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Introduction

Our purpose is to describe all numerically positive polynomials in the Chern
classes of an ample vector bundle. In particular, we complete a program initiated

by Griffiths [16].

Let P € Qc,...., c,] be a weighted homogeneous polynomial of degree n,
the variable ¢, being assigned weight i. We say that P is numerically positive for
ample vector bundles if for every projective variety X of dimension n, and every

ample vector bundle E of rank ¢ on X, the Chern number

is strictly positive. (We follow Hartshorne’s definition [20] of ample vector

fx P(cy(E),..., ¢(E))
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bundles.) For example, a theorem of Bloch and Gieseker [1] asserts that the
Chern class ¢, is numerically positive for ample bundles provided that n < e.

Denote by A(n, e) the set of all partitions of n by non-negative integers
< e. Thus an element A € A(n, ¢) is specified by a sequence

exA = A, > 2A, 20 with YA, =n.

Each A € A(n, e) gives rise to a Schur polynomial P, € Qlc,,..., ¢,] of degree
n, defined as the n X n determinant

Cx, Cx +1 Tt Cxjan-
P, =] Cy,-1 Cx, Ca,4n—2],
Cx,—n+1 Cx,—n+2 Cx

where by convention ¢, = 1 and ¢, = 0 if i & [0, e].* Schur polynomials have
been extensively studied in connection with symmetric functions and representa-
tions of the symmetric group (cf. [25], [28], [29]). Geometrically, if Q is the
universal quotient bundle on the Grassmannian G(m — e, m) of codimension e
subspaces of an m-dimensional vector space, then P,(c(Q)) is represented by the
Schubert cycle o, = 0,  , (in the notation of [18], Chapter 1, §5). The classes
P,(c(Q)) (A € A(n, e)) span the cone of effective codimension n cycles on
G(m — e, m), and are independent if m > n + e (cf. [18], [23], [29]).

The Schur polynomials P, (A € A(n, e)) form a basis for the Q-vector space
of weighted homogeneous polynomials of degree n in e variables. Given such a
polynomial P, write

P= ) a,(P)P, (a\(P) € Q).

AeA(n,e)

Our main result is the following

TueoreMm 1. The polynomial P is numerically positive for ample vector
bundles if and only if P is non-zero and

a\(P)>0 forall \ € A(n,e).

For example, taking A = (n,0,..., 0) we recover the theorem of Bloch and
Gieseker [1] that ¢, is numerically positive when ¢ > n. For A = (1,..., 1),
P,(¢(E)) is the nth Segre class (i.e., inverse Chern class) of E; the positivity of
these classes for ample bundles was proved in [13]. We remark that it follows
from the theorem and the theory of Schur polynomials that the product of

*This is a slight abuse of standard terminology: strictly speaking, P, is the result of setting the
variables ¢, , 1, €+ 4, .. equal to zero in the X* Schur polynomial.
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numerically positive polynomials is again numerically positive. (We shall give a
direct proof.) In particular, any monomial in the Chern classes ¢, (i < e) is
numerically positive for ample vector bundles. This was proved by Gieseker [13]
for quotients of direct sums of ample line bundles. The case n = 2 of the theorem
is due to Kleiman [24].

Theorem 1 is closely related to some results and conjectures of Griffiths
([16], [17]). Specifically, Griffiths gave an essentially analytic definition of a cone
II(e) € Qlcys- - - ¢,] of what he termed positive polynomials, and proved that
they are in fact numerically positive for certain classes of vector bundles. He
conjectured the numerical positivity of these polynomials for positive, and more
generally, for ample vector bundles ([16], Conjecture (0.7); {17], p. 38). We use a
result of Usui and Tango [30], who proved Griffiths’ conjecture for ample
bundles generated by their global sections, to show that any P € [l(e) is a
non-negative linear combination of the Schur polynomials. Thus the general case
of the conjecture follows from Theorem I. To complete the picture, we prove that
the Schur polynomials P, are in the Griffiths cone II(e), which thus consists
precisely of the numerically positive polynomials for ample bundles. It was
through the work just mentioned of Usui and Tango that we became aware of the
fundamental role of the Schur polynomials (although they do not appear in [30]
explicitly).

We may explain the idea of the proof of Theorem I. Given a polynomial
P = Ya,(P)P, with a,(P) < 0 for some p & A(n, ¢), one easily constructs a
variety X and an ample vector bundle E with [, P(¢(E)) < 0. Thus the real issue
is to show that the Schur polynomials are numerically positive for ample bundles,
and to this end our approach is to focus on the numerical properties of cones in
vector bundles. Specifically, let E — X be a vector bundle of rank ¢, and let
C C Ebe acone in E (i.e., a subvariety stable under the natural C* action on E).
Assume that C has pure dimension e. Then the intersection class of C with the
zero-section X — E is a well-defined zero-dimensional homology (or rational
equivalence) class on X, which we denote by z(C, E) € Hy(X). These cone
classes arise extensively in the intersection theory developed by R. MacPherson
and the first author (cf. [10], [11], [7]). In the present context, our basic technical
result is

TueoreMm II. If E is ample, then the cone class z(C, E) has strictly positive
degree.

To understand the connection with Theorem I, consider the problem of
proving that [yc,(E) > 0 when e > n = dim X. Suppose for the moment that E
is generated by its global sections. Then [yc,(E) is just the number of points of X
at which ¢ — n + 1 sufficiently general sections of E become linearly dependent.
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To say the same thing differently, let V be a trivial vector bundle of rank
e —n + 1, and let H be the vector bundle Hom(V, E). Inside H one has the
cone {2, of codimension n, whose fibre over x € X consists of homomorphisms
o: V(x) = E(x) of rank < e — n. Giving e — n + 1 sections of E amounts to
choosing a section s: X <= H, and the resulting dependency locus is just s ().
If s is sufficiently general, then s () represents the class (2, H), and we see
that

(@, H)=1c,(E)n [X].

The point is that this formula holds for any vector bundle E. So provided only
that E (and hence H) are ample, the positivity of [y c,(E) follows from Theorem
II. A similar argument handles all Schur polynomials. As for Theorem II, it
quickly reduces to proving the numerical positivity of the top Chern class of a
certain (non-ample) vector bundle. This is accomplished by use of the results and
techniques of Bloch and Gieseker [1].

The definitions and results required from intersection theory are reviewed
in Section 1, along with some preliminary lemmas; Section 2 is devoted to the
proof of Theorem II. Applications to numerically positive polynomials occupy
Section 3. Besides proving Theorem I (§ 3a), we establish the numerical
positivity of various products involving possibly more than one ample vector
bundle (§ 3c¢). We also give a simple application of the theorem to the degenera-
tion of vector bundle maps (§ 3b). The relation of our work to that of Griffiths is
discussed in some detail in Appendix A. Finally, in Appendix B we sketch a proof
of the theorem of Bloch and Gieseker valid in all characteristics. In their original
argument, Bloch and Gieseker needed resolution of singularities in order to apply
the hard Lefschetz theorem. Hironaka’s theorem can now be circumvented by
use of the Goresky-MacPherson-Deligne intersection homology groups on singu-
lar varieties, for which the hard Lefschetz theorem has recently been proved by
Gabber. In the classical case, this approach also leads to a simplification of the
proof of the Bloch-Gieseker theorem.

0. Notation and conventions

(0.1) We work over an algebraically closed field of arbitrary characteristic.
A variety is reduced and irreducible.

(0.2) If E is a vector bundle on a variety X, P(E) is the projective bundle of
one-dimensional subspaces of E. SX(E) denotes the kth symmetric power of E.
Recall that E is ample [20] if for every coherent sheaf & on X there is an integer
k(%) > 0 such that S¥(E) ® Fis generated by its global sections for all k > k().
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We refer to [20] for alternative characterizations and the general theory of ample
bundles. We will often use without explicit mention the most basic facts, notably
that a quotient or direct sum of ample bundles is ample, and that amplitude is
preserved under pulling back by finite maps.

(0.3) Pending the appearance of [7], we refer to [5] for the theory of rational
equivalence on possibly singular varieties. If X is a variety, A,(X) denotes the
Chow group of k-dimensional cycles on X modulo rational equivalence. (When X
is complete, the reader so inclined may replace A,(X) by H,,(X).) Suppose that
X is complete, of dimension n. Then the degree of a class a € Ay (X) is
well-defined. If L is a line bundle on X, and a € A, (X), then the L-degree
of a, written deg,(a), is the degree of the zero-dimensional class ¢ (L)* N a.
Let P € Qlc,,..., ¢,] be (weighted) homogeneous of degree n, the grading on
Qlc,,. .., ¢,] being given as always by assigning weight i to the variable c,. If E
is a vector bundle of rank ¢ on X, then the cap product

P(c|(E),..., c(E)) N [X]
is a class in Ap(X)o = Ag(X) ® Q. We write

fxp(cl(E),...,ce(E)), or fxp(c(E))

to denote its degree. By abuse of notation we write the same thing if E is a vector
bundle on some ambient variety containing X, instead of the more cumbersome
[« P(c(E|X)). Finally, note that if f: Y — X is a finite surjective map, then

F+(P(c(fE)) N [Y]) = P(c(E)) N £4([Y])

by the projection formula. In particular,

fy P(c(f*E)) = (deg f) fx P(c(E)).

1. Preliminary lemmas; Cone classes

Extracting roots of line bundles. We shall make repeated use of the
following lemma of Bloch and Gieseker, which roughly speaking has the effect of
allowing one to deal with fractional powers of a line bundle.

Lemma 1.1 ([1], §2). Let X be a projectivevariety and § a line bundle on X.
Fix a positive integer k. Then there exists a variety Y, a finite surjective map

f: Y- X,
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and a line bundle 1 on Y such that
&=~
Moreover, we can take 1 to be very ample if ¢ is.

Proof. We first suppose £ is very ample, so that £ = Op~x(1)|X for some
embedding X € P". Choose a branched covering f: PY — PV with f*0,s(1) =
Opn~(k). Then simply take Y to be an irreducible component of the inverse image
f~XX); f: Y - X is the natural projection, and 7 = Op~(1)]Y. Note that 7 is
very ample by construction. In general, choose a line bundle £, such that
L = ¢ ® £2%is very ample, and apply the case just treated to L. O

Suppose in the situation of the lemma that X has dimension n and that
P € Qlc,,..., c,] is a weighted homogeneous polynomial of degree n. If E is a
vector bundle of rank ¢ on X, then we set, for t € Z:

F(t)= j;(P(cl(E ® £°'),..., ¢,(E ® £°1))

and
E(t)= j;,P(cl(f*E ® 1%),..., ¢, f*E ® 1°%)).
Then there are polynomials P, € Q[c,..., c,] of degree i, depending only on P,
such that
F6) = X { fe®) RleE) e
i=0 ‘"X
and

B = X {[eln) RlelrEn)er

Lemma 1.2. Viewing Fi(t) and F,(t) as polynomials in t, one has
F,(t) = (deg f)F(t/k).
Proof.

(deg £) [ ex(&)" "PAe(E)) = [ er(£6)" 'P(e( £E))

=k fy c\(n)" " 'P(c(f*E)). D

Cone classes. We briefly review here the definitions and facts from intersec-
tion theory required in the proofs of our main results. Everything we need will
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appear in the forthcoming book [7]; in the meantime, the reader may consult
[10], [11], and [31] for details.

Let X be a variety, and py: E — X a vector bundle of rank ¢ on X. Denote
by 0z: X <= E the zerosection. A cone in E is a subscheme C C E stable under
the natural G, -action on E. A cone C C E gives rise in the obvious way to a
subscheme P(C) € P(E).

If C C E is a cone of pure dimension ¢, then one may intersect its cycle [C]
with the zero-section of E: the result is a well-defined rational equivalence class of
dimension ¢ — e on X. We denote this class by

2(C,E)e A,_(X).

In case there is a section s: X = E which meets C properly (i.e., dim(C N s(X))
=c—eif CNs(X)= ), then z(C, E) is represented by the intersection
cycle [X] -,[C] defined as in Serre {27] (cf. [10], §6). If C is a sub-bundle of E, of
rank f, then 2(C, E) = ¢,_ (E/C) N [X] (cf. [10], §1).

In the general case, there are several equivalent constructions of z(C, E).
First,

(1.3) z2(C, E) = 03[C],

where 03: A (E) - A, _ (X) is the Gysin homomorphism determined by the
zero-section. Alternatively, since 0% is the inverse isomorphism to the flat
pull-back p%: A, _ (X) » A(E) (defined on the cycle level by [V] = [pz {(V)]),
z(C, E) is the unique cycle class on X such that

(1.4) pi(2(C, E)) = [C] inA(E).
(The equivalence of (1.3) and (1.4) uses the functoriality 0% o p§ = (pp °0;)* =
id; cf. [31].)

If every irreducible component of C maps to its support on X with fibre
dimension > 1, then

(1.5) z(C,E) = W*(Ceﬁl(QP(E)) N [P(C)]),

where Qp gy = 7*E/Op (—1) is the rank e — 1 universal quotient bundle on
the projectivization 7: P(E) - X. For an arbitrary cone C C E one has the
inclusion P(C @ 1) € P(E @ 1) of projective completions, and

(1.6) 2(C,E) = W*(Ce(QP(Eel)) n[p(Ce 1)])

(The equivalence of (1.5) and (1.6) is in [10], §3. For (1.4) and (1.6), consider the
embedding E C P(E & 1), with complement P(E). If we define z(C, E) by
(1.4), the class B = 7*z(C, E) — [P(C & 1)] restricts to zero in A (E), and
hence is represented by a cycle on P(E). Since the restriction of Qp 4, to P(E)
has a trivial summand, it follows that ¢ (Qpge1)) N B = 0. Equation (1.6) is then
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a consequence of the elementary fact that 7 4(c(Qprery) N 7*a) = a for all
a € A(X))

If Fis a vector bundle on X, let C @ F denote the fibre product C X\ F,
which sits as a cone in E & F. Then

(1.7) z2(C® F,E® F)=2z(C, E).
Finally, if F has rank f, then for the embedding C = C @ 0 C E @ F one has
(1.8) z(C,E® F)=c(F)nz(C,E).

((L.7) follows immediately from (1.4). For (1.8) one uses the self-intersection
formula (cf. [10], §5)

s*s(a) = c(piF) Na

where s: E = E & F is the embedding ¢ — (e, 0).)

2. Positivity of cone classes

This section is devoted to the proof of the following theorem, which is the
basic technical result of the present paper.

TaeoreM 2.1. Let E be an ample vector bundle of rank e on a projective
variety X, and let C C E be a cone of pure dimension e. Then the cone class
z(C, E) € Ay(X)

has strictly positive degree.
As a simple consequence, we note

CorovrLary 2.2. In the situation of the theorem, suppose that C has pure
dimension ¢ > e. Then

deg;(2(C,E)) >0
(see (0.3)) for any ample line bundle L on X. In particular, z(C, E) = 0.

Proof. Let F be the direct sum of ¢ — ¢ copies of L, and consider the
embedding C = C ® 0 C E® F. Then deg,;(z(C, E)) = deg z(C, E ® F) by
(1.8), and the theorem applies. O

Remarks. (1) It follows from the corollary that if M is a variety, if X C M is
a projective local complete intersection of codimension e with ample normal
bundle, and if Y C M is a subvariety of dimension > e that meets X (possibly
improperly), then the intersection class [X]:[Y] is non-zero in A ,(X). For
instance if M is acted on transitively by a connected algebraic group, then any
subvariety Z of dimension > e must meet X. (Proof: by homogeneity one can
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find a translate Y of Z which meets X, and [Y] is algebraically equivalent to [Z].)
This simplifies and somewhat extends a result of Liibke [26]. See [9] for this and
other applications to intersection theory.

(2) If one assumes in addition that E is generated by its global sections, then
there is an extremely simple and elementary proof of Theorem 2.1. This also
appears in [9] and [7].

Return now to the statement of the theorem. According to (1.7), it suffices
to prove the result for the cone C @ L C E @ L, where L is any ample line
bundle on X. Since z(C @ L, E ® L) may be computed by the formula (1.5),
Theorem 2.1 is a consequence of the first assertion of

TurorReM 2.3. Let F be an ample vector bundle of rank ¢ + 1 on a
projective variety X, and consider the projectivized bundle

7: P(F) > X
with universal quotient bundle Qypp, = 7*F/Op (—1) of rank e. Then for any

subvariety T C P(F) of dimension e, one has

fce(QP(F)) > 0.

T

More generally, let S C P(F) be a subvariety of dimension n, put
ag = dim S — dim #(S),

and fix a very ample line bundle £ on X. Then, provided that ag < q, one has

(2.4) Jerm )" ¢ (Qury) > 0 fora <.

Note that if dim T = e, the condition a; < e (= relative dimension of 7) is
automatic.
We start by proving a non-negativity assertion:

Lemma 2.5. Let E be a vector bundle of rank e on a projective variety S of
dimension n. Assume that S™(E) is generated by its global sections for some
m > (. Then

fscn(E) > 0.

Proof. If n > e there is nothing to prove; so assume n < e. Fix an ample
line bundle £ on S, and let

B(t) = [c(E ® £°),

S
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which we view as a polynomial in # (cf. §1). For any positive integer k, consider a
corresponding Bloch-Gieseker covering

fiT—S,  f&=n%,

with 7 ample, as in Lemma 1.1. Then setting P,(t) = fcn(f*E ® 7®%), we have
T
P (t) = (deg f)P,(t/k) by Lemma 1.2.
By hypothesis, S™(f*E) is generated by its global sections, and thus

S™(f*E ® m) is an ample vector bundle. Hence so too is f*E ® 5 ([20], (2.4)).
But then

1
P(1/k) = c E® >0
(LK) = g 77 e FE @)
by the theorem of Bloch and Gieseker [1]. As this holds for any k > 0, P,(0) is
non-negative. |

Remarks. (1) Concerning our use of the theorem of Bloch and Gieseker in
arbitrary characteristic on the possibly singular variety T, see Appendix B.

(2) This is the only point at which the Bloch-Gieseker theorem is used, and it
would be interesting to give a proof of the lemma avoiding the hard Lefschetz
theorem. Note that it would be enough to know the numerical non-negativity of
the Chern classes of an ample vector bundle.

Proof of Theorem 2.3. Since F is ample, the vector bundle S™(F) ®£fis
generated by its global sections for some m > 0. It is enough to prove the
theorem after passing to a branched covering f: Y — X, by replacement of P(F)
by P(f*F), and of S by some subvariety T C P( f*F) mapping onto S. Hence
applying Lemma 1.1 with k = m, we may assume that

(2.6) S™(F ® £) is generated by its global sections for some m > 0.

We now proceed to prove the theorem by induction on n. Since the result is
trivial when n = 0, we assume the theorem known for all subvarieties of
dimension < n. Since § is very ample, the condition that ag < g, i.e., the
condition that dim 7(S) > n — g, implies that ¢,(7*£)" ¢ N [S] is represented
by a non-zero effective g-cycle, with ¢ < e. For g < n, the induction hypothesis
applies to the components of this cycle. Hence we may suppose that n < e, and
that (2.4) is known (if a5 < q) for ¢ < n; and it is enough to prove

(*) L%(QP(F)) > 0.

Observe next that (*) is clear if ag = n: for then S lies in a fibre of 7, and
c(Qpcry) N [S] is represented by the intersection, in that fibre, of S with a
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codimension n linear space. So we assume that ag < n — 1, in which case the
inequality (2.4) holds by hypothesis at least for ¢ = n — 1; i.e., we have

(2.7) Jerm*€)en-i(Qnry) > 0.

Arguing by contradiction, suppose now that (*) is false. Set L = #*¢§, and
put

Pi(t) = _/Scn(QPm ® L)
(T felnya (Onn)

1

Viewing P;(t) as a polynomial in ¢, we assert that P;(1/k) <O for k > 0.
Indeed, if fsc,(Qpry) < O this is obvious, while if [sc,(Qpr,) = 0 it follows from
(2.7). Fix an integer k for which P, (1/k) < 0, and use Lemma 1.1 to construct a
finite surjective map f: Y — X, plus a very ample line bundle 3 on Y such that
f*& = n°k. We consider the fibre square:

P(FF)—P(F)
7*n =M 7 D 7*é =L

Y
f

with notation as indicated. Observe that f*L = M ®*, and that Qpr.z) = f*Qpr)-
Choose any subvariety T € P(f*F) mapping onto S. Then by Lemma 1.2 we
have

(2.8) chn(QP(f,F) ® M) = deg(T/S) - P,(1/k) < 0.

On the other hand, it follows from (2.6) that S™(f*F ® 1) is a quotient of a
direct sum of copies of n®™* ~ 1 and hence, since 7 is very ample, is generated
by its global sections. Therefore S™(Qp p+jy ® M) is also generated by its global
sections, and so

chn(QP(f*F) ®M)>0

by Lemma 2.5. This contradicts (2.8), and proves the theorem. O

Remark. Observe that the proof does not depend very strongly on the fact
that P = P(F) arises as a projective bundle. In the statement of Theorem 2.3, it
would have been enough to assume, say, that 7: P — X is a proper flat map of
relative dimension e, and that Q is a rank e quotient of 7*F (for some ample
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vector bundle F on X) such that the Chern classes of Q are numerically positive
on each fibre.

3. Positive polynomials for ample vector bundles

3a. Proof of Theorem I. We use the notation established in the introduc-
tion, where Theorem I is stated.

Tueorem 3.1. Each of the Schur polynomials P, € Qfc,,..., c,]
(A € A(n, e)) is numerically positive for ample vector bundles.

Proof. The method is to realize P, as a cone class, and then to invoke
Theorem 2.1. To this end, suppose that A is the partitione > A, > -+ =2 A, >0
of n. Let V be a vector space of dimension n + e, and fix a flag of subspaces
0cV,c--- cV, cVwithdimV,=e + i~ A,. Given a vector bundle E of
rank e on a projective variety X, let

p: H(E) » X

be the vector bundle Hom(Vy, E), where Vi denotes the trivial bundle X X V on
X. Consider the cone
\(E) € H(E)

whose fibre over x € X consists of all o € Hom(V, E(x)) such that
dim(ker ¢ N V,) > i. Note that ,(E) is flat (in fact, locally a product) over X,
and has codimension n = XA, in H(E) (cf. [22], [23]). Alternatively, if wu:
p*Vy — p*E is the tautological homomorphism on H(E), then Q,(E) may be
realized as the locus where each of the compositions

(3.2 p*(V)), o p*V, 5 p*E (l<i<n
X X

13

has rank < e — A,. In particular, this defines a natural scheme structure on
{,(E) (which turns out to be reduced and irreducible, cf. [22]).

Since H(E) is ample if E is, Theorem 3.1 is a consequence of Theorem 2.1
and

LemMma 3.3. The cone class defined by Q,(E) in H(E) is given by
2((E), H(E)) = P\(c\(E),..., ¢,(E)) n [X].

Proof. At least when X is smooth, the determinantal formula of Kempf and
Laksov ([23], Thm. 10) applies in the situation of (3.2) to show that the class of
the cycle of §,(E) is expressed in A ,(H(E)) as

(*) [QA(E)] = {det(cy, i (p*E)), _, ...} O [H(E)].
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Equivalently,
[Q\(E)] = p*(P\(c(E)) N [X]),

where p*: A (X) =2 Ay, n_H(E) denotes the flat pull-back. Since
z(§2,(E), H(E)) is the unique class on X pulling up to [,(E)] (1.4), the assertion
of the lemma follows. If X is singular, the proof of Kempf and Laksov extends
without essential change to show that (*) remains true. Details appear in Chapter
14 of the forthcoming book {7]. (One could also deduce the singular from the
smooth case by choosing a closed embedding of X in a non-singular variety X’ in
such a way that E is the restriction of a vector bundle E’ on X’ ([5], §3.2), and

pulling back the desired formula from H(E’).) a
Conversely:
ProrosiTion 3.4. Let P € Q|c,,. .., ¢,] be a weighted homogeneous poly-
nomial of degree n, of the form
P= Y a\(P)p, (a\(P) € Q),
AeA(n,e)
where

a,(P) <0 forsomep € A(n,e).

Then there exists a projective variety X of dimension n and an ample vector
bundle E of rank ¢ on X such that

fXP(c(E)) <0.

The construction will show that one can even take E to be the quotient of a
direct sum of very ample line bundles.

Proof. Let Q be the rank e universal quotient bundle on the Grassmannian
G(m — e, m) of codimension e subspaces of an m-dimensional vector space.
Assuming that m > n + e, the classes P,(c(Q)) N [G(m — e, m)] (A € A(n, e))
are represented by non-empty independent Schubert cycles 2, of codimension n
(cf. [18], Chapter 1, §5). Let Y C G(m — e, m) be an n-dimensional Schubert
variety dual to §, and let E’ = Q|Y. Thus [, P\(c(E’)) = §,,, and hence

(*) /;P(C(E')) =a,(P) <0.

Fix a very ample line bundle £ on Y, and consider the polynomial

F(t) = fyP(c(E' ® £°1))
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(cf. §1). By (*) we may choose a positive integer k large enough so that
F(1/k) < 0. Form the corresponding Bloch-Gieseker covering (Lemma 1.1):

fZX_’Y, f*$=71®k,
with 7 very ample. Then

fx P(c(f*E’ ® 1)) = (deg f)F,(1/k) <0

by Lemma 1.2. But E’ is generated by its global sections, and so E = f*E’ ® 5 is
ample, as required. This completes the proof of Theorem I. O

Remarks. (1) The variety X just constructed is usually singular, but with a
little more care one can produce smooth examples, as follows. First replace the
Schubert variety Y by its canonical desingularization Y, and E’ by its pull-back to
Y. Then the more precise version of Lemma 1.1 proved in [1] shows that if k is
prime to the characteristic of the ground field, one can find a Bloch-Gieseker
covering of Y by a smooth variety X, and the argument proceeds as before. (One
can take X non-singular even if k is not prime to the characteristic, but then it is
conceivably no longer possible to have 5 very ample.)

(2) One of the motivations for early work on these questions had been to
find a numerical criterion for ampleness analogous to the theorem of Nakai et al.
for the line bundles. However it was shown in [6] that no such criterion exists.

(3) While Theorem I gives a good picture of the numerical properties of
ample vector bundles, practically nothing seems to be known about the effectiv-
ity of the cycles in question, which suggests the following:

Problem. If E is an ample vector bundle of rank e on an n-dimensional
projective variety X, determine whether or not some multiple of a given Schur
class

P,(c(E)) n [X], Ae A(k,e), k <n,

is effective.

This would already be interesting to know for algebraic equivalence. It is
elementary that a sufficiently high multiple of the dual Segre class (correspond-
ing to A = (1,..., 1)) is effective [6], but this is the only nontrivial result of
which we are aware. When E is generated by its global sections, then the Schur
classes themselves are effective. Hence the problem has an affirmative solution
whenever one can find a proper, surjective, generically finite map f: Y — X such
that £*E is generated by its global sections. However, examples of Gieseker ([13],
pp. 111-112), plus the Ramanujam vanishing theorem, show in characteristic
zero that such a map need not exist. We remark that Gieseker’s examples also
give rise to counterexamples to a conjecture of Hartshorne ([21], 111.4.4).
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3b. Application to degeneracy loci of vector bundle maps. The positivity of
cone classes may also be applied to the degeneration of vector bundle homomor-
phisms. Specifically, let E and F be vector bundles of ranks ¢ and f on a
projective variety X. One may consider three types of vector bundle maps:

(A) wu: E — F, u arbitrary;

(B) u: E - E ® L, L a line bundle, u symmetric;

(C) u: E - E ® L, L a line bundle, u skew-symmetric.
In each instance, let

Di(u) = {x € Xjrank u(x) < k}.

Since a skew-symmetric matrix never has odd rank, we limit ourselves in case (C)
to even values of k. The expected codimensions m, in X of these degeneracy loci
are

for (A): m, = (e — k)(f— k)
e—k + 1)

for (B): m, = ( 5

for (C): m, = (e;k) (for k even)

(cf. [19]). In general, of course, these loci may be empty even when their
expected dimensions are non-negative. Under suitable positivity hypotheses,
however, this cannot happen:

ProrosiTion 3.5. Given a vector bundle homomorphism u of type (A), (B)
or (C), assume that dim X > m, ( for the appropriate choice of m,). Suppose in
addition that the vector bundle

Hom(E, F) in case (A),
SXE)® L in case (B),
A(E)® L in case (C)

is ample. Then D\(u) # . In fact, D,(u) meets any subvariety Y C X of
dimension > my.

Proof. We treat case (A), the others being virtually identical. As in the proof
of Theorem 3.1, there is a tautological degeneracy locus £, C Hom(E, F); &, is a
cone of codimension m,. The given homomorphism u determines a section
v: X > Hom(E, F), and D,(u) = v~ ;). In particular, if D, (u) has the
expected codimension m,, or is empty, then it is the support of a cycle
representing the cone class z(Q,, Hom(E, F)) (cf. §1). But this class is non-zero if
Hom(E, F) is ample, by Corollary 2.2, so D,(u) # @& . The last statement follows
by restricting u to Y. O
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Remarks. (1) If the degeneracy locus D (u) is empty or has codimension
m,, then it supports a cycle given by a determinantal formula in the Chern
classes of the bundles in question. When X is smooth, this is the well-known
formula of Porteous in case (A) (cf. [23]), and in cases (B) and (C) the
corresponding expressions have been determined by Harris and Tu [19]; for
singular X, see [7]. As in Lemma 3.3, the same formulae compute the cone classes
z(Q,, Hom(E, F)), 2(2,, S¥E) ® L), and (R, A% E) ® L) arising in the proof
of the proposition. Thus these determinantal expressions are in fact numerically
positive for vector bundles satisfying the ampleness hypotheses of the proposi-
tion.

(2) In setting (A), the proposition was proved in [8]. It was shown there
moreover that when dim X > (e — k)(f — k), then D, (u) is connected provided
that Hom(E, F) is ample. As L. Tu points out, the proof in [8] does not seem to
generalize to cases (B) or (C), and the connectedness of symmetric and skew-
symmetric degeneracy loci when dim X > m, is open. The natural conjecture to
make here is that if E is an ample vector bundle of rank e on a projective variety
X, and if Z C E is any (irreducible) closed subvariety, then the intersection
Z N 0 of Z with the zero-section is connected when dim Z > e. Applying this to
a translate of @, would give connectedness in cases (B) and (C). Corollary 2.2
and a deformation argument show that at least Z N 0, is non-empty when
dim Z > e.

3c. Cone cohomology classes and positivity of products. As a final applica-
tion of the results of Section 2, we will consider products of numerically positive
polynomials in the Chern classes of possibly different ample vector bundles. We
require first some general remarks on cone classes.

Consider as in Section 1 a vector bundle E of rank e on a projective variety
X, and a cone C C E of pure dimension ¢ > e. At least when X is singular, one
cannot expect in general to be able to intersect the cone class 2(C, E) € A, _ (X)
with arbitrary cycles on X. Roughly speaking, this reflects the fact that z(C, E)
lies in homology rather than cohomology. Certain cones, however, such as the
determinantal varieties €,(E) arising in the proof of Theorem 3.1, do naturally
define cohomology classes. These cohomology classes can be multiplied, and one
can discuss the positivity of their product.

Specifically, suppose that C is flat over X, of relative dimension e’, and let
n = e — e’. Then C determines a class

d(C, E) € A(X),

where A*(X) is the operational Chow cohomology group constructed in [12], §9
(cf. also [7]). Before giving the formal definition, we note the salient points for
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our purposes. First, cap product with cl(C, E) gives a homomorphism
A X))~ Ay (X)
a—=cl(C,E)Na,

defined on the cycle level as follows. Given a subvariety V C X of dimension d,
let C|V = C X,V be the restriction of C to V. Then

(3.6) d(C,EYN [V]=2(C|V,E|V) € A, (V),

which extends to d-cycles by linearity (and in fact passes to rational equivalence).
Note in particular that cl(C, E) lifts the cone class z2(C, E) to cohomology in the
sense that

c(C,E)n [X] =2(C, E).

Given another vector bundle E’, and a cone C’ € E’ flat over X, of codimension
n’ in E’, the product cl(C, E) - cl(C’, E’) acts according to the rule

3.7)  {d(C, E)-d(C, E)) na=d(C, E) N {d(C, E') N a).

Finally, one has the cohomology analogue of (1.7) and (1.8): if C & C’ denotes
the fibre product C X ,C’, which sits as a cone of codimensionn + n’in E & E’,
then

(3.8) cd(C,E)-c(C,E)=cd(Co C',E & E)

in A"*(X).

More precisely, recall that an element ¢ € A"(X) is determined by specify-
ing homomorphisms A ,(X’) = A, _ (X’), for every map f: X’ — X, satisfying
various natural compatibilities ([12], §9.1). (One thinks of these homomorphisms
as cap product with f*(¢).) The class cl(C, E) € A"(X), n = codim(C, E),
by definition operates as follows. Given f: X’ — X, set E’ = E XX’ and
C’ = C X 4 X’, which is a cone in E’. Let #": C’ = X’ denote the projection (so
that #’ is flat), let i": C’ = E’ be the inclusion, and let 0;: X’ = E’ be the
zero-section. Then the homomorphism of cl(C, E) is defined as the composition

T’ i , 0 ,
(*) AI(X,) - Al+e—n(Cl) - Al+e—n(E ) _E) Al—nx s

where #'* is flat pull-back, i’ is inclusion, and 0%, is the Gysin homomorphism.
The fact that these homomorphisms satisfy the compatabilities required to define
an element in A*(X) follows from the corresponding assertions for flat pull-backs,
proper push-forwards and Gysin maps proved in [12], §9. In view of (1.3), the
formula (3.6) corresponds to the case X' =V, [ = d in (*). Formula (3.7) is
definitional. For (3.8), one must prove that both sides have the same effect on a
class [V] for V a subvariety of X’, X’ — X an arbitrary morphism. After pulling
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back the cones and bundles to V, one is reduced to considering V = X’ = X, in
which case (3.8) is equivalent to

(%) (C,E)nz(C',E)=2(C® C"E & E)

inA;, , (X),l=dimX. Letp: E’' - X, q: E @ E' > E’ be the projections.
By construction,

p*(cl(C, E) Nz(C", E')) = cl(C X xE', E X E’) N p'*(2(C’, E))
=cd(Ce E,E® E)n [C].
Similarly,
q*((C® E,E® E)n[C])=[Ce C].
Hence
q*p*(cl(C, E) N z(C", E")) = [C® C].

Since q*p’™* = (p'q)*, and p’q is the projection from E & E’ to X, (**) follows.
These preliminaries out of the way, we may give the cohomology analogue
of Theorem 2.1 on the positivity of cone classes:

THEOREM 3.9. Let E,,..., E, be ample vector bundles on a projective
variety X. Let C; C E, be cones, with codim(C;, E;) = n,, and suppose that each
C, is flat over X. Set n = n; + - -- + n,. Then the product

d(C, E\)-----d(C, E,) € A(X)

is numerically positive in the sense that

JMCLE) - d(C,E,) >0
Y
for any subvariety Y C X of dimension n.
(For a € A*(X), [ya denotes the degree of the zero-cycle a N [Y].)

Proof. Since a direct sum of ample vector bundles is ample, it suffices by
(3.8) to treat the case r = 1. But in view of (3.6), this follows immediately from
Theorem 2.1. O

Consider now, for 1 < i < r, Schur polynomials
P}\lEQ[Cl,...,Ce'], A, € Aln,,e),
(so that P, has degree n,) and let n = n; + --- 4+ n_. Then one has

CororLary 3.10. For any projective variety X of dimension n, and any
ample vector bundles E,,. .., E_ on X, with k(E,) = e,

fnp (c(E,))
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Proof. Let @, (E,) € H(E;) be the cone introduced in the proof of Theorem
3.1, which is flat over X. A minor extension of the proof of Lemma 3.3 shows that

Px,(C(Ei)) = Cl(ﬂx,(Ei)’ H(Ei))'

(The point to observe is that given a map f: X’ — X, the class of the cone
Q,(E)) € H(E)) is given by

(P, (fre(E)) 0 [X1]),
where p”: H(E]) — X’ is the bundle map.) Hence the corollary follows from

Theorem 3.9. 0
For example, given ample vector bundles E,,. .., E, on X, any monomial of
the form ¢;(E,) - -+ - ¢,(E,) (j < ¢;) is numerically positive. Of course the

corollary also gives the positivity of products of non-negative linear combinations
of Schur polynomials. In particular, one could replace P, in the corollary by any
numerically positive polynomial of degree n, for ample bundles of rank e;. Note
that Theorem 3.9 also applies to the cones arising in Section 3b.

Remark. These results on the positivity of products seem rather striking in
view of the fact that it is not generally true that the product of numerically
positive classes is again numerically positive. For instance, Mumford has con-
structed a line bundle L on a surface X such that ¢,(L) is numerically positive;
ie.,

/Ycl(L) >0

for every effective curve Y < X, but with

/X e)(L)? = 0.

(See Hartshorne [20], Chapter I, §10.)

Appendix A. Relation to the work of Griffiths
Griffiths has defined in [16] a graded cone
1(e) = @ 11(e), < Qe ... o

of positive polynomials,* and our main purpose in this appendix is to show that
II(e) coincides with the cone of non-negative linear combinations of the Schur
polynomials P,.

*To avoid confusion with our previous terminology, we will call these “ Griffiths-positive.”
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To begin with, we recall, following [16], §5, the definition of [I(e). Consider
the coordinate ring Q[7;;] (1 < i, j < e) of the space of ¢ X e matrices. GL(e, Q)
acts on matrices by conjugation, and the corresponding graded ring of invariants

I(e) = Q[7, ]

is naturally isomorphic to the graded ring Q[x,,.. ., x,]% of symmetric polynomi-
als in e variables. Explicitly, the isomorphism is obtained by evaluating an
invariant polynomial P € I(e) on the diagonal matrix diag(x,,..., x,). On the
other hand, the ring of symmetric functions is isomorphic in the usual way to the
graded ring Q[c,,..., c,] (¢, corresponds to the ith elementary symmetric
function). Hence it suffices to specify the Griffiths-positive polynomials in I(e).*

To this end, Griffiths first shows that any homogeneous P € I(e), can be
written (non-uniquely) in the form

(A].) P = Z pp,vr.‘l'Y:lm)PT(l) T Tpﬂ(n)m(n)

pE [1 s € ] "

7, TES,
for some numbers p, , ., where S, denotes the symmetric group on n objects. He
then defines a non-zero polynomial P to be positive if it can be expressed in the
form (A.1) with

(A.2) Pom,r = pr,jqp,j,vrap,j,'r forall p, 7, 7
i€l
for some real A in20 and complex numbers g, ; ,, and some finite set J. The
positive cone [I(e) consists by definition of all such Griffiths-positive polynomi-
als. It is graded by degree.
Griffiths showed that II(e) contains Chern classes, dual Segre classes, and
products of these. In fact, one can say more:

ProposiTioN A.3. Let

P= )Y a(P)P, (a)\(P) € Q)
A€ A(n,e)
be a non-zero weighted homogeneous polynomial in Q[c,,. .., c,]. Then P lies in

the Griffiths cone Il(e) if and only if each of the Schur coefficients a,\(P) is

non-negative.

*The significance of the ring I(e) in the present context stems of course from the fact that if #
is an e X e matrix of 2-forms locally representing the curvature tensor of a Hermitian vector bundle
E of rank e on a manifold M, and if P € I(e) is homogeneous of degree n, then P((i/27)8) €
HE%(M) represents the corresponding polynomial in the Chern classes of E. (Cf. [16] or [18],
Chapter 3, §3).
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Remark. Consider a vector bundle E on a complex projective manifold M.
Griffiths defines E to be numerically positive if for any analytic subvariety
W C M of dimension n, and for any rank q quotient Q of E|W, one has

/WP(C(Q)) forall P € II(q),.

Griffiths proved ([16], Theorem D) that E is numerically positive if it is
generated by its global sections, and if in addition the resulting second funda-
mental form is surjective. He conjectured ([16], Conjecture (0.7)) that any
positive vector bundle* is numerically positive, and proved this in some special
cases. In [17], § 7, after the work [1] of Bloch and Gieseker had appeared,
Griffiths speculated on the possibility that arbitrary ample bundles are numeri-
cally positive. This was proved using Schubert calculus by Usui and Tango [30]
for bundles generated by their global sections. Since restrictions and quotients
preserve amplitude, the proposition shows that the numerical positivity of all
ample vector bundles is in fact a consequence of our main result. At the same
time, the proposition and Theorem I, one hopes, shed some light on the
geometric significance of this concept.

Lemma A.4. For a polynomial P as in Proposition A.3, the following are
equivalent:

(a) ay(P) = 0 for every A € A(n, e);

(b) P is numerically non-negative for vector bundles generated by their
global sections;

(¢c) For every n-dimensional subvariety Y of the Grassmannian
G(m — e, m), m = n + e, with rank e universal quotient bundle Q, one has

fYP(C(Q)) 2 0.

Proof. That (a) = (b) = (c) is clear, and (c) = (a), which is all we need, is
the first step in the proof of Proposition 3.4 above. O

Proof of Proposition A.3. Suppose first that P is Griffiths-positive. It is the
content of [30], Theorem 2.1, that condition (c) of the lemma holds. (See also
[16], beginning of proof of Theorem D, p. 246. The gist of these computations is
that P(c(Q)) is represented by a non-negative (n, n)-form.) Hence all the Schur
coefficients a,(P) are non-negative.

*This is a differential-geometric condition that in particular implies ampleness ([16], Theorem

B). Note that ampleness (in the sense of Hartshorne [20], as we are using the term) is called
*“cohomological positivity” in [16].
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Conversely, for A € A(n, e), let F, = F,(T;;) € I(e), denote the invariant
polynomial corresponding to the Schur function P, under the isomorphism
I(e) = Q[cy,. .., c,]. We wish first of all to express F, in the form (A.1). To this
end, recall that partitions of n are in natural bijection with the irreducible
representations of the symmetric group S, (cf. [2], §28). Given A € A(n, e), let
¢, denote the corresponding representation, and x, its character. Then one has
the formula

1
(AS) F)\ = m GZS XA(T)TPLPM) T TPnP1(n)
pE[l,:e]”

whose proof we recall below. This leads to

1\2 1
(A6) F)\ = (m) . ZES X)\(TW )TP,,a)Pr(l) IR Tp'n(n)p-r(n)
pe’[l,e?"

which is in the desired form (A.1). To see that (A.6) satisfies the requirement
(A.2), choose a basis with respect to which the representation ¢, is unitary, and
write ¢,(7) = (a,,(7)) € U(m), where m = dim ¢,. Then

xy(mr 1) = Trace(%('r) 't(i))\(ﬂ))
= Z akl(T)akl(Tr)s

l<k,l<m

which is of the form (A.2) (for J = [1, m])?). Thus each Schur polynomial P, is
Griffiths-positive.

Finally, for lack of a suitable reference, we sketch the derivation of
(A.5). For each positive integer k, let u, denote the symmetric polynomial
x4+ oo+ x5 A= (AL A,,...) is a partition of n, set u, = ITu, . Given
7 € §, we write (1) for the partition of n determined by the cycle structure of 7,
so that each i-cycle contributes a part i to the partition (7). Thinking of ¢, as the

ith elementary symmetric function in x,,..., x,, let f, € Q[x,,..., x,] be the
symmetric polynomial P,(¢,(x),..., ¢,(x)). Then one has the beautiful formula of
Frobenius:

1
(A'7) f)\(xl"“’xe)=m Z x)\(T)u('r)(xl""’xe)‘

res,

(cf. [28], §13, or [25], Chapter 6.2). The formula (A.7) is sometimes stated under
the assumption that the number of variables is at least n, but the general case
follows by setting some equal to zero.
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It remains only to rewrite (A.7) in the ring I(e). The one point to note here

is that the symmetric polynomial u, = x¥ + - -+ + x* corresponds to the poly-
nomial

(A.8) P = Trace(T*) € I(e),

where T is the matrix (7;,). (P is invariant and agrees with 4, on diag(x,,.. ., x,).)
The desired formula (A.5) now follows by using (A.8) to write out the right-hand
side of (A.7). O

Remark. Perhaps the key feature of the definition (A.2) is that it implies
that P((i/27)8) is a non-negative (n, n)-form when 8 is the curvature matrix for
the natural connection on a quotient of a trivial bundle and P is Griffiths-positive
(cf. the computations in [16] and [30] cited above). One may speculate that the
definition was framed with this requirement in mind, and in this sense Griffiths-
positivity appears as an essentially analytic notion. On the other hand, ampleness
(in the sense of Hartshorne) seems not to be well understood from a differential-
geometric point of view. So it might at first glance seem surprising that the
Griffiths cone II exactly agrees with the cone of numerically positive polynomials
for ample vector bundles. In fact, however, the thrust of our work is that the set
of polynomials turning out to be positive or non-negative in a given context is not
very sensitive to the particular class of vector bundles with which one deals. Thus
the numerically positive polynomials for arbitrary ample bundles coincide with
the positive polynomials for quotients of sums of very ample line bundles
(Proposition 3.4), and these in turn essentially coincide with the non-negative
polynomials for bundles generated by their global sections (Lemma A.4).

Appendix B. The theorem of Bloch and Gieseker

Goresky and MacPherson ([14], [15]) have constructed intersection homol-
ogy groups IH*(X) for a possibly singular complex projective variety X which
share many of the properties of homology-cohomology on a smooth variety.
Deligne [4] has extended the construction to arbitrary characteristic (with
coefficients in a field of characteristic zero), and Gabber has proved the hard
Lefschetz theorem for these groups (cf. [3]):

(B.1) If £ is the first Chern class of an ample line bundle on an n-dimen-
sional projective variety X, then for all i < n, the map

. -§ ,
JH"~{(X) = IH"*{(X)

obtained by cup-product with §¢' is an isomorphism.
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Using Gabber’s theorem (B.1) in place of the classical Lefschetz theorem,
the Bloch-Gieseker proof of the positivity of the Chern classes of an ample vector
goes through in arbitrary characteristic. In fact, their proof becomes significantly
shorter, since by working directly on possibly singular varieties one avoids the
final part of the argument. We sketch their proof.

TueoreM (Bloch and Gieseker [1]). Let X be a projective variety of dimen-
sion n, and E an ample vector bundle of rank e on X. If e > n, then

fxcn(E) > 0.

Proof. We first show that ¢ (E)#= 0. To this end let P = P(E), and
¢ = ¢,(Op (1)) The amplitude of E is equivalent to the ampleness of the Serre
line bundle Op /(1) on P ([20], (3.2)). On the other hand, recall (cf. [4]) that
there are canonical homomorphisms

Hk(P) - IHk(P) - H2(n+e—l)—k(P)’

compatible with multiplication by cohomology classes, whose composite is cap
product with the fundamental class [P] of P. Consider the class

a=¢"—axe(E)E 2 4 -+ (=1)" o, (E) € H 2(P),

where m: P — X denotes the bundle map. Since 7 ,(£§°" - a N [P]) = [X], the
image of « in H, (P), and a fortiori in IH?"~*(P), is non-zero. But if ¢ (E) = 0,
then £¢*17" . @ = 0, which contradicts (B.1).

The proof proceeds by induction on n. Since the case n = 0 is trivial, we
assume the result for all varieties of dimension < n. We assert that then
JxCn— ((E)c (L) > 0 for any ample line bundle L on X. Indeed, after replacing L
by L®™ for m > 0, we may suppose that L = 0,(Y) for some Cartier divisor
Y € X, in which case

Jen-sB)edL) = [, (EIY).

Now suppose the theorem false, so that [yc,(E) < 0. By the remarks above,
we may choose an ample line bundle L and a positive integer k such that

1
JelB) + 1 [ e (E)ei(L) = 0.
X X
Consider a corresponding Bloch-Gieseker covering:

£:Y>X, frL=Me*
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(Lemma 1.1). Then f*E ® M is ample on Y, but

/Yc,,u*E ® M) =/ch<f*E) +/ch_1<f*E)-cl<M) =0,

which contradicts the first step of the proof. O
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