrisec , 

and for generic x I , x2, x 3 e X and p e XlX2X 3 , equality holds in 

(*) 
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Proof. It is enough to treat the affine situation in which X and 

p are contained in C r For 1 s i s 3 , choose local analytic 

parametrizations f. : U ~ X c ~r about the points x , with 
1 1 -- 1 

U. c C n neighborhoods of the origin, and x. = f. (0) Consider the 
1 -- l 1 

map ~ : UI× U 2 × U3x {× C + Trisec(X) [ C r defined by 

= (I- s- t) f I + sf 2 + tf 3 As long as st(l- s- t) ~ 0 , the 

translate of Imd}(0,0,0,s,t) by the vector p = (i- s- t)x I + sx 2 + 

tx 3 is precisely the linear span of Txl , Tx2 and Tx3 in ~r 

This proves the first assertion. The second follows from the fact 

that % is generically submersive. I 

We remark that this is of course the sort of argument used to prove 

Lemma 7.8, at least over 

is more involved.) 

LEMMA 7.10. If X c ~r 

variety, then Sec(X) = 1 Dr 

C (In the abstract case [57], the proof 

is a smooth (non-degenerate) projective 

if and only if Sec(X) = Trisec(X) 

Proof. Since in any event Sec(X) < Trisec(X) , it suffices to prove 

that if dimSec(X) = I < r , then dimTrisec(X) > I By Lemma 

7.9, it is in turn sufficient to show that for one - and hence for a 

generic - triple x, y, z c X of distinct points, Span(T x , Ty, T z) 

has dimension > 1 But the description (7.8(B)) of the tangent 

spaces to Sec(X) shows that for a generic pair of points x, y c X , 

dimSpan(T x , Ty) = 1 Since 1 < r , and since X spans 

may then take z ¢ X - Span(T x , Ty). | 

Theorem 7.6 now follows from 

PROPOSITION 7.11. 

dimension n 

1 Dr , we 

Let X c pr be a smooth projective variety of 

If 3n > 2(r- 2) , then Sec(X) = Trisec(X) 

Proof. Suppose to the contrary that Sec(X) ~ Trisec(X) , so that 
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we may choose distinct, non-collinear points x0,Y0,Z 0 c X such that 

the trisecant plane x0Y0Z 0 is not contained in Sec(X) A generic 

line £ [ x0Y0Z 0 is then disjoint from X , and meets Sec(X) at 

only finitely many points. Fix such a line £ , and consider the fin- 

ite map z : X ~ pr-2 obtained by projection from £ to a comple- 

mentary ~r-2 Since 3n > 2(r- 2) , the connectedness theorem for 

three factors (3.4) applies to the map 

F : ~ × ~ × ~ : X× X x X + 1 ~r-2 × ]?r-2 × imr-2 

Then as in the proof of Theorem 7.1, we can find a family of triple- 

points 

{ (xt' Yt' zt) }teT _c X ×i~r_ 2 X ×l~r~ 2 X 

parametrized by a smooth irreducible curve T , containing 

(x0' Y0 ' z0) ' such that x t , Yt ' and z t are distinct for 

t ¢ T - {t*} , while two or more members of the limiting triple 

(x* , y* , z*) = (xt* ' Yt* ' zt*) coincide.* 

The key to the argument is the observation that since ~0 ' Y0 ' z0 

are non-collinear, and since £ n Sec(X) is finite, the points of 

intersection 

a = xtY t n £ , b = xtz t n I , c = YtZt n £ 

are distinct and independent of t so long as t ~ t* (see Figure i) . 

We are tacitly assuming here that (x0 ' Y0' z0) lies on an irredu- 

cible component W of F -I (&) which meets the set D x = {(x I , x2 , x 3) 

X× X× x I two or more of the x i coincide} In reality it will be 

necessary to choose a sequence W = W 0 ,..., W s of components such 

that W i meets Wi+ 1 , and W s meets D x We leave it to the rea- 

der to carry out the small additional argument required in this gene- 
ral case. 
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Hence if l* l* and l* denote the limiting positions of the 
xy , xz , yz 

secants xtY t , xtz t and YtZt as t + t* , then l* n 1 = a , 
Xy 

l* n I = b , and l* n I = c In particular, these lines are 
xz yz 

distinct. But then all three of the limiting points x* , y* and z* 

must coincide: for if e.g. y* = z* ~ x* , then the secants xtY t 

and xtz t would degenerate as t ÷ t* to a common line. On the 

other hand, if (xt' Yt' zt) + (x* , x* , x*) as t ~ t* , then 

l* l* and l* are tangent lines to X at x* In particular, 
xy ' xz yz 

the center of projection 1 meets the tangent space Tx, in more 

than one point. But then I ~ Tx, Z Sec(X) , contradicting the choice 

of 1 

,y \\\ 

X.~ ~ ~t 

Figure i. 
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NOTES. (i) Zak reports in his letter that he originally proved 

Theorem 7.1 in January, 1979 (before [19] appeared) using methods of 

formal geometry. He became aware of the connectedness theorem at the 

end of 1979, and realized that it led to a simple proof of his theorem 

on tangencies. In the situation of (7.1), Zak obtained additional 

information when the ground field has characteristic zero. Specific- 

ally, he has shown that for a general k-plane L ~ pm tangent to 

X , the set {x c XlT x Z L} ~ ~m is a linear space. 

(2) Zak's corollary (7.2) on the finiteness of the Gauss mapping 

strengthens a result of Griffiths and Harris [25], who had proved that 

the Gauss map is generically finite. 

(3) Concerning the dimension n* : dimX* of the dual of a 

smooth n-dimensional variety X c ~m , Zak and independently A. 

Landman established that n* ~ m - n + 1 provided that n ~ 2 

Equality holds here, as it does in 

Corollary 7.4, for the Segre varieties pl× pn-i c ~2n-i , which are 

self-dual. Landman [43] has used Picard-Lefschetz theory to prove the 

remarkable results that if X* is degenerate (i.e. n* < m - i) , 

then (i) the "defect" m - 1 - n* is determined by the Betti numbers 

of X , and (ii) m - 1 - n* z n (mod 2) Holme [37] shows that n* 

can be computed in terms of characteristic classes associated to the 

embedding X c ~m We recommend Kleiman's survey [42], especially 

Section D of Chapter IV, for an overview of other facts about dual 

varieties. 

(4) Zak indicates in his letter that he now has several proofs 

of Hartshorne's conjecture. He also reports that he has classified 

all n-dimensional smooth varieties X c pr , with 3n = 2(r- 2) , 

which project isomorphically onto their image in pr-i 
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§8. The Fundamental Group of the Complement of a Node Curve 

Let C be a curve in the projective plane whose only singulari- 

ties are nodes, i.e. ordinary double points with distinct tangents 

(given in local analytic coordinates by the equation zw = 0). 

THEOREM 8.1. (A) ([16]) Any (tamely ramified) branched covering of 

p2 with branch locus contained in C is abelian. 

(p2 _C) is abelian. (B) ([i0, ii]) ~i 

Let CI,...,C r be the irreducible components of 

d i = deg(Ci) 

COROLLARY 8.2. One has: 

tame. _2 
(A) 71 t~ -C) = (ZZ e...@ ZZ /(d I .... dr)) (p) 

(B) ~i(I D2 -C) = ZZ • ... • ZZ /(d I ..... dr) 

C , and set 

Proof of Corollary. For (B), since the fundamental group is abelian, 

p2 
it is isomorphic to the homology group HI( -C) , and 

HI(]~ 2 -C) = H3(]P 2 , C) = coker(H2(]P 2) + H2(C)) • 

Now H2(C) = ~H2(C i) , H2(p 2) = ~ , H2(Ci) = ~ , and the induced 

map H2(~ 2) ÷ H2(Ci ) is multiplication by d i 

It follows from (B) and the Riemann-Enriques-Grauert-Remmert 

existence theorem (see[59]) that finite coverings of p2 branched 

along C are determined (up to isomorphism) by subgroups of finite 

index in ~r /(dl .... dr ) (up to conjugacy). The isomorphism in (A) 

is the corresponding assertion for tamely ramified coverings over a 

general ground field; the group on the right is the profinite comple- 

tion of ~r /(dl .... dr ) using all subgroups of finite index prime to 
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the characteristic p Any finite abelian covering is a composition 

of cyclic coverings, and these can be analyzed by Kummer theory; the 

isomorphism in (A) follows easily (see [i], I, p. 83). The character- 

istic p version can also be deduced from the complex case by spec- 

ialization [ii]. 

Proof of Theorem 8.1. We start with some general remarks about a 

finite ramified covering f : X ÷ p2 , with X normal, whose branch 

locus is contained in a curve C c ~2 Set X = X - f-l(c) , and 
- o 

let fo : Xo + p2 _C be the induced topological covering. We assume 

that the covering is Galois, or regular, i.e. that the deck transfor- 

mations act transitively on the fibres over a point in ~2 _C 

Let 

G = Aut(X/]? 2) = Aut(Xo/ID2-C) 

One says that the covering is abelian if G is. 

Each irreducible component D' of f-l(c) 

group 

determines an inertia 

I(D') = {0 E G : olD' = identity} 

The inertia groups of the components of f-l(c) which map to the 

same irreducible component of C are conjugate subgroups in G 

since G acts transitively on the set of such components. 

The local analytic structure of the branched covering f may be 

analyzed in terms of the local topology of C in p2 Fix points 

y £ C , and x c f-l(y) Let B be a small e-neighborhood of y 

in ~2 with respect to some metric, and denote by B' the connected 

component of f-l(B) containing x Let B o = B - BnC , and 

B' = B' - B'nf-l(c) The possibilities for the branched covering 
o 
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B' + B , or the unbranched covering B' + B o depend on the local o t 

fundamental group ~l(Bo) 

If y is a simple point of C , then Wl(B o) = ~ , and B' ÷ B 

is given in local analytic coordinates by (z,w) ÷ (ze,w) In par- 

ticular, x is a simple point of f-l(c) (regarded as a reduced 

curve). If D' is the irreducible component of f-l(c) containing 

x , then I(D') is canonically isomorphic to the group of covering 

' + B Since any irreducible component of transformations of B o o 

f-l(c) contains points whose images on C are simple, all of the 

inertia groups are cyclic. 

Note also that I(D') is trivial only when the covering is un- 

ramified at x It follows that the inertia groups of the irredu- 

cible components of f-l(c) generate G For if H is the sub- 

group they generate, then H is normal in G ; the corresponding 

covering X/H ÷ p2 has trivial inertia groups, and is therefore un- 

ramified over any curve. Since the complement of a finite set of 

points in ~2 is simply connected, X/H = ~2 , i.e. H = G 

Suppose next that y is a node of C Then B ° is homeomor- 

phic to the product of two punctured disks, so ~l(Bo) = ~ @ ~ , and 

the covering B' + B is dominated by one given in local analytic 

coordinates by (z,w) ÷ (zd,w e) In particular, f-l(c) has at 

most two branches at x , and distinct branches of f-l(c) at x do 

not map to the same branch of C at y Moreover, if two irredu- 

cible components D! and D! of f-l(c) meet at x , then I(Di) 
l 3 

and I(Di) may be identified with subgroJps of the group of deck 

transformations of B'o + Bo , which is abe!Jan. Therefore I(Di) and 

I(D i ) commute. 

When C is a node curve, these are the only possibilities that 
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-i 
arise. Hence to prove (A), it suffices to show that f (D) is irre- 

ducible for every irreducible component D of C For then any two 

irreducible components of f-l(c) must meet (since any two components 

of C do), and so G is generated by a collection of cyclic sub- 

groups, any two of which commute with each other. The irreducibility 

of f-l(D) is the assertion of Lemma 8.3(A) below. 

For (S), consider any regular topological covering 

2 
fo : Xo + P -C , with group G of deck transformations. (It is 

e n o u g h  t o  c o n s i d e r  s i m p l y  t h e  u n i v e r s a l  c o v e r i n g ,  w h e r e  

2 
G = ~i(~ -C) .) Denote by S the set of singular points of C 

Let V be the complement of C - S in a tubular neighborhood of 

2 
C-S in P -S ; V is the disjoint union of punctured tubular 

neighborhoods V D of the irreducible components D-S of C-S 

Each connected component V' of f -l(v) determines an inertia group 
o 

I(V') , as follows. Suppose that fo(V') : V D , and take an 

e-neighborhood B of a simple point y of D Let B' be a con- 
o 

nected component of f -I(B) which is contained in V' Then set 
O 

I(V') : {O C GI~(B O) = B'}O 

One sees that this is independent of the choice of y and B' by 
o 

joining two such choices by a chain where successive open sets B' 
o 

overlap. (When the covering is finite, and therefore the restriction 

of a branched covering f : X ÷ P 2 , the connected components of 

f-l(v) correspond to the irreducible components of f-l(c) and the 
o 

two notions of inertia groups coincide.) As before, the inertia 

groups are cyclic - but possibly infinite - and they generate G 

If B is a small neighborhood of a node y of C , and B' is a 
o 

-i 
connected component of f (B) , and if two components V~ and V~ 

o i 3 

of fo-l(v) meet B' then I(V]) and I(V~)3 commute It suffices 
O' 
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therefore to prove that fol(VD ) -  is connected for each irreducible 

component D of C , which is Lemma 8.3(B) . 

LEMMA 8.3. Let D be an irreducible component of a plane curve C 

Assume that all the singularities of C which lie on D are nodes. 

(A) 

(B) 

If f : X ÷ ~2 is a (tamely ramified) finite covering 

branched along C, then f-l(D) is irreducible. 

If f : X + ~2 -C is a topological covering, and 
- -  o o 

V D is a punctured tubular neighborhood of D-Sing(C) 

as above, then fol(VD) is connected. 

Proof. Let N : ~ + D be the normalization of D In case (A) , 

one sees from the local description of the covering atsimple points 

and nodes that the fibre product X ×p2 D = f-l(D) ×D ~ has only one 

branch at any point, i.e. it is locally unibranch. In fact, as 

Deligne and Zariski point out, (X ×~2 D)red is non-singular. Now 

X x~2 D projects onto f-l(D) , so it suffices to prove that 

X x~2 ~ is irreducible. As any connected locally irreducible curve 

is irreducible, it suffices in turn to show that X ×~2 D is connec- 

ted. But this follows from Theorem 4.1(A). 

For (B), let V(~) be the normal bundle to the C ~- immersion 

D : D + p2 Extend ~ to a C ~ immersion ~ from an e-neighbor- 

hood Ve(D) of the zero-section to an g-neighborhood of D in ~2 

With proper choice of metric - so that near a node the two branches 

become perpendicular two-planes in Euclidean four-space - one sees 

that Ve(~) - ~-I(c) is a bundle over D - D-I(s) = D- S with fibre 

a punctured two-disk; as above, S denotes the set of singular points 

of C In particular, the tubular neighborhood V D is a deforma- 

tion retract of Ve(D ) - ~-I(c) 

Now consider the product mapping F = i × N , where i is the 
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inclusion of p2 _C in 1 D2 : 

F : (lO2-C) × D ÷ 1 p2 × p2 

By the connectedness theorem (3.1(B)), the fundamental group of the 

-i 
inverse image F (Ag) of an e-neighborhood of the diagonal surjects 

onto the fundamental group of (~2 _C) x ~ One verifies (see [Ii]) 

that F-I(Ag) contains VE(D) - ¢-i(c) , and therefore V D , as a 

deformation retract. Thus ~I(VD) ~+ ~l(P 2 - C) , and therefore 

X ° ×p2_C V D is connected, as asserted. I 

The above method yields the following corollary (cf. [54]). 

COROLLARY 8.4. 

empty curve C' 

(B) Let C be a node curve meeting an arbitrary non- 

transversely. Then there is a central extension 

1 + A ÷ ~I(i D2 - CuC') ÷ ~i(i D2 - C') + 1 

where A is a free abelian group on r generators, r being the 

number of irreducible components of C 

COROLLARY 8.5. Let C be a node curve defined by an irreducible homo- 

genous polynomial F(X,Y,Z) of degree d (In characteristic p , 

assume that p[d.) Let V ~ ~3 be the non-singular affine surface 

with equation F(X,Y,Z) = 1 Then V is (tamely) simply connected. 

Proof. The canonical map V ÷ ~2 _ C is a d-sheeted unramified 

covering. The corollary is therefore equivalent to the assertion that 

~I(P 2 - C) = ~/ d~ | 

The results of this section extend to higher dimensions. If H 

is a hypersurface in ~n , n > 2 , whose only singularities in codim- 

ension one are normal crossings, then ~I(P n - H) is abelian, and is 

calculated as in Corollary 8.2. One may deduce this from the two-dim- 

ensional case by taking a generic plane section and applying the 
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Bertini theorem (i.i). 

NOTES. (i) Zariski [66] began the study of ~I(P 2 - C) in the 

course of his investigations of surfaces as branched coverings of p2 . 

He stated the theorem of this section, but the proof he proposed de- 

pends on the still unproved assertion of Severi that a node curve of 

degree d can be degenerated to d lines in general position. 

(2) The proofs here follow the outline of Abhyankar [i]. His 

argument worked completely when every component D of C is non-sin- 

gular, for then Bertini's theorem is enough to show that f-l(D) is 

irreducible for a finite covering f branched along C (see [59]). 

The stronger connectedness theorem of §3 allows the case of a general 

node curve to be handled in the same fashion. This was done in the 

algebraic case in [16], and in the topological setting in [i0, ii]. 

The reader will see that the use of the connectedness theorem in 

Lemma 8.3(A) was motivated by the work [20] on branched coverings 

described in §6. 

(3) For historical discussions of previous work on these prob- 

lems, we recommend Chapter VIII of [68], with its appendices by 

Abhyankar and Mumford, and the introduction to [69] by Artin and Mazur. 

We record here only a few of the main previous results, zariski, Popp, 

and Alibert andMaltsiniotis have proved Severi's assertion on the de- 

generation of node curves if the number of nodes is large. On the 

other hand, Abhyankar and Prill proved that ~I(P 2 -C) is abelian 

when the number of nodes is small. For an irreducible node curve of 

degree d with 6 nodes, the theorem was known then for 

> d2/2 - 9d/4 + 1 [2] , and for 6 < d2/4 [55]. 

Edmonds and Geyer (see [22]) had shown that any finite solvable quo- 

Zl(P2- C~ must be abelian. Geyer and Oka had reduced the tient of 

problem to the case where C is irreducible [54]. Oka, Sakamoto and 
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Randell had related the problem to properties of the Milnor fibration 

associated to the defining equation of the curve. For example, 

[56] had proved that the kernel of the map from ~I(P 2 -C) Randell 

to HI(ID2-C) is a perfect group if C is a node curve. 

(4) The techniques of some of these authors extend to simply 

connected surfaces other than 1 ~2 Le and Saito have recently gen- 

eralized the results of [16] and [ii] to complete intersections. For 

singularities other than nodes only a few first steps have been made 

in calculating the fundamental group of the complement. Prill has 

shown that the fundamental group remains abelian if the number of 

cusps and nodes is small. Zariski's example [66] of two sextic curves 

with six cusps, where the fundamental group is 2Z /2ZZ , ZZ /3ZZ when 

the cusps are on a conic, but abelian when they are not, indicates the 

subtleties of these problems. Dolgachev and Libgober have recently 

carried forward this work of Zariski, and have found other interesting 

examples. Moishezon has studied the case in which the curve is the 

branch curve of a projection to p2 , and has related the fundamental 

group to the algebra of associated braid groups. (Progress on these 

last two projects was reported at this conference.) 

§9. Higher Homotopy 

Deligne has shown how a theorem of Goresky and MacPherson can be 

used to bring higher homotopy groups into the setting of the connected- 

ness theorem. We give here an account of the results so obtained. We 

deal in this section with complex algebraic varieties. A local com- 

plete intersection is a connected but possibly reducible variety (or 

scheme) which is locally a complete intersection in some smooth vari- 

ety. For simplicity of notation, we supress base-points of homotopy 

groups. 
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The following deep theorem of Goresky and MacPherson, conjectured 

by Deligne for smooth varieties in [i0] and [ii], is the basic fact 

upon which the results of this section depend. An announcement with 

indications of proofs appears in [23, §4]. 

THEOREM 9.1. ([23]). Let X be a local complete intersection of 

pure dimension n Let 

f : X ÷ ]pm 

be a quasi-finite (i.e. finite-to-one) morphism, and let L c pm be 

a linear space of codimension d Denote by Lg an e-neighborhood 

o_~f L with respect to some Riemannian metric on ~m Then for 

sufficiently small e, one has 

~ (X, f-l(L e)) = 0 for i ~< n - d 
1 

This theorem may be viewed as a non-compact strengthening of the 

Lefschetz hyperplane theorem (cf. [47, §7]). When i = 1 , and X is 

irreducible, one recovers a form of the Bertini theorem (2.1(B)). For 

non-singular X , Geresky and MacPherson also treat the case in which 

f has positive dimensional fibres ([23, Thm. 4.1]). 

The first consequence of Theorem 9.1 is Deligne's generalization 

of the connectedness theorem: 

THEOREM 9.2. ([12]) Let X be a compact local complete intersection 

of pure dimension n , and let 

f : X + pm × pm 

be a finite morphism. Denote by A the diagonal in ]?m × ibm 

a) I_~f n - m i> 1 , then ~l(X, f-l(A)) is trivial. 
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b) If n - m ~ 2 , one has an exact sequence 

w2(f-l(A)) ÷ z2(X) ÷ ~ -~ ~l(f -I (A)) -~ ~l(X) -~ 1 

c) If 2 < i ~< n - m , then n. (X, f-l(A)) = 0 
- -  1 

The map from ~2(X) to ~ occuring in (b) can be identified with 

the difference of the two homomorphisms 

(Prl°f), , (Pr2o f), : W2 (x) ÷ W2(~ m) = 

where pr i (i = 1,2) are the projections of pm × pm onto its fac- 

tors. Observe that statement (a) implies that f-l(£) is connected, 

and that zl(f-l(A)) 4+ ~l(X) (Compare Theorem 3.1 and Corollary 

3.3.) 

Proof. We use the construction introduced in the proof of Theorem 3.1: 

~2m+l 

X*. q ) X 

V ) I~ m x 1 ~m 

L )' A 
PIL 

Recall that p and q are C*-bundles, V is an open subset of 

p2m+l , and L c V is an m-dimensional linear space mapping isomor- 

phically to A The hypotheses on X imply that X* is a (non- 

compact) local complete intersection of pure dimension n + 1 

*-i 
Hence by Theorem 9.1, ~i(X , f (Le)) = 0 for sufficiently small g 

when i ~ dimX* - codim L = n ~ m But since f* is proper, and 

L is a closed analytic submanifold of V , f*-l(L) is a deformation 
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retract of f ..(L s) 

(*) 
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provided that g is small enough* 

z i(X* , f*-l(L)) = 0 for i ~ n - m 

Thus 

Consider now the commutative square 

~i(f*-I (L)) ) zi (f-i (A)) 

1 ; 
~i (X*) ) zi (x) 

Since q gives rise to an isomorphism f*-l(L) + f-l(A) , the top 

horizontal map is an isomorphism for all i On the other hand, by 

(*), the vertical map on the left is bijective for i < n - m , and 

surjective if i = n - m The three assertions of the theorem then 

follow from the long exact sequence of the ~*-bundle q : X* ÷ X , 

which yields isomomphisms Hi(X*) + ~i(X) when i = 0 and i > 2 , 

and an exact sequence 

0 -~ ~2(X*) -~ 7T2(X) ÷ ~Z + nI(X*) + Zl(X) + i 

Finally, to check that the map from ~2(X) to ~ = ~I(C*) 

as described, it suffices to consider the case X = ~m × pm 

f = identity, where the verification is routine. • 

in (b) is 

and 

REMARK 9.3. If X is not compact, the theorem remains valid for 

quasi-finite f provided that the diagonal A is replaced by a small 

e-neighborhood A with respect to some Riemannian metric on 
e 

pm × pm In fact, the C*-bundle p : V + pm x pm is trivial 

over A e when s is sufficiently small. For an appropriate Riemannian 

metric on p2m+l (which may be taken to be a product metric near L ) 

* One can avoid invoking this fa~t by arguing as in the proof of 
Corollary 3.3. 
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the restriction of p to an E-neighborhood L of L is a trivial £ 

+ A with fibre an open disk. The same is therefore true bundle L e s 

*-i f-i of the pull-back f (L) ÷ (As) The argument then proceeds 

as before. 

The exact sequence in statement (b) of the theorem proves 

slightly awkward to use in practice. The applications we have in mind 

follow most easily from a variant of Deligne's result for mappings of 

the form X× y + pm × pm We adopt the following notation: ~m 

denotes the natural C*-bundle ~m : cm+l _ {0} ÷ ~m If 

A 

f : X ÷ pm is a morphism, we let X = X ×pm ~m+ X be the pull- 

A 

back bundle, and f : X ÷ ~m the induced map. 

PROPOSITION 9.4. Let X and Y be compact local complete intersec- 

tions of pure dimensions n and l respectively, and let f : X + ~m 

and g : y ÷ ~m be finite morphisms. Then 

x ^ ^ Y zi( × Y , X ×gin ) : 0 for i-< n + £ - m 

Proof. Observe that there is a natural C*-bundle map ~m × ~m + V , 

where V c p2m+l is the open set used in the previous proof, and 

that the diagonal ~m = ~ c ~m × ~m is the inverse image of the 

linear space L c V This follows from the explicit descriptions of 

V and L given in the proof of Theorem 3.1. Thus starting from the 

finite map F = f× g : X× Y ÷ ~m × ~m , one obtains the following 

commutative diagram of cartesian squares, in which W denotes the 

fibre product of X × y and V over pm × ~m , with projection 

H : W + V  
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^ 

~xy )W 

~m x t ~m ) V 

J J 
z~ ~ L  

"X×Y 

f x g  = F 

~ m  pm 

P 

The horizontal maps are £*-bundles, and the vertical maps are finite. 

As in the proof of Theorem 9.2, the theorem of Goresky and 

MacPherson (9.1) implies that ~. (W, H-I(L)) = 0 for i s n + Z - m 
i 

On the other hand, the pair (X × Y , F-I(A)) is the inverse image of 

-i 
the pair (W, H (L)) under a bundle map, and consequently 

for all i Since ~-I(~) = ~ ×~m Y , the proposition follows. | 

REMARK 9.5. The proposition extends immediately to more than two fac- 

tors. Specifically, if X 1 , ..., X r are compact local complete 

• . • ÷ ~ m  

intersections of pure dimensions n I , .. n r , and if fl : XI 

(isi~r) are finite morphisms, then 

A ^ 

~i(Xl x ... x X r , X 1 X~m ... x~m Xr) = 0 

for i ~ n I + ... + n r - (r- l)m The proof is the same as before, 

except that V becomes an open subset of pr(m+l) -i 

Proposition 9.4 has as a basic consequence the following 

THEOREM 9.6. Let X be a compact local complete intersection of pure 

dimension n , let f : X + ~m be a finite map, and let y ~ pm b_ee 

a closed local complete intersection of pure codimension d Then 

the induced homomorphism 
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, 1 Dm f* : ~i(X f-l(y)) + ~i( ' Y) 

is bijective if i s n - d , and surjective when i = n - d + 1 

(Compare Corollary 4.3.) 

Proof. Note to begin with that the theorem is equivalent to the 

assertion that 

: ^ ~m ~) ~. ~i(X ' }-l(~)) + ~( , 

is an isomorphism for i s n - d , and surjective if i = n - d + 1 

In fact, one has the commutative square 

~i(x ' }-~(~))__~ ~i(x ' f-l(y)) 

~ .  (~m • y) ~ z, (ibm , y) 
1 l 

in which the unlabeled homomorphisms are induced by the bundle maps 

h x : X ~ X and h]~m : ~m ÷ pm Then since Y = h -I (Y) and 
pm 

}-l&) 
= hxl(f-l(Y)) , the horizontal homomorphisms are bijective for 

all i by a standard homotopy property of fibrations. 

Consider next the long exact sequences of the pairs (~, ~-i(~)) 

and (~m ,%) : 

(*) 

^ 

.... ~i(x' }-l(}) 

1 
... ~ ~i(~ m , Y) 

^ 

; Tri_ 1 (Y) 

) ~i_l (X) --~ ... 

I 
. .2 Zi~l (1? m) -~ ..., 

where j denotes the inclusion f-l(y)~_~ X Identifying ~-l(y) 
^ 

^ 
in the natural way with X xlDm Y , Proposition 9.4 asserts that 

j, x ~, : Zi_l(f-l(y)) ÷ ~i_l(X)× ~i_l(y ) is bijective for i < n - d 

and surjective if i = n - d + 1 Thus if i _< n - d , the top row 
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in (*) forms a short exact sequence, and f, restricts to an isomor- 

phism ker(j,) ~ ~i_l(y) Therefore the composition 

^ 

~i(~ ' ~-i(~)) + ~i_l(~-l(~)) + ~i 1 (Y) is bijective when i ~ n - d ; 

one sees similarly that it is surjective for i = n - d + 1 The 

theorem now follows from the observation that ~i(~ m , Y) ~ Zi_l(Y) 

when i s n - d + 1 , since in fact nk(P m) = ~k({ m+l -[0}) = 0 for 

k ~ 2m . • 

Theorem 9.6 contains as special cases strengthened forms of the 

Lefschetz hyperplane theorem, and the theorems of Barth at. al. on the 

topology of small codimensional subvarieties of projective space. To 

begin with, taking Y = L c pm to be a linear space of codimension 

d , and noting that n. (~m • L) = 0 for i s 2(m-d) + 1 , one finds 
1 

that z. (X, f-l(L)) = 0 for i ~ n - d Thus we recover the 
1 

Lefschetz-type theorem (9.1) of Goresky and MacPherson for compact 

X . On the other hand, applying Theorem 9.6 with Y = X , one obtains 

COROLLARY 9.7 If X c ~m is a closed local complete intersection of 

pure dimension n , then 

~i(P m , X) = 0 for i ~ 2n - m + 1 S 

It follows for instance that X is simply connected if 2n > m (com- 

pare Corollary 5.3(B)). Note that by the Hurewicz theorem, Corollary 

9.7 also implies that the natural maps Hi(X , :~) ÷ Hi(~m , ~) are 

isomorphisms for i s 2n - m , and surjective when i = 2n - m + 1 

COROLLARY 9.8. Let f : X + pm 

of Theorem 9.6. Then 

~i(X , f-l(y)) = 0 for 

Proof. 

lary. 

and y c ~m be as in the statement 

i -< min(n - d, m - 2d + i) 

When i _< m - 2d + 1 , ~i(P m , Y) = 0 by the previous corol- 
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In particular, if X, Y c ~m are closed local complete intersections 

of pure dimensions n and Z respectively, then 

~i(X, XnY) = 0 for i s min(n + £ - m , 2£ - m + i) 

REMARK 9.9. Using Remark 9.5, one may generalize Theorem 9.6 to more 

, X n pm than one subvariety y c ~m In fact let f : ~ be as in 

• . . , pm 
c be closed local complete the theorem, and let YI' Yr - 

intersections of pure codimensions dl, ..., d r 

Set d = d I + ... + d r Then the natural homorphism 

r 
zi(X, f-l(nyj)) ÷ H %i(i Dm 

j =i ' Yj ) 

is bijective for i _< n - d , and surjective when i = n - d + 1 

This is already interesting when X : pm For example, suppose 

that Z c pm can be expressed as the intersection of r a 2 local 

complete intersections Y. c ~m of pure codimension c . Then 
J - 

ni(P m , Yj) = 0 for i s m - 2c + 1 (Corollary 9.7), and one finds 

that z. (~ m , Z) = 0 for i s m - rc When the intersection 
1 

Z = nY. is proper, this says that z. (pm , Z) = 0 for i ~ dimZ ; ] ± 

by contrast, Corollary 9.7 only applies here in the range 

i ~ dimZ - codim Z + 1 

NOTES. (i) One of the most classical results concerning the topology 

of algebraic varieties is Lefschetz'~ theorem on hyperplane sections. 

In its original form, this theorem asserted that if X ~ ~m is a 

smooth projective variety of dimension n , and if L f pm is a 

hyperplane meeting X transversely, then the maps Hi(X n L) + Hi(X) 

induced by inclusion are isomorphisms for i < n - 1 , and surjective 

if i = n - 1 Contemporary proofs, using Morse theory, give a 

stronger assertion: if f : X + ~m is a finite map, then 

Hi(X , f-l(L)) = 0 when i ~ n - 1 for any hyperplane L (cf. [47,§7]). 
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The extension of this result to non-compact varieties was initia- 

ted by Zariski [67], who showed that if X is the complement of a 

hypersurface in ~m , and if L is a sufficiently general hyperplane, 

then ~I(X n L) ~ ~l(X) for m ~ 3 , and ~l(X n L~+~ ~l(X) when 

m = 2 Modern proofs have been given by Cheniot [9] and Hamm and 
^ ^ 

Le [31]. Hamm and Le show that in fact ~i(X , X n L) = 0 for 

i ~ m - 1 The same statement holds if X is an arbitrary Zariski- 

open subset of pm (cf. [ii]). The theorem of Goresky and 

MacPherson was conjectured by Deligne in [i0] and [ii]. In [12] he 

showed how the conjecture (as it was at the time) leads to Theorem 9.2. 

(2) Hamm [29] has studied the topology of local complete inter- 

sections. He shows that if X is a complex analytic subset of some 

neighborhood of the origin in C m which is locally defined by r 

equations, and if X e = {z c X I llzll ~ ~} , then X e- {0} is 

(m- r- 2) - connected for small s This result is used by Goresky 

and MacPherson in the proof of Theorem 9.1. Hamm had also proved that 

the Lefschetz hyperplane theorem holds for compact local complete 

intersections. 

(3) Barth proved in [5] that if X, Y c 1 Dm are smooth projec- 

tive varieties of dimensions n and 

(*) Hi(y, Yn X ; Q) = 0 for 

at least if X and Y meet properly. 

l respectively, then 

i < min(n+l-m , 2n-m+l) , 

Taking y = ~m , he deduced 

(**) H i (ibm X ; Q) = 0 for £ < 2n - m + 1 
t - -  

These are the prototypes for Corollaries 9.7 and 9.8, and they aroused 

considerable interest when they appeared. Hartshorne [34] subsequently 

showed that in fact (**) is a simple consequence of the Hard Lefschetz 

theorem. An algebraic proof of (**), valid for local complete inter- 

sections, was given by Ogus [52]. In [53], Ogus proved (*) for local 
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complete intersections, without the hypothesis that X and Y meet 

properly, under the assumption that n > Z 

Generalizations of (*) and (**) to homotopy were obtained by 

tarsen and Sommese. Specifically, Larsen [44] proved Corollary 9.7 for 

smooth X Barth asked in [6] whether Larsen's result remains true 

for local complete intersections. The homotopy analogue of (*) when 

X is smooth is due to Sommese [62]. Sommese in fact proves similar 

theorems for homogeneous spaces other than ~m 

Hamm [30] has given a local generalization of Larsen's result. 

He shows that if X is an irreducible n-dimensional complex analytic 

subset of a neighborhood of 0 in C m , with X - {0} non-singular, 

then X - {0} is (2n - m - i) - connected for sufficiently small 

g (As above, X E = {z~X]r{z]]~a}.) By taking X to be the cone 

over a smooth subvariety of projective space, he recovers Larsen's 

theorem as an immediate consequence. 

(4) There is a Barth-type theorem for branched coverings of pro- 

jective space which extends Corollary 6.3: if X is a non-singular 

projective variety of dimension n , and if f : X + pn is a 

branched covering of degree d , then the homomorphisms 

f : ~i(X) + ~i(P n) are bijective for i s n + 1 - d , and surjective 

if i = n + 2 - d ([45], [46]). For the proof, one shows first that 

f factors canonically through an embedding of X into the total 

space of a certain vector bundle E + pn of rank d - 1 This 

vector bundle enjoys a strong positivity property: 

(*) E(-I) is generated by its global sections. 

Then one uses Theorems 9.1 and 9.2 to prove that if E + pn is a vec- 

tor bundle of rank e satisfying (*), and if X c E is a compact local 

complete intersection of pure dimension n , then ~i(E, X) = 0 for 
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i _< n - e + 1 

taking E to be the direct sum of e = m - n copies of the hyper - 

plane line bundle on 1 Dn , one also recovers Corollary 9.7. The 

proof that the vector bundle associated to a branched covering 

f : X ÷ 1 Dn satisfies (*) uses the Kodaira vanishing theorem on X , 

which accounts for the non-singularity hypothesis. 

This yields the stated theorem for coverings, and by 

(5) The results discussed in Remark 9.9 have a number of inter- 

esting antecedents and generalizations. At least in the non-singular 

case, it is classical that if Z c ~m is a complete intersection of 

r hypersurfaces, then z. (~ m , Z) = 0 for i ~ dimZ Kato and 
1 

Oka (see [41, Lemma 6.1]) observed that if Z is the common zero- 

locus of any r homogeneous polynomials on pm , then 

~i(~ m , Z) = 0 for i ~ m - r Newstead [50] has recently extended 

this to the statement that if X c pm is a smooth projective variety 

of dimension n , and if Z c X is the intersection of X with any 

r hypersurfaces in pm , then ~ (X, z) = 0 for i ~ n - r 
1 

These results follow from (9.9), except that Newstead in fact allows 

X to be arbitrarily singular along Z 

More generally, one can consider a vector bundle E of rank r 

on a smooth n-dimensional projective variety X , and the zero-locus 

Z(s) of a section s of E . For example, if E is a direct sum of 

positive line bundles on ~m , then Z(s) is the intersection of r 

hypersurfaces. When E is suitably positive, or ample, one expects 

to have Lefschetz-type results. Griffiths [24, p. 205], working with 

a differential-geometric definition of positivity, shows that 

~i(X, Z(s)) = 0 for i ~ n - r provided that the section s 

vanishes transversely (although he only states the result for homo- 

logy.) Using a weaker cohomological notion of ampleness, Sommese [60] 

proves that Hi(x , Z(s) ; ~) = 0 when i ~ n - r for transversely 
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vanishing s In fact, his ingenious argument works for the zero 

locus of an arbitrary section s Another result along these lines 

is proved in [46] using the theorem (9.1) of Gores~y and MacPherson. 

Here X is a local complete intersection, and E is a vector bundle 

satisfying the (very strong) requirement that it be a quotient of a 

direct sum of copies of an ample line bundle L , where L is genera- 

ted by its global sections. The conclusion is that ~. (X, Z(s)) = 0 
l 

when i s n - r , for any section s 

§i0. Open Questions 

We list in this section some open questions, and topics for fur- 

ther investigation. 

I) The work of Faltings [15] described in the notes to §3 

generalizes the connectedness theorem (3.1(A)) to homogeneous spaces 

G/P , at least in characteristic zero. It is natural to ask whether 

the analogue of (3.1(B)) holds as well. It would also be interesting 

to know whether Sommese's generalization of the Barth-Larsen theorem 

to homogeneous spaces [61, 62, 63] can be extended to the framework of 

§9. For example, if ~m is replaced in Theorem 9.6 by a 

Grassmannian G of linear spaces of pm , is the conclusion of the 

theorem valid when n - d is replaced by n - d - k , where 

k = dimG - m ? (This is the "ampleness" of the tangent bundle to G 

in the sense of Sommese [60]; see also [32].) There might be inter- 

esting geometric applications of connectedness results for abelian 

varieties. Theorems in this direction have been obtained by Barth 

[4] and Sommese [60, 61, 62, 63]. 

2) Bearing in mind the counter-examples to the conjecture des- 

cribed in Note 2 of §4, are there any useful conditions on an embed- 

ding Y ~-%Z of projective varieties that guarantee the connectedness 
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of f-l(y) when f : X ÷ Z is a proper morphism with 

dimf(X) > codim(Y , Z)? Perhaps one should assume in addition that 

dimY > codim Y (cf. [33, Problem 4.8]). 

3) In applications, the connectedness theorem has been used 

exclusively for mappings of the form f × g : X x y + ~m × ~m 

Does it yield interesting results in more imaginative settings? 

4) There is still something to be learned about how singulari- 

ties affect the results in the topological setting. For example in 

~l statements, as we have seen, one generally needs the assumption of 

local irreducibility. So it is somewhat surprising that this hypothe- 

sis is not required in Corollary 5.3. In the case of higher homotopy, 

Goresky and MacPherson [23, Prop. 4.2] give a variant of (9.1) for 

compact X which takes into account arbitrary singularities. Other 

Lefschetz-type results for singular varieties have been proved by 

Gerstner and Kaup [21], Kato [41], Karchyauskas [40], and Newstead 

[51]. Extensions of the Barth theorems to the singular case were 

obtained by Ogus [52, 53]. The range of applicability of these re- 

sults depends on the local structure of the singularities. It would 

be interesting to find a unified statement, and to prove analogues of 

the results of §9. 

5) The results of §§4 - 7 suggest a number of related questions. 

Suppose that X c ~m is a smooth non-degenerate projective variety 

of dimension n If ~ : X + pk is a generic projection from ~m , 

which of the Thom-Boardman singularities that might occur will neces- 

sarily exist? Along slightly different lines, if 

: X + Grass(P n , ~m) is the Gauss mapping, what Schubert cycles 

~ Grass(~n , ~m) will meet the image y(X) of X ? More gener- 

ally, can one say anything about the connectivity of the pair 

(X, -I(z))? For example if L c pm is a linear space of codimension 
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n + 1 , it follows from Zak's result (7.2) on the finiteness of y 

that the set 

S : {x ~ X I T x meets L} 

is an ample divisor on X , and so z. (X, S) = 0 for i s n - 1 
1 

(This fact was noticed by A. Landman and A. Sommese) . See also ques- 

tion (7), below. 

6) Can any of Zak's techniques be extended to make further 

progress on Hartshorne's conjecture [34] on complete intersections? 

The most obvious question is whether one could prove the projective 

normality of every smooth subvariety of sufficiently small codimension 

in projective space. 

7) A number of interesting problems in algebraic geometry can 

be formulated in terms of the degeneracy loci of a map of vector bun- 

dles (cf. the discussion of Brill-Noether theory in [3].) Specific- 

ally, let 

o:F÷E 

be a homomorphism of vector bundles of ranks f and e on a smooth 

projective variety X , and set 

Dk(O) = {x • X I ranko(x) ( k} 

If non-empty, Dk(O ) has codimension ((f-k) (e-k) in X Under 

suitable positivity hypotheses on the bundles involved, is there a 

Lefschetz-type theorem for the pair (X, Dk(O)) which reduces to the 

results discussed in Note 5 to §9 when F is a trivial line bundle, 

and k : 0 (so that Dk(O ) is the zero-locus of a section of E )? 
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