
ON THE CONNECTEDNESS OF DEGENERACY LOCI 
AND SPECIAL DIVISORS 

BY 

W, FULTON(1) and R. LAZARSFELD 

Brown University Harvard University 
Providence, U ,S .A .  Cambridge, U.S.A. 

Introduction 

Let C be a smooth complex projective curve of genus g, and let J be the Jacobian of C. 
Upon choosing a base-point in C, J may  be identified with the set of linear equivalence 
classes of divisors of degree d on C. Denote by  W~ the algebraic subvariety of J para- 
metrizing divisors which move in a linear system of dimension at  least r. A fundamental  
theorem of Kempf  [9] and Kleiman and Laksov [11, 12] asserts tha t  these loci are non- 
empty  when their expected dimension 

= g - ( r  + l ) ( g - d + r )  

is non-negative. We complement this existence theorem with two results on the global 
structure of W~ when Q >0.  First of all, for an arbi trary curve C, we prove 

T ~ E O ~ M  I. I /  Q>0, then W~ is connected. 

When C is generic (in the sense of moduli), deep results about  the local geometry of W ra 
have been obtained by  Griffiths and Harris [5] and by  Gieseker [4]. Combining these with 
Theorem I,  we deduce the 

COROLLARY. For a generic curve C, W~a is irreducible when Q>0. 

By a standard construction, W~ may  be realized as the locus where a certain homomorphism 
of vector bundles on J drops rank. Theorem I then becomes a simple consequence of a 
general resul t - -of  independent in teres t - -on the connectivity of such degeneracy loci. 

(1) Partially supported by the J. S. Guggenheim Foundation and by NSF Gran$ MCS 78-04008. 
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let 
Specifically, let X be an irreducible complex projective variety of dimension n, and 

a: E ~ F  

be a homomorphism of vector bundles of ranks e and / on X. Pu t  

Dk(~) = {x eX[ rank ~(x) < k}: 

If non-empty, the degeneracy locus Dk(~) has codimension ~< ( e -  k ) ( / -  k) in X. Under a 
suitable positivity hypothesis on the bundles in question, we prove that  Dk(a) is connected 
as soon as its expected dimension is positive: 

and 

THEORn~ II. Assume that the vector bundle E* |  2~) is ample. Then: 

(a) Dk(~) is non-empty when n >~ ( e - k )  (/-]~), 

(b) Dk(a) is connected when n > ( e -  k) ( / -  to). 

I t  was suggested in [3, w 10] tha t  such ~ result should hold. Note that  it is not assumed 
that  D~(a) actually has the expected dimension. 

The present paper is divided into two parts. w 1 is devoted to the proof of Theorem 
II ,  and to a simple consequence concerning the singularitie~ of finite mappings to projec- 
tive space. The application to loci of special divisors occupies w 2. Our construction of W~ 
follows the well-known approach of Grothendieck, Mattuck, Schwartzenberger, Kempf, 
I~leiman and Laksov. Since only an elementary part  of their work is needed, we have 
included details for the convenience of the reader. We remark that  statement (a) of Theo- 
rem I I  gives rise to a simple proof of the Kempf-Kleiman-Laksov existence theorem for 
special divisors, bypassing the Chern class computations of the original proofs. On the other 
hand, those calculations lead to a formula for the cohomology class of W r~, which is impor- 
tant  in enumerative questions. We recommend Chapter 3 of the forthcoming book [1], 
whose notation we follow, for an account of results along these lines. 

Finally, a word on the proof of Theorem I I  may  prove helpful. The strategy is to 
reduce the problem to proving the vanishing of certain singular cohomology groups, and 
then to draw on Lefsehetz-type theorems to establish these v~nishings. Consider for example 
the special case when E is a trivial line bundle and k=O, so that  Do(a ) =Z(a), the zero- 
locus of the section a of the ample vector bundle F. If  F is a line bundle, then X - Z ( a )  is 
affine; hence H*(X-Z(a))=O for i>~dim X + I ,  and this easily leads to a proof thatZ(~)  
is connected if dim X~>2. W h e n / = r k  (F) >1, ~ determines a section o* of the line bundle 
O(1) on P(F*). Since P(F*)-Z(a*)  fibres over X - Z ( a )  with fibres C/-1, and  since O(1) is 
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ample on P ( F * ) b y  the ampleness of F,  one deduces tha t  H~(X-Z(a))  = 0 for i >~ dim X +/ ;  
the connectedness of Z(a) folloWs when dim X >~ f § 1. This argument  was used by  Sommese 
[15], and an elaboration of this construction plays an important  role in the proof of Theo- 
rem I I .  

Acknowledgements. We have benefitted from conversations with E. Arbarello, D. Eisenbud 
and K. Vilonen. We are particularly grateful to J .  Harris for his suggestions regarding the 
application to special divisors. 

w 1. Connectedness of degeneracy loci 

We star t  with some notation. I f  A is a vector bundle on a variety X, A(x) denotes the 
fibre of A at  a point xE X. P(A) is the projective bundle whose fibre over x E X  is the pro- 
jective space of one-dimensional subspaces of A(x). Finally, recall tha t  by definition, A is 
ample if the line bundle Op(1) on P(A*) is ample [7]. 

This section is devoted to the proof of 

THeOReM 1.1. 
and let 

Let X be an irreducible complex projective variety o/ dimension n, 

o: E - + F  

be a homomorphism o/vector bundles on X o] ranks e and/ .  Assume that the vector bundle 

is ample, and let 
E * |  = t tom(E,  F) 

Dk(a) = (x e X I rank a(x) ~< k}. 
Then: 

(a) Dk((~) is non-empty i / n  >~ (e-- k) (/-- k), 
and 

(b) Dk((~) is connected when n > (e--k) ( / - k ) .  

Proo/. To begin with, note tha t  it suffices to prove the theorem for normal varieties. 
For if v: X - ~ X  is the normalization of X, then v gives rise to a homomorphism 5: v*(E)-> 
v*(F) of vector bundles on X, and Dk(# ) surjects onto/)k((~). Moreover u*(E*)|  is the 
pull-back of an ample vector bundle under a finite morphism, and hence is ample. Thus, 
we may  assume tha t  X is normal. Furthermore,  replacing a if necessary by its transpose, 
we may  suppose tha t  ] ~> e. 

Pu t  k' ~-- e -  k, and let 
~: G = G~,( E)-+ X 
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be the Grassmannian bundle of k'-planes in E. Denote by S the rank ~' tautological sub- 
bundle of ~*E on G. Then there is a natural homomorphism 

defined as the composition S ~ * E - ~ r ~  F. Thus r takes a ~'-plane in E(x) to its image 
under ~(x). Let  

denote the zero-locus of ~ (i.e. the zero-set of the corresponding section of S*| Then 
Y surjeets onto Dk(~), s o i t  is enough to show that  Y is non-empty and connected in the 
appropriate range of dimensions. To this end, we will s tudy the cohomology of G - Y .  
Specifically, letting r =n + k ( e -  k)=dim G, we will prove 

PROPOSITION 1.2. I[ i >~r + ld[=n + ([ + k) (e-lc), then 

H~(G-  Y; Z) = 0. 

Observe that  the proposition indeed implies the theorem. For ff n ~> ( e -k )  ( / - k ) ,  then 

r = n + k ( e - k )  >t ( e -k ) / ,  

and so H2r((~ - Y; Z)=0 .  In particular, G -  Y is not compact. Therefore Y, and hence also 
Dk(a), must be non-empty. Similarly, if n > ( e - k ) ( / - k ) ,  then the proposition implies tha t  
H~r_I(G-Y; Q)=O. Since X and thus G--is normal, the following lemma yields the 
vanishing of Hi(G, Y; Q), and hence the connectivity of Y. 

LEI~MA 1.3. Let G be a normal projective variety o/ dimension r, and let Y~_ G be a 
closed algebraic subset. Then there is an injection 

Hi(G, Y; q) r Y; q). 

Proo[. This follows from the exact sequence of low degree terms of the Zeeman spectral 
sequence (d. [13]). Q.E.D. 

Lemma 1.3 was pointed out to us by K. Vilonen. When X is smooth, one can use 
Lefsehetz duality on (] in place of Lemma 1.3. 

The proof of Proposition 1.2 depends on a simple construction, which we now describe. 
Consider a homomorphism 

h : A ~ B  

of vector bundles of ranks a and b on a variety W. Let  Y~_ W be the zero-locus of h, h being 
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considered as a section of the vector bundle A*| B). Now on the projective 
bundle p: P =P(Hom(B,  A))-~ W, there is a "tautological" map 

p*B -~ p*A | 0p(1). 

Composing this with p'h: p*A~p*B, one obtains a homomorphism h*: p*A-~p*A | 0p(1). 
The trace of h* then defines a section 

~r (h*) E F(P, 0p(1)). 

Denote by  Y*__P the zero-locus of tr  (h*). Concretely, one may  think of a point in 
P(Hom(B,A))  as a homomorphism 9: B(x)-+A(x) (defined modulo scalars), where 
x =p(~)  E W, and then 

Y* = (~EP(Hom(B,  A)) 1 tr  (~oh(p(~))=0}. 

The point to observe is tha t  the projection p gives rise to a map 

P - Y * ' - ~ W -  Y 

which is locally trivial, with fibres C ~b-1. In  particular, 

U*( W -- Y) _~ H*(P - r*) (1.4) 

is an isomorphism. (Compare [15].) 

Proo/ o/ Proposition 1.2. We first apply the construction just described to the homo- 
morphism z: S-+~*_F on (]. Thus we consider the projective bundle 

p: P = P(Hom(~*F, S)) -~ G, 

and the section t r  (z*)EF(P, Op(1)). Let  Y* P denote the zero locus of t r  (z*), and set 

V* = P - Y*. 

In  view of (1.4), the proposition is equivalent to 

H*(V*; Z) = 0  for i>~dim V * + I .  (1.5) 

On the other hand, consider the projective bundle q: P '  = P ( H o m ( F ,  E))-+X over X. 
Then there is a natural  map  g: P ~ P ' ,  which has the following concrete description. We m a y  
think of a point in P as a homomorphism 9: F(x)~S(x) (rood scalars), where x =zcop(~) EX, 
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and S(x )c  E(x) is a subspace of dimension k'. Then g(~)EP' is:represented b y t h e  eomposi, 
tion F(x) ~ S(x) ~E(x) .  Let Z*_  P '  denote the divisor of the section tr  (a*) E I"(P', Or,(1)) 
arising from a: E-+ F. Then 9-1(Z *) = Y*, and so g restricts to a proper morphism 

h: V* = P - ]7* ~ P '  -Z*  = U*, 

where U* denotes the complement of Z* in P'.  But  since Hom(E,  F ) i s  an ample vector 
bundle on X, the line bundle Or,(1) is ample on P'  =P(Hom(E ,  F)*). Thus U* is an a]/ine 
variety. The strategy now is to use the Leray spectral sequence for h to deduce (1.5) from 
a theorem on the vanishing of the cohomology of an affine variety. 

To this end, we analyze the fibres of h. For 0 <~ l <~ k ' - 1 ,  define a subvariety P~_ P '  by  

and let 
P; = {~v e P(Hom(F,  E))[ rank ~v < k' - l ) ,  

! U* = U* N Pz. 

Then each U~ is an affine variety, with U~+I--- U~, and 

codimv: U* = 2kl + 1 ~ + ( / -  e) !. (1) 

I f  ~v' E P '  is represented by  a homomorphism ~': F(x) ~ E(x) (x = q@') E X),  and if ~v E P is 
represented by  ~v: F(x)~S(x) ,  where S(x) is a k'-plane in E(x), then T Eh-I@ ') if and only 
if ~ '  coincides (mod scalars) with the composition F(x)--->S(x)~E(x). Hence h maps V* 
birationally onto U~. Moreover the fibre of h over a point ~v' E U~ - U~+I is a Grassmannian 
G(l, l+k), and so has dimension lk. Since eodimv,* U*>~21k, the following lemma applies 
to the map h: V*-+ U~ to yield (1.5). 

L E P T A  1.6. Let / :  X ~  Y be a proper surjective morphism o/irreducible varieties, with 
Y a]]ine. Assume that ]or each d>~O the set 

Ya = {yE Y] dim ]-l(y) >/d} 

has codimension >~ 2d in Y (so that in particular ] is generically ]inite). Then 

H~(X,Z)=O f o r i > ~ d i m X + l .  

Proo/. Consider the Leray spectral sequence 

E~ "q = HP( Y, Rq/. Z) ~ Hv+q(X, Z) 

(1) Recall that we are assuming ~hat ] >/e. 



O1~ T H E  CONN]~CT]~DNESS O]P D]~GENERACY LOCI  AND SPECIAL D M S O R S  277 

for /. Since / is proper, the sheaves 

R2d-1/, Z, R2a/. Z 

are supported on Yd- But  these are constructible sheaves on the affine variety Y~, and so 
their cohomology vanishes in degrees above the dimension of Yd (cf. Artin [2, Exp. XIV, 
w w [16]): 

Hv(Y, R2d-~/. Z) = H~'(Y, R2d/, Z) = 0 for p ~> dim ]z d + 1. 

Since dim Yd + 2d ~< dim Y = dim X, one thus has E~' q = 0 for p + q ~> dim X + 1, and the 
lemma follows. Q.E.D. 

This completes the proof of Theorem 1.1. 

Remark 1.7. At least if X is non-singular, the same proof works in characteristic p 
using dtale cohomology in place of singular cohomology. In the part  of the argument 
preceding Lemma 1.3, H i ( G - Y )  is used in place of Hi((], Y), and Poincar6 duality be- 
tween H~(G-Y)  and H2r- I (G-Y)  replaces Lemma 1.3 (cf. Deligne [2, Exp: XVIII]).  

Remark 1.8. The locus Dk(a) has a natural scheme structure, given locally by the 
vanishing of the (k + 1) • (k + 1) minors of ~. If X is non-singular, and Dk(a) has the expected 
eodimension (e - k) (/ - k), then D~(a) is a Cohen-Macaulay scheme [10]. If, in addition, 
Dk(a) is non-singular in eodimension one--for  example, if Dk-l(a) is the singular locus of 
Dk(a)--then the connectivity of Dk(a ) is equivalent to the irreducibility of Dk(a ). Indeed, 
if S is the singular locus of D~(a), and Da(a) is connected, and if the local ring of Dk(a ) has 
depth at least two at every point of S, then a theorem of Hartshorne's [6] asserts tha t  
D~(a) - S is connected. 

Remark 1.9. One expects a connectedness theorem such as Theorem 1.1 to extend to a 
Lefschetz-type result on the vanishing of higher relative homology or homotopy groups 
(cf. [3, w 9]). If X is non-singular, Proposition 1.2 and duality give (with notation as before) 

H~(G, Y; Z) = 0  for i < n ' ( e - k ) ( / - k ) .  (*) 

The corresponding groups H~(X, Dk((r)) need not vanish, however. For example, the 
Segre variety P ' •  p1 in X = P  2~+1 is the degeneracy locus DI(~ ), where a is a 2 • (n + 1) 
matrix of linear forms, but  H3(X , Dl(a))~=0, even for large n. ~onetheless there is a partial 
result, namely that  the canonical map 

H~(D~(~); Z) -~ H~(X; Z) 



278 W. FULTON AIqD R. LAZAI%SF:ELD 

is surjective for i < ~ n - ( e - k )  ( / - k ) .  This follows from (*) and the observation tha t  in the 
diagram 

He( Y; Z) ~ He(G; Z) 

1 1 
H~(Dk(a); Z) , H~(X; Z), 

the right-hand vertical map is a lways  surjective. 
We close this section with a simple application of Theorem 1.1. Given a morphism 

/: X~_> ym of non-singular varieties, with m >~n, let d/x denote the induced map of tangent  
spaces at  x 6 X .  Set 

S,(/) = { xeX[  rank d/~ <~ n - i } .  

Theorem 1.1 may  be applied to the vector bundle homomorphism 

d/: T x ~ / * T  r. 

I f  ~ |  is ample, then Se(/) will be non-empty if i (m-n+i )<~n ,  and connected if 
i ( m - n + i )  <n. These hypotheses are satisfied, for example, if Y=P'~, if ~ is generated 
by its global sections, and i f / :  X-~ pm is any finite morphism. The following result applies 
to more general varieties X. 

PROPOSITION 1.10. Let L be a very ample line bundle on a smooth n-dimensional variety 
X .  .Let /: X--->P "~ be the morphism de/ined by a base-point/ree linear system in [LOkl, /or 
some k >>-2. Then Se(/) is non-empty i / i ( m - n  + i) <~ n, and connected i / i ( m - n  + i) < n. 

Proo/. Let X ~ P  N be the embedding defined by L, so t ha t / :  X-~P m is given by  homo- 
geneous forms F0 ..... Fm of degree k in the coordinates X 0 ..... X N of pN. Consider the 
Euler sequence 

0 --> O p  N --> Op~(1)  @(N+I) "--> Tp-V --> 0. 

Define E to be the kernel of the composition L e(N+ J)-~ TpN [ X--> Nxjp~, and let F = (L| | § 1). 
The Jaeobian matr ix  (~F~/~Xj) determines a morphism J :  E - ~ F  so tha t  the diagram 

0 " Ox , E ' Tx  , 0  

0 ' O x  , f .  "I*Tp~ , 0  

commutes. Then Se(/)=Dn+l_i(J), and E * Q F  is ample, since it is a quotient of a direct 
sum of copies of the ample line bundle L*|  | = L  | Q.E.D. 
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w 2. Application to special divisors 

Let C be a non-singular complex projective curve of genus g, let J -~Pie  ~ (C) be the 
Jacobian of C, and fix once and for all a base-point Po E C. Given x E J ,  denote by Lx the 
corresponding line bundle of degree zero on C, and set 

w~ = {x e J[ h~ C, Lx | Oc(dPo) ) >~ r + 1 }. 

Thus W ra parametrizes classes of divisors of degree d which move in a linear system of 
(projective) dimension at least r. By a well-known construction which we review below, if 
m>~0 is a sufficiently large integer, then evaluation at t distinct points P1 . . . . .  Pt yields a 
map 

t 
H~ L x | Oc(mPo) ) ~ | C(P~) 

t= l  

which globalizes to a homomorphism of vector bundles 

(~t: Em "* Ft (2,1) 

on J ,  of ranks m + 1 - g  and t respectively. Noting that  

ker a(x) = H~ L~| Oc(mP o -  ~ Pt)), 

and taking t = m - d ,  one sees tha t  W~=D~(am_a), where k = m - g - r .  In  particular, the 
expected dimension of W~ is given by the Brill-Noether number 

= g - ( r  + l ) ( g - d + r ) .  

For our purposes, the basic fact is 

LE~MA 2.2. For any m>~2g and t>~l, E*| is an ample vector bundle on J. 

Grant the lemma for the moment. Then Theorem 1.1 (a) yields the result of Kempf [9] 
and Kleiman-Laksov [11, 12] tha t  W rd is non-empty when ~>~0, while Theorem 1.1(b) 
implies 

T H v . O ~ M  2.3. Wr~ is connected i / ~ > 0 .  

Furthermore, by Remark 1.9, the homomorphisms 

H~(Wrd; Z) ~ H~(J; Z) 

induced by inclusion are 8ur~ective /or i <~. 
On special curves, the loci W~ may well be reducible even when the Brill-Noether num- 

ber ~ is positive. For example if C is trigonal and non-hyperelliptic, of genus 5, then W 1 has 
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two irreducible (but intersecting!) one-dimensional components. In  fact, if D is a trigonal 
divisor, then W~ is swept out by  the two families 

{ID+PI}~o, {IK-D-PI}e~c. 

On a generic curve of genus g, however, this cannot happen. Indeed, Griffiths and Harris 
[5] have shown tha t  for a general curve, W ra has pure dimension ~, and Gieseker [4] has very 
recently proved that ,  for general C, W~ is singular only along W r+la . Hence from Remark  
1.8 one deduces 

COROLLARY 2.4. I /  C is a generic curve, then W~ is irreducible when ~>0 .  

The remainder of this section is devoted to the proof of Lemma 2.2. To fix notation, 
we s tar t  by reviewing the construction of the vector bundle homomorphism (2.1). Let  s 
be the universal line bundle on J x C ,  so tha t  ~CIp-l(x)=Lx, where p : J x C - ' - J  and 
q: J • C-'-C zre the projections. Letting ~(P) denote the line bundle ~CIq-I(P) on J ,  we 
normalize s (by tensoring with a line bundle from J)  so tha t  s  Oj. Fix m~>2g-1 ;  
thus Hi(C, L~| for all xEJ. Then 

E~ ~ f p , ( s 1 7 4  q* Oc( mPo) ) 

is a vector bundle of rank m + 1 -g ,  and pushing forward I:@q*Oc(mPo) via p .  commutes 
with base change. Let Dt be the divisor P1 + -.. + P t  on C, and set 

f; 

Ft= • C,(P~)=p,(s 
~=1 

The homomorphism (2.1) arises by taking the direct images of the last two terms in the 
exact sequence 

0 --> ~C| o -  D~) ~ ,C| --,'- JC| 0 (2.5) 

of sheaves on J • C. 
Turning to the verification tha t  

t 
Z * |  = @ z*|163 

is an ample vector bundle, the first point to observe is tha t  it suffices to prove the ampleness 
of Era*. Indeed, since a direct sum of vector bundles is ample if and only if each summand 
is [7], it is certainly enough to check the ampleness of E*| for an arbi t rary point 
P E C. Since ~(P0) = 0], by varying P over C one exhibits s  as a deformation of a trivial 
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line bundle. But  quite generally, if X is an irreducible projective variety, and L a line 
bundle on X algebraically eqnivMeut to zero, then a vector bundle E on X is ample if 
and only if E|  is. For if ~r: P(E*)~X is the projectivization of E*, then we may identify 
P(E*) with P(E*| and the assertion becomes that  Op(1) is an ample line bundle on 
P(E*) if and only if Op(1)| is. Observing that  Cl(Op(1)| is numerically equiva- 
lent to Cl(Oe(1)), this follows from Nakai's criterion (cf. [8, Chapter I]). 

The ampleness of E* is equivalent, by definition, to the ampleness of the line bundle 
Op(1) on P=P(Em). Letting t = l  and D~=P o in (2.5) and taking direct images on J ,  one 
obtains (for m ~>2g) an exact sequence 

0.-> Era_l---> E m - ~  O j -~  O . 

Such a sequence gives rise to a section s of Op(1) whose divisor is exactly the subvariety 
P(Em-1)---P(Em). The crucial geometric fact is then the following (cf. [14] or [1]): 

P(Em) is isomorphic to Cm, the m-th symmetric product o/ C, and the divisor 

P(Em_I) corresponds to the (m-1)-th symmetric product Cm-1, embedded in Cm 

via the map D ~ D + Po. 

(2.6) 

Granting (2.6), the ampleness of Op(1)--and hence Lemma 2.2---follows from 

LEMI~IA 2.7. For all m>~l, Cm_ 1 is an ample divisor on Cm. 

Proof. Fix a k-dimensional subvariety V~Cm. By Nakai's criterion, it suffices to 
show that  the intersection number ~k. V is positive, where ~ denotes the numerical equiva- 
lence class of C~_ 1. For any P E C, let Cm-I(P) be the divisor on Cm obtained by embedding 
Cm-1 in C m via the map D-+D+P. Then Cm_l=Cm_l(Po) is algebraically--and hence 
numerically--equivalent to Cm-l(P) for any P E C. Now given V as above, then Cm-I(P) 
meets V in a non-empty divisor on V for almost every PEC. (Indeed, this is simply the 
assertion that  given any k-dimensional family of divisors on C, almost every P EC is 
contained in some but  not all of the divisors in the family.) Therefore, for k generic points 
/'1 ..... Pk e C, the intersection 

Gm_l(Pl )  n ... n Cm_~(Pk) n V 

is a finite non-empty set. Since ~k. V is the degree of the corresponding intersection cycle, 
the positivity of ~k. V follows. Q.E.D. 

Alternatively, one could prove the lemma by observing that  if w: cm--'C,n is the map 
to Cm from the Cartesian product of C with itself m times, then w* O(Cm-a) ~,n ~* = ~=1 ~ Oc(Po), 
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where ~,: C ~ C  is projection onto the i th factor. Thus w*O(Om_l) is ample. But  since 
w: cm-+cm is finite and surjective, the ampleness of O(Cm_l) is equivalent to tha t  of 

w*O(Om_O. 
Finally, for the convenience of the reader, we sketch a proof of (2.6). Let  

u: Cm-+ d 

be the Abel m a p ,  which takes a divisor D of degree m to the divisor class of D - m P  o. 
We first show tha t  there is a morphism v: Cm-+P(Em), compatible with projections to J ,  
such tha t  

Cm • = Ore_ 1. 

To this end, let D ~ C m  • C be the universal divisor of degree m: D~={(D,  P)]PeO} .  
Bearing in mind the chosen normalization of C, it follows from the universal proper ty  of 
J tha t  

(u x 1)*(l:| ) = O(Dm)| 

where p ' :  Cm • C-~C,, denotes the projection. Since taking the direct image of C| 
on J commutes with base-change, one then has 

p , O ( ~ )  | 0 ~ ( -  0~_i) = u*Em. 

Now the canonical section of O(~m) gives rise to a nowhere vanishing section of P'*O(~m), 
and so one obtains an inclusion 

O( - 0~_i) ~u*E,,  

of vector bundles on Crn. But  this is equivalent to giving a morphism v: Cm~P(Em) over d 
such tha t  v-I(P(E,~_I))=C,n_I. Note next  tha t  v is bijective. Indeed, it suffices to check 
this fibre by fibre over  J, where it is clear. Then since P(Em) is smooth, it follows tha t  v 
is an isomorphism. (Ii1 positive characteristic, one would observe in addition tha t  since 
Cm •162 is smooth, v must  be separable.) Q.E.D. 

Remark 2.8. The proof of Lemma 2.2 works for curves over an arbi t rary algebraically 
closed field. Granting the results of [4] and [5] in positive characteristic, and making use 
of Remark  1.7, one deduces tha t  Theorem 2.3 and Corollary 2.4 are also valid in arbi trary 
characteristic. 
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