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SINGULARITIES OF THETA DIVISORS

AND THE BIRATIONAL GEOMETRY

OF IRREGULAR VARIETIES

LAWRENCE EIN AND ROBERT LAZARSFELD

Introduction

The purpose of this paper is to show how the generic vanishing theorems of
[GL1] and [GL2] can be used to settle a number of questions and conjectures raised
in [Kol3], Chapter 17, concerning the geometry of irregular complex projective va-
rieties. Specifically, we focus on three sorts of results. First, we establish a well
known conjecture characterizing principally polarized abelian varieties whose theta
divisors are singular in codimension one. Secondly, we study the holomorphic Euler
characteristic of varieties of general type having maximal Albanese dimension: we
verify a conjecture of Kollár for subvarieties of abelian varieties, but show that it
fails in general. Finally, we give a surprisingly simple new proof of a fundamen-
tal theorem of Kawamata [Ka] on the Albanese mapping of varieties of Kodaira
dimension zero.

Turning to a more detailed description, we start with the singularities of theta
divisors. Let A be an abelian variety of dimension g � 2, and let ⇥ ⇢ A be a
principal polarization on A, i.e. an ample divisor such that h0(A,O

A

(⇥)) = 1.
Ever since the work [AM] of Andreotti and Mayer on the Schottky problem, there
has been interest in understanding what sort of singularities ⇥ can have. A well-
known theorem of Kempf [K] states that if A is a Jacobian, then ⇥ has only
rational singularities. For an arbitrary principally polarized abelian variety (A,⇥),
Arbarello and DeConcini [AD] conjectured that if dim Sing(⇥) = g� 2 then (A,⇥)
splits as a non-trivial product, i.e. that there exist principally polarized abelian
varieties (A1,⇥1) and (A2,⇥2) such that

A = A1 ⇥A2 and ⇥ = pr⇤1⇥1 + pr⇤2⇥2.

Kollár [Kol3, Theorem 17.13] recently put these matters into a new perspective by
proving that the pair (A,⇥) is log canonical. Denoting by ⌃

k

(⇥) the multiplicity
locus

⌃
k

(⇥) = {x 2 A | mult
x

(⇥) � k} ,
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244 LAWRENCE EIN AND ROBERT LAZARSFELD

Kollár’s theorem implies in particular that

every component of ⌃
k

(⇥) has codimension � k in A.

For example, taking k = g+1 it follows that ⇥ can have no points of multiplicity> g.
Using a very pleasant enumerative argument, Smith and Varley [SV] subsequently
established that if ⇥ contains a g-fold point, then (A,⇥) splits as a product of g
elliptic curves (see [Nak] for a somewhat di↵erent approach).

Our first result shows that the conclusion of Kempf’s theorem holds quite gen-
erally, and that in fact any example on the boundary of Kollár’s theorem is split:

Theorem 1. If ⇥ ⇢ A is an irreducible theta divisor, then ⇥ is normal and has
only rational singularities.

Corollary 2. If (A,⇥) is any principally polarized abelian variety, and if k � 2,
then ⌃

k

(⇥) contains an irreducible component of codimension k in A if and only
if (A,⇥) splits as a k-fold product of p.p.a.v.’s.

When k = g we recover the theorem of Smith and Varley; the case k = 2 gives
the conjecture of Arbarello and DeConcini.

The proof of Theorem 1 is surprisingly quick. In brief, let X �! ⇥ be a res-
olution of singularities. By applying the generic vanishing theorems on X , and
arguing with some Nadel-type adjoint ideals on A, one reduces to showing that
�(X,!

X

) > 0. But X is of general type, and the inequality in question emerges as
a special case of a conjecture of Kollár, which we discuss next.

Consider then a smooth projective variety X of dimension n, and assume that
the Albanese mapping

alb
X

: X �! Alb(X)

is generically finite, or in other words that X has maximal Albanese dimension. A
result of [GL1] asserts that under these circumstances �(X,!

X

) � 0. If X is bira-
tionally the product of a torus and some other variety then of course �(X,!

X

) = 0.
But Kollár conjectured [Kol2, (17.9)] that if X is of general type, then �(X,!

X

) >
0. Our second result shows that this is true if X is birationally a subvariety of
Alb(X):

Theorem 3. 1 Let X be a smooth projective variety of maximal Albanese dimen-
sion, and suppose that �(X,!

X

) = 0. Then the Albanese image

alb
X

(X) ✓ Alb(X)

of X is fibred by tori. In particular, if alb
X

: X �! Alb(X) is birational onto its
image then X is not of general type.

This is more than enough to give the inequality required for Theorem 1.2 For
smooth subvarieties of abelian varieties, an equivalent statement was established
independently by Qi Zhang [Z]. We complete the picture by showing that Kollár’s
conjecture fails in general. Our example is a threefold whose Albanese mapping is
a branched covering with a rather degenerate branch divisor.

1This proof of this result builds on discussions some years ago with M. Green, and it should
be considered at least partially joint work with him.

2In the interests of truth in advertising, we note that for Theorem 1 one only needs Kollár’s
conjecture when X is birational to an irreducible theta divisor, and this case is covered by an old
result of Kawamata and Viehweg [KV]. So in fact Theorem 1 can be read independently of the
rest of the paper. However we naturally prefer to see it as part of a broader picture.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SINGULARITIES OF THETA DIVISORS 245

Finally, we turn to varieties of Kodaira dimension zero. Let X be a smooth
projective variety of dimension n. Kawamata [Ka] showed that if (X) = 0, then
the Albanese mapping alb

X

: X �! Alb(X) is surjective. By a standard covering
argument, it is enough to prove this assuming that P1(X) 6= 0, where as usual
P
m

(X) = h0(X,!⌦m
X

) denotes the mth plurigenus of X . Kawamata’s result is
therefore a consequence of

Theorem 4. If P1(X) = P2(X) = 1, then the Albanese mapping of X is surjective.

Several other e↵ective versions of Kawamata’s theorem were previously given by
Kollár ([Kol1], [Mori], [Kol2], [Kol3]), the strongest of which states that alb

X

is
surjective as soon as P3(X) = 1. Kollár also asked for analogous results involving
P2.

However the main interest of Theorem 4 derives not so much from any numerical
improvements as from the the surprising simplicity and transparency of its proof.
Kawamata’s approach involved some rather di�cult positivity results for direct
images of dualizing sheaves, which were gradually replaced in Kollár’s work by
subtle arguments with vanishing theorems. By contrast, granting the general results
of [GL2], Theorem 4 requires only a few lines. A pleasant geometric argument also
recovers the more precise statement from [Ka] that if (X) = 0, then the fibres of
alb

X

: X �! Alb(X) are connected, as well as one of Kollár’s characterizations of
abelian varieties. We hope that some of these ideas may find other applications in
the future.

The paper is organized as follows. In section 1 we review for the convenience
of the reader the results we use from [GL1] and [GL2], and we prove Theorem
3. The applications to varieties of Kodaira dimension zero occupy §2, while §3 is
devoted to theta divisors. We also include in §3 an extension of Kollár’s theorem
to singularities of pluri-theta divisors, as proposed in [Kol3], Problem 17.15. We
reiterate that §3 may be read independently of the rest of the paper.

We have profitted from discussions with E. Arbarello, R. Donagi, M. Green,
J. Kollár, R. Smith, R. Varley and J. Wahl. In particular, the statement of Theorem
1 was suggested by Kollár and Wahl, and as noted above discussions with Green
played a substantial role in the proof of Theorem 3.

0. Notation and conventions

(0.1). We work throughout over the complex numbers C.

(0.2). Given a smooth variety or complex manifold X of dimension n, we generally
denote by !

X

= ⌦n

X

the canonical line bundle of X . An exception occurs in our
discussion of adjoint ideals at the beginning of §3, where in accordance with the
standard notation of higher dimensional geometry, we use K

X

to denote (the linear
equivalence class of) a canonical divisor on X .

(0.3). If D and E are divisors on a variety or complex manifold X , we write D � E
to indicate that E �D is e↵ective.

1. Positivity of holomorphic Euler characteristics

We start by recalling the material from [GL1] and [GL2] that will be needed here
and in §2. Then we give the proof of Theorem 3 and the counter-examples to the
general case of Kollár’s conjecture.
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246 LAWRENCE EIN AND ROBERT LAZARSFELD

Review of generic vanishing theorems. Let X be a compact Kähler manifold
of dimension n, and as usual let Pic0(X) be the complex torus parametrizing topo-
logically trivial line bundles on X . Given a point y 2 Pic0(X), we denote by P

y

the corresponding topologically trivial bundle on X . For 0  i  n consider the
analytic subvarieties of V

i

(X) ⇢ Pic0(X) defined by:

V
i

(X) =
�
y 2 Pic0(X) | Hi(X,!

X

⌦ P
y

) 6= 0
 

=
�
y 2 Pic0(X) | Hn�i(X,P ⇤

y

) 6= 0
 
.

(For subsequent geometric arguments the first description is preferable, but for the
present discussion the dual interpretation is easiest.) Let y 2 V

i

(X) be any point,
and let

0 6= v 2 T
y

Pic0(X) = H1(X,O
X

)

be a non-zero tangent vector to Pic0(X) at y. One of the main themes of [GL1] is
that the first order deformation theory of the groups Hn�i(X,P ⇤

y

) is governed by
the derivative complex:

Hn�i�1(X,P ⇤
y

)
[v����! Hn�i(X,P ⇤

y

)
[v����! Hn�i+1(X,P ⇤

y

).(1.1)

Roughly speaking, if y 2 V
i

(X) is a su�ciently general point, then v 2 T
y

Pic0(X)
is tangent to V

i

(X) if and only if the two maps in (1.1) vanish, whereas if (1.1)
is exact, then all the cohomology in Hn�i(X,P ⇤

y

) vanishes to first order in the
direction of v. The principal result of [GL2] is that there are no higher obstructions
to deforming the cohomology of topologically trivial line bundles along “straight
lines” in Pic0(X), so that a first order statement is equivalent to a global one.

More precisely, one has the following

Theorem 1.2 ([GL1], [GL2]). Fix any irreducible component

S ⇢ V
i

(X),

and let y 2 S be a general point, i.e. a smooth point of V
i

(X) at which the function
hn�i(X,P ⇤

y

) assumes its generic value on S. Then:

(1.2.1) S is a translate of a subtorus of Pic0(X).
(1.2.2) codimPic0(X)S � i� (dimX � dim alb

X

(X)).
(1.2.3) If 0 6= v 2 H1(X,O

X

) is tangent to S, then the maps in (1.1) vanish,
whereas if v is not tangent to S then (1.1) is exact.

Proof. The first assertion is Theorem 0.1 of [GL2], and the second is [GL1], Theorem
1. For (1.2.3), let �

v

(y) ⇢ Pic0(X) be a neighborhood of y in the “straight line”
in Pic0(X) through y determined by v, i.e. the image of a small disk under the
exponential mapping exp

v

(y) : C �! Pic0(X) based at y in the direction v. Thus
by (1.2.1), �

v

(y) ⇢ S if v is tangent to S. Corollary 3.3 of [GL2] asserts that for
t 2 �

v

(y) in punctured neighborhood of y:

hn�i(X,P ⇤
t

) = dimension of homology of (1.1).(1.2.4)

Now hn�i(X,P ⇤
y

) assumes its generic value at y, and hence if �
v

(y) ⇢ S then

hn�i(X,P ⇤
t

) = hn�i(X,P ⇤
y

)

for all t 2 �
v

(y). It then follows from (1.2.4) that the maps in (1.1) must vanish.
Similarly, if �

v

(y) 6✓ S, then the left-hand side of (1.2.4) vanishes for generic t
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SINGULARITIES OF THETA DIVISORS 247

thanks to the fact that S is an irreducible component of V
i

(X), and consequently
(1.1) is exact.

Still following [GL1] and [GL2], Theorem 1.2 becomes particularly useful if it is
restated via Hodge duality. After fixing a Kähler metric on X , Hodge theory gives
conjugate linear isomorphisms:

Hn�i(X,P ⇤
y

) ⇠= H0(X,⌦n�i
X

⌦ P
y

).(1.3)

Similarly, if we represent v 2 H1(X,O
X

) by a harmonic (0, 1)-form, then its con-
jugate is a holomorphic one-form ⌘ = v̄ 2 H0(X,⌦1

X

), and the conjugate of (1.1)
is:

H0(⌦n�i�1
X

⌦ P
y

)
^⌘����! H0(⌦n�i

X

⌦ P
y

)
^⌘����! H0(⌦n�i+1

X

⌦ P
y

).(1.4)

Corollary 1.5. (1.5.1) Keep notation and assumptions as in Theorem 1.2, and let
⌘ = v̄. Then v is tangent to S if and only if the maps in (1.4) vanish, and otherwise
(1.4) is exact.

(1.5.2) Assume that H0(X,!
X

) 6= 0, so that that the origin 0 = [O
X

] 2 Pic0(X)
lies in V0(X). Then it is an isolated point of V0(X) if and only if for every
non-zero ⌘ 2 H0(X,⌦1

X

), the map

H0(X,⌦n�1
X

)
^⌘����! H0(X,⌦n

X

)

determined by wedging with ⌘ is surjective.

Proof. The first assertion is merely a restatement of (1.2.1), and (1.5.2) follows by
taking i = 0.

Remark 1.6. The following slight generalization will be useful. Let

a : X �! A

be a holomorphic mapping from X onto some complex torus A, and define

V
i

(X)
A

=
�
y 2 Pic0(A) | Hn�i(X, a⇤P

y

) 6= 0
 
.

Then the evident analogues of (1.2) and (1.5) hold for these loci, where one works
in Pic0(A) instead of Pic0(X) (so that the right-hand side of (1.2.2) involves dim
a(X) rather than dimalb

X

(X)) and where the holomorphic one-forms that occur
in (1.4) and (1.5) are the pull-backs of the flat one-forms on A. This is not stated
explicitly in [GL1] and [GL2], but it is the natural context in which the arguments
there work.

Holomorphic Euler characteristics. We assume for the remainder of this sec-
tion that X is a compact Kähler manifold of dimension n whose Albanese mapping

a = alb
X

: X �! Alb(X) = A

is generically finite onto its image. It follows from [GL1, Theorem 1], or (1.2.2)
above, that then

h0(X,!
X

⌦ P ⇤
y

) = �(X,!
X

)(1.7)

for general y 2 Pic0(X). Our goal is to show that if �(X,!
X

) = 0, then the
Albanese image of X is ruled by tori.
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248 LAWRENCE EIN AND ROBERT LAZARSFELD

We start with the following useful remark due to M. Green:

Lemma 1.8. One has inclusions:

Pic0(X) ◆ V0(X) ◆ V1(X) ◆ · · · ◆ V
n

(X) = {O
X

}.
Proof. Suppose that y 2 V

i

(X) (i > 0), so that Hn�i(X,P ⇤
y

) 6= 0. In view of (1.3),

there exists a non-zero form 0 6= ↵ 2 H0(X,⌦n�i
X

⌦ P
y

). It is enough to show that
⌘ ^ ↵ 6= 0 2 H0(X,⌦n�i+1

X

⌦ P
y

) for general ⌘ 2 H0(X,⌦1
X

). But this follows as
in [GL1, end of proof of Theorem 2.10]. In brief, fix a general point x 2 X at
which ↵(x) 6= 0. Since X has maximal Albanese dimension, if we have chosen x
su�ciently generally, we can find holomorphic one-forms ⌘1, . . . , ⌘n 2 H0(X,⌦1

X

)
such that the ⌘

i

(x) form a basis of the holomorphic cotangent space T ⇤
x

X . But
then it is immediate that ↵(x) ^ ⌘

j

(x) 6= 0 for some j 2 [1, n].

We now turn to the demonstration of Theorem 3. As noted in the Introduction,
the argument that follows builds substantially on discussions with M. Green some
years ago.

Proof of Theorem 3. Assume that �(X,!
X

) = 0. Then by (1.7), V0(X) is a proper
subvariety of Pic0(X). Fix an irreducible component S ⇢ V0(X) and a general
point y 2 S, and put

k = codimPic0(X)S.

Note that it follows from (1.2.2) that S cannot be contained in V
j

(X) for j >
k. By contrast, if S ✓ V

j

(X) for some j  k, then in fact S is an irreducible
component of V

j

(X) thanks to the previous lemma. Therefore, by taking y 2 S
su�ciently generally, we may suppose that Hn�j(X,P ⇤

y

) = 0 for j > k, and that if
Hn�j(X,P ⇤

y

) 6= 0 for j  k, then the conclusions of Theorem 1.2 hold with i = j

at y. In particular, it follows from (1.2.3) that if 0 6= v 2 H1(X,O
X

) = T
y

Pic0(X)
is not tangent to S at y, then the derivative complex

0 ����! Hn�k(P ⇤
y

)
[v����! Hn�k+1(P ⇤

y

)
[v����! . . .

[v����! Hn(P ⇤
y

) ����! 0

(1.9)

is (everywhere) exact.
We claim that

Hn�k(X,P ⇤
y

) 6= 0,(1.10)

i.e. that S is actually a component of V
k

(X) (and hence also that k  n). In fact,
let

V ⇢ H1(X,O
X

) = T
y

Pic0(X)

be a k-dimensional subspace complementary to T
y

S ⇢ T
y

Pic0(X) (so that V rep-
resents the normal space to S at y.) Thus (1.9) is exact for each 0 6= v 2 V . Set
P = P(V ⇤), so that P is a projective space of dimension k � 1. Then we may
assemble the derivative complexes (1.9) determined by 0 6= v 2 V into a complex
K of vector bundles on P:

0! Hn�k(P ⇤
y

)⌦OP(�k) ! Hn�k+1(P ⇤
y

)⌦OP(�k + 1)

! · · ·! Hn(P ⇤
y

)⌦OP ! 0.
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The fact that each of the point-wise complexes (1.9) is exact implies that K is exact
as a complex of sheaves on P. It then follows by chasing through K and taking
cohomology on P that

0 6= Hn(X,P ⇤
y

) ⇠= Hn�k(X,P ⇤
y

),

and (1.10) is established. [Compare [Mori], Proof of (3.3.2).]
We now argue as in [GL2], §4. Recalling that S is (a translate of) a subtorus of

Pic0(X), let C = S⇤ be the dual torus. Since A = Alb(X) is the dual of Pic0(X),
the inclusion S ,! Pic0(X) determines a quotient map

⇡ : A = Alb(X) �! C

whose fibres are translates of the k-dimensional connected subtorus

B =def ker(⇡).

Let Y = alb
X

(X) ⇢ A be the Albanese image of X , and let

g : X
alb

X���! Y ⇢ A
⇡�! C

h : Y ⇢ A
⇡�! C

(1.11)

denote the indicated compositions. We claim that

dim g(X)  n� k.(1.12)

Grant this for a moment. Since a : X �! Y is generically finite and surjective,
it then follows that all the fibres of h : Y �! h(Y ) ⇢ C have dimension � k.
But these fibres are contained in translates of the k-dimensional torus B. In other
words, the fibres of Y �! h(Y ) fill up the fibres of A �! C over h(Y ). Therefore
Y is ruled by tori, as was to be shown.

It remains only to prove (1.12). But this is in fact established in [GL2, p. 92].
We summarize the argument for the convenience of the reader. Let

v1, . . . , vq�k 2 H1(X,O
X

) = T
y

S

be a basis for the tangent space to S at y, where q = dimPic0(X). As in the
previous subsection, let ⌘

i

= v̄
i

2 H0(X,⌦1
X

) be conjugate holomorphic one-forms.
The map g : X �! C arises by integrating the ⌘

i

, and consequently for a general
point x 2 X :

dim g(X) = dim span {⌘1(x), . . . , ⌘q�k(x)} ⇢ T ⇤
x

X.

Since ⌘
i

is the conjugate of a tangent vector to S, it follows from (1.5.1) that each
of the maps

H0(X,⌦n�k
X

⌦ P
y

)
^⌘

i����! H0(X,⌦n�k+1
X

⌦ P
y

)(*)

vanishes. But the group on the left in (*) is non-zero thanks to (1.10). An el-
ementary pointwise calculation (cf. [GL2], Lemma 4.1) shows that the space of
one-forms that annihilates a non-zero n�k form has dimension  n�k, and hence
(1.12) follows.

We conclude this section by giving an example to show that Kollár’s conjecture
[Kol3, (17.9)] fails in general.
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250 LAWRENCE EIN AND ROBERT LAZARSFELD

Example 1.13. We exhibit a smooth variety X of general type having maximal
Albanese dimension such that �(X,!

X

) = 0. Let E be an elliptic curve, and
p : C �! E a double covering of E by a curve C of genus � 2. Denote by
◆ : C �! C the corresponding involution of C. Let A = E⇥E⇥E, V = C⇥C⇥C,
and consider the involution ⌧ = ◆ ⇥ ◆ ⇥ ◆ of V . Set Y = V/{1, ⌧}. The spaces in
question fit into a tower of Galois covers:

V
f����! Y

g����! A

of degrees 2 and 4 respectively. Observe that Y is smooth except at finitely many
points at which it is locally analytically isomorphic to a Veronese cone, i.e. the
quotient of C3 by multiplication by �1. In particular Y has only terminal and
hence rational singularities. The map f : V �! Y being étale o↵ the finitely many
singular points of Y , we see that Y is of general type, and in fact minimal of global
index two. Let

h : X �! Y

be a resolution of singularities. Clearly X has maximal Albanese dimension, and we
claim that �(X,!

X

) = 0. In order to verify this, it su�ces in view of (1.7) to show
that H3(X,h⇤g⇤P ) = 0 for a general topologically trivial line bundle P 2 Pic0(A).
To this end, start with non-trivial line bundles P1, P2, P3 2 Pic0(E), and take P
to be their exterior product. Recalling that Y has only rational singularities, one
finds:

H3(X,h⇤g⇤P ) = H3(Y, g⇤P ) = H3(V, f⇤g⇤P ){1,⌧}.

By Künneth:

H3(V, f⇤g⇤P ) = H1(C, p⇤P1)⌦H1(C, p⇤P2)⌦H1(C, p⇤P3),

and since each P
i

is non-trivial, ◆ acts by �1 on each factor. Hence

H3(V, f⇤g⇤P ){1,⌧} = 0,

as required. [Alternatively, as Kollár notes, one can compute (g � h)⇤(!X).]

2. Varieties of Kodaira dimension zero

We give in this section the applications to varieties of Kodaira dimension zero.
Denote by X a smooth projective variety of dimension n, and write P

m

(X) for the
mth plurigenus of X , i.e. P

m

(X) = h0(X,!⌦m
X

). As in §1 we consider the loci:

V
i

(X) =
�
y 2 Pic0(X) | Hi(X,!

X

⌦ P
y

) 6= 0
 
.

We emphasize that we do not assume here that the Albanese mapping of X is
generically finite.

Theorem 4 from the Introduction is an immediate consequence of two elementary
general propositions:

Proposition 2.1. If P1(X) = P2(X) = 1, then the origin is an isolated point of
V0(X).

Proposition 2.2. If the origin is an isolated point of V0(X), then the Albanese
mapping alb

X

: X �! Alb(X) is surjective.
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Proof of Proposition 2.1. Since P1(X) 6= 0, the origin O
X

lies in V0(X). Suppose
that it is not an isolated point. Then by (1.2.1), V0(X) contains a subgroup S ⇢
V0(X) of positive dimension. In particular, if y 2 S then also �y 2 S, and therefore
for each y 2 S the image of

H0(X,!
X

⌦ P
y

)⌦H0(X,!
X

⌦ P ⇤
y

) �! H0(X,!⌦2
X

)(*)

is non-zero. Since a given divisor in the linear series |!⌦2
X

| has only finitely many
irreducible components, it follows that as y varies over the positive dimensional
torus S, the image of (*) must vary as well. Therefore P2(X) > 1, a contradiction.
[Compare the proof of [Kol3], Theorem 17.10.]

Proof of Proposition 2.2. Assume that the origin is an isolated point of V0(X), but
that alb

X

is not surjective. Fix an arbitrary point x 2 X . The non-surjectivity of
alb

X

implies that there exists a non-zero holomorphic one-form

0 6= ⌘ = ⌘
x

2 H0(X,⌦1
X

) such that ⌘(x) = 0.

[Take ⌘ to be the pull-back of a flat one-form on Alb(X) lying in the kernel of the
coderivative T ⇤alb(x)Alb(X) �! T ⇤

x

X of alb
X

at x.] On the other hand, since the

origin is an isolated point of V0(X), it follows from (1.5.2) that wedging with ⌘
x

gives a surjective map

H0(X,⌦n�1
X

)
^⌘

x����! H0(X,⌦n

X

).

Therefore every section of !
X

= ⌦n

X

vanishes at (the arbitrary point) x, and hence
H0(X,!

X

) = 0, a contradiction.

Remark 2.3. For the convenience of the reader, we recall the standard argument
showing that Theorem 4 implies Kawamata’s result that if Y is a smooth projective
variety with (Y ) = 0, then alb

Y

is surjective. In fact, by a lemma of Fujita (cf.
[Mori], (4.1)), there exists a smooth projective variety X of Kodaira dimension zero,
admitting a generically finite surjective map f : X �! Y , such that P1(X) 6= 0.
Since (X) = 0, it follows that P1(X) = P2(X) = 1. Therefore alb

X

is surjective
thanks to Theorem 4, and this easily implies that alb

Y

is surjective.

In the remainder of this section, we show how similar ideas lead to new proofs of
some other results concerning varieties of Kodaira dimension zero. We start with
a theorem of Kollár [Kol1] giving a birational characterization of abelian varieties.
Kollár’s statement was in turn an e↵ective version of a theorem of Kawamata-
Viehweg [KV] characterizing abelian varieties birationally as projective manifolds
with  = 0 and q = n. Some stronger results appear in [Kol2] and [Kol3], but it is
not clear whether one could recover them by these techniques.

Proposition 2.4 (Kollár, [Kol1]). Let X be a smooth projective variety of dimen-
sion n, and assume that

P1(X) = P4(X) = 1 and q(X) =def h
1(X,O

X

) = n.

Then X is birational to an abelian variety.

Proof. The beginning of the argument follows Kollár’s proof. The Albanese map-
ping

a = alb
X

: X �! Alb(X) = A
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is surjective by Theorem 4, hence generically finite since q = dimA = dimX =
n. If a is a birational isomorphism, we are done. Otherwise, since the Albanese
map does not factor through any étale covers of A, it follows by considering the
Stein factorization of a that the ramification divisor of a must contain at least
one component � which maps to a divisor D ⇢ A. Replacing X if necessary by a
suitable blow-up, we may assume that � is smooth. Note that since the ramification
divisor Ram(a) represents !

X

, there is a natural inclusion !
X

(�) ,! !⌦2
X

.
We now apply (1.2) and (2.2) to �. Specifically, since a(�) = D is a divisor in

A, we have P1(�) � 1. Suppose first that D spans A. Then evidently alb� is not
surjective. Proposition 2.2 implies that O� is not an isolated point of V0(�), which
therefore contains a subtorus of positive dimension. In fact, combining Remark 1.6
(applied to �) with the proof of Proposition 2.2, we see that there is a positive
dimensional subgroup S� ⇢ Pic0(X) such that

H0(�,!� ⌦ P
y

) 6= 0 8 y 2 S�.(2.4.1)

The hypotheses on the plurigenera of X force P2(X) = 1, and so Proposition 2.1
implies that O

X

is an isolated point of V0(X). Therefore, thanks to Lemma 1.8,
O
X

is an isolated point of all the V
i

(X), and in particular

H0(X,!
X

⌦ P
y

) = H1(X,!
X

⌦ P
y

) = 0

for y in punctured neighborhood of 0 in S�. In view of (2.4.1), it follows from the
exact sequence

0 �! !
X

⌦ P
y

�! !
X

(�) ⌦ P
y

�! !� ⌦ P
y

�! 0

that H0(X,!
X

(�) ⌦ P
y

) 6= 0 for every y 2 S�. Then just as in the proof of
Proposition 2.1, this implies that

h0(X,!⌦2
X

(2�)) � 2.

But H0(X,!⌦2
X

(2�)) ⇢ H0(X,!⌦4
X

), and hence P4(X) > 1, a contradiction. It
remains to treat the possibility that � maps to a codimension one subtorus D ⇢
A, but in this case it is enough to take S� to be the kernel of the natural map
Pic0(X) = Pic0(A) �! Pic0(�).

We conclude this section by showing how similar ideas lead to the more precise
result from [Ka] that the Albanese mapping of a variety of Kodaira dimension zero
is a fibre space, i.e. has connected fibres:

Proposition 2.5 (Kawamata [Ka]). Let X be a smooth projective variety of Ko-
daira dimension zero. Then the fibres of the Albanese mapping

a = alb
X

: X �! Alb(X) = A

are connected.

Proof. There is no loss in generality in replacing X with a birationally equivalent
model. So by starting with the Stein factorization of a and resolving singularities
and indeterminacies, we can assume that a = alb

X

admits a factorization:

X
g����! V

b����! A,

where g is surjective with connected fibres, V is smooth and projective, and b is
generically finite. We know already (e.g. by Theorem 4 and Remark 2.3) that a
is surjective, and hence b is a generically finite covering. We assume by way of
contradiction that b has degree > 1. Since the Albanese mapping does not factor
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through any étale coverings of A, b cannot be birationally étale, and V cannot be
birational to an abelian variety. Therefore b has a non-trivial ramification divisor
R, and by Proposition 2.4, P4(V ) > 1.

We next reduce in e↵ect to the situation P1 6= 0. In fact, by Fujita’s lemma [Mori,
(4.1)] there are a smooth projective variety Y , and a generically finite surjective
covering ⌫ : Y �! X such that (Y ) = (X) = 0 and P1(Y ) 6= 0. Therefore
P1(Y ) = 1, and we denote by K

Y

the unique e↵ective canonical divisor on Y . We
put f = g � ⌫, and consider the maps:

Y
f����! V

b����! A.

Let � ⇢ V be any irreducible component of the ramification divisor R = Ram(b).
We claim:

Any irreducible component D of f⇤(�) appears in K
Y

.(2.5.1)

Grant this for the time being. We can write

f⇤(R) =
X

a
i

D
i

(a
i

> 0),

where the D
i

are distinct irreducible divisors, and
P

D
i

� K
Y

by (2.5.1). Let
a = max{a

i

}. Then for any m > 0:

f⇤(mR) =
X

ma
i

D
i

�
X

maD
i

� maK
Y

.
(*)

On the other hand, since b : V �! A is a generically finite covering of an abelian
variety, one has R ⌘ K

V

. Therefore

P4(V ) = h0(V,O
V

(4R)) � 2,

and hence h0(Y,O
Y

(4aK
Y

)) � 2 thanks to (*). But (Y ) = 0, so this is a contra-
diction.

It remains to prove (2.5.1). Let v 2 � be any point, and y 2 f�1(v). Since b
ramifies at v, as in the proof of Proposition 2.2 there is a homolorphic one-form

0 6= ⌘
v

2 H0(V,⌦1
V

) such that ⌘
v

(v) = 0.

On the other hand, Proposition 2.1 and the fact that (Y ) = 0 imply that O
Y

is
an isolated point of V0(Y ). It follows from (1.5.2) that the map

H0(Y,⌦n�1
Y

)
^(f⇤⌘

v

)�����! H0(Y,⌦n

Y

)

is surjective. But f⇤⌘
v

(y) = 0, and hence K
Y

vanishes at y.

Remark 2.6. Propositions 2.1, 2.2 and 2.4 extend with no di�culties to the setting
of compact Kähler manifolds. In the proof of (2.5) one has to take a little care that
one can arrange for V to be Kähler, and as the referee points out for this one can
apply [Var], Theorem 3.

3. Singularities of theta divisors

We start with some preliminaries on adjoint ideals, and then give the applications
to theta divisors. The reader who wishes to read this section independently of the
rest of the paper is referred to Remark 3.4.
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Adjoint ideals. We wish to understand how the adjunction formula works for a
possibly singular divisor in a smooth variety. The following Proposition generalizes
various classical constructions involving conductor ideals. The result is certainly at
least implicitly known to the experts, but we include a proof for the benefit of the
reader.

Proposition 3.1. Let M be a smooth variety, let D ⇢ M be a reduced e↵ective
divisor, and let f : X �! D be any resolution of singularities. Then there is an
adjoint ideal

J = J
D

⇢ O
M

,

cosupported in the singular locus of D, which sits in an exact sequence:

0 ����! O
M

(K
M

)
·D����! O

M

(K
M

+D)⌦ J ����! f⇤OX

(K
X

) �! 0.

(3.1.1)

Moreover, J = O
M

if and only if D is normal and has only rational singularities.

Proof. Note to begin with that the sheaf f⇤!X is independent of the choice of
resolution, so we are free to work with any convenient one. Let g : Y �!M be an
embedded resolution of D, and let X ⇢ Y be the proper transform of D (so X is a
disjoint union of smooth divisors). Then we can write

K
Y

+X = g⇤(K
M

+D) + P �N,

where P,N and X are e↵ective divisors on Y , with no common components, and
every component of P is g-exceptional. The adjoint ideal J = J

D

is defined to be

J = g⇤OY

(�N) ✓ g⇤OY

= O
M

.

Since P is g-exceptional, one sees that g⇤OY

(P �N) = g⇤OY

(�N) (or cf. [KMM,
1.3.2]). We then have:

g⇤OY

(K
Y

+X) = O
X

(K
M

+D)⌦ g⇤OY

(P �N)

= O
X

(K
M

+D)⌦ g⇤OY

(�N)

= O
X

(K
M

+D)⌦ J .
Recalling that g⇤OY

(K
Y

) = O
M

(K
M

) and R1g⇤OY

(K
Y

) = 0, (3.1.1) arises as the
pushforward under g of the exact sequence

0 �! O
Y

(K
Y

) �! O
Y

(K
Y

+X) �! O
X

(K
X

) �! 0.

It follows from (3.1.1) that J
D

= O
M

i↵ f⇤!X = !
D

. Since f factors through
the normalization of D, and since D is non-normal i↵ it is singular in codimension
one, this can evidently hold only if D is normal. And as D is in any event Cohen-
Macaulay, the equality in question is then equivalent to the condition that D has
at worst rational singularities (cf. [Kol4, (11.10)]).

Remark 3.2. As in the Introduction, consider the multiplicity loci

⌃
k

(D) = {x 2M | mult
x

(D) � k} .(3.2.2)

We observe that if ⌃
k

(D) has any components of codimension  k in M , for some
k � 2, then the corresponding adjoint ideal J = J

D

is non-trivial. In fact, construct
the embedded resolution Y by first blowing up such a component. Then one sees
that the divisor N appearing in the proof of (3.1) is non-zero, and the assertion
follows. (Compare [Kol3], proof of Theorem 17.13.)
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Theta divisors. Let (A,⇥) be a principally polarized abelian variety. We start
with the following statement, which in view of (3.1) is equivalent to Theorem 1
from the Introduction.

Theorem 3.3. Assume that ⇥ is irreducible. Then the corresponding adjoint ideal
is trivial, i.e. J = J⇥ = O

A

.

Proof. We may assume that g = dimA � 2, for otherwise the statement is trivial.
Let f : X �! ⇥ be a resolution. Note first that X (i.e. ⇥) is of general type.
Otherwise, by a theorem of Ueno (cf. [Mori], (3.7)) there would exist a non-trivial
quotient ⇡ : A �! B of A, plus an e↵ective divisor E ⇢ B such that ⇥ ⇢ ⇡⇤(E).
But this is impossible since ⇥ is ample. [We remark that Ueno’s theorem is the
essential point where irreducibility is used: for ⇥ reducible, the individual compo-
nents won’t be of general type.]

The adjoint exact sequence (3.1.1) takes the form:

0 �! O
A

�! O
A

(⇥)⌦ J �! f⇤!X �! 0.(3.3.1)

Now let P 2 Pic0(A) be a topologically trivial line bundle on A, and twist (3.3.1)
by P :

0 �! P �! O
A

(⇥)⌦ P ⌦ J �! f⇤!X ⌦ P �! 0.(3.3.2)

Evidently X has maximal Albanese dimension. Bearing in mind Remark 1.6, it
follows from [GL1, Theorem 1] (or (1.2.2) above) that Hi(X,!

X

⌦ f⇤P ) = 0 for
i > 0 and P general. Therefore

H0(A, f⇤!X ⌦ P ) = H0(X,!
X

⌦ f⇤P )

= �(X,!
X

⌦ f⇤P )

= �(X,!
X

)

for generic P . But by construction X is birational to its Albanese image, and hence
�(X,!

X

) 6= 0 thanks to Theorem 3. Thus H0(A, f⇤!X ⌦ P ) 6= 0 for general P .
Let ↵

P

2 A be the point corresponding to P 2 Pic0(A) under the isomorphism
A ⇠= Pic0(A) determined by the principal polarization O

A

(⇥). Then (3.3.2) implies
that

H0(A,O
A

(⇥ + ↵
P

)⌦ J ) = H0(A,O
A

(⇥)⌦ P ⌦ J ) 6= 0(3.3.3)

for general P 2 Pic0(A) (and hence general ↵
P

2 A).
Suppose now that the theorem is false, so that J 6= O

A

. Then the corresponding
zero-locus

Z = Zeroes(J ) ⇢ A

is non-empty. Since h0(A,O
A

(⇥+↵
P

)) = 1, it follows from (3.3.3) that Z ✓ (⇥+↵)
for a general point ↵ 2 A. But the translates of ⇥ don’t have any points in common,
so this is impossible.

Remark 3.4. We indicate how to avoid the appeal to Theorem 3 (and Remark
1.6) in the argument just completed. Keeping notation as above, Theorem 3 was
invoked only in order to show that �(X,!

X

) 6= 0. This can be circumvented by
noting from (3.3.1) that H0(X, f⇤!X) ✓ H1(A,O

A

), and hence p
g

(X)  g =
dimA. But then a theorem of Kawamata and Viehweg [KV] (cf. [Mori, (3.11)])
implies that �(X,!

X

) = 1. In fact, Kawamata and Viehweg prove that the maps
H0(A,⌦i

A

) �! H0(X,⌦i

X

) are isomorphisms for i  g � 1, and taking i = 1 it
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follows that Pic0(A) �! Pic0(X) is an isogeny. Hence one can also bypass Remark
1.6: it is essentially the same to work with general P 2 Pic0(X) (as in [GL1]) or
with general P 2 Pic0(A) (as in the argument above).

Next we give the

Proof of Corollary 2. Assume that there exists an integer k � 2 such that ⌃
k

(⇥)
has an irreducible component of codimension k in A. We wish to show that then
(A,⇥) is a non-trivial k-fold product of principally polarized abelian varieties. It
follows in the first place from Remark 3.2 that J⇥ 6= O

A

. Therefore ⇥ is reducible
by Theorem 3.3. The Decomposition Theorem (cf. [LB, (4.3.1)]) then implies that
the p.p.a.v. (A,⇥) splits as a non-trivial product. Let

(A,⇥) = (A1,⇥1)⇥ · · ·⇥ (A
r

,⇥
r

)

be the decomposition of (A,⇥) as a product of irreducible p.p.a.v.’s. Given any
irreducible subset S ⇢ ⌃

k

(⇥), there exist integers k1, . . . , kr � 0, with
P

k
i

� k,
such that

S ✓ ⌃
k1(⇥1)⇥ · · ·⇥ ⌃

k

r

(⇥
r

).

Suppose that codim
A

S = k. Since in any event codim
A

i

⌃
k

i

(⇥
i

) � k
i

by Kollár’s
theorem, it follows that

k = codim
A

S � codim
A1⌃k1(⇥1) + · · · + codim

A

r

⌃
k

r

(⇥
r

)

� k1 + · · · + k
r

� k.

(*)

Therefore

codim
A

i

⌃
k

i

(⇥
i

) = k
i

for all i.

By induction, this implies that k
i

= 0 or 1 for all i. But then it follows from (*)
that r � k.

Finally, we present an extension of Kollár’s theorem to the singularities of pluri-
theta divisors, as proposed in [Kol3, Problem 17.15].

Proposition 3.5. Let (A,⇥) be a p.p.a.v., and for m � 1 fix any divisor D 2
|m⇥|. Then the pair (A, 1

m

D) is log-canonical. In particular, every component of
⌃
mk

(D) has codimension � k in A.

Proof. The point of the argument is to use systematically all the available vanish-
ings. Specifically, for 0 < ✏⌧ 1 consider the divisor

E = E
✏

=
1�m✏

m
D ⌘ (1� ✏)⇥.

Thus ⇥�E is an ample Q-divisor, and hence so is P (⇥�E) for any P 2 Pic0(A).
Denote by J = J

E

⇢ O
A

the multiplier ideal determined by E (cf. [De, (6.12)] or
[Kol4, (2.16)]). Then Kawamata-Viehweg-Nadel vanishing implies that

Hi(A,O
A

(⇥)⌦ P ⌦ J ) = 0 for all i > 0 and P 2 Pic0(A).(3.5.1)

Assuming the assertion of the Proposition false, we can choose ✏⌧ 1 such that
J 6= O

A

. Then Z = Zeroes(J ) 6= ;, and as in the proof of Theorem 3.3 it follows
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that

H0(A,O
A

(⇥)⌦ P ⌦ J ) = 0(3.5.2)

for general P 2 Pic0(A). Combining (3.5.1) and (3.5.2), we find that

�(A,O
A

(⇥)⌦ P ⌦ J ) = 0

for general P . As Euler characteristics are deformation invariants, this then holds
for arbitrary P 2 Pic0(A). Thanks to (3.5.1), the equality (3.5.2) must likewise
hold for all P . In other words:

Hi(A,O
A

(⇥)⌦ P ⌦ J ) = 0 for all i � 0 and all P 2 Pic0(A).

But it follows from Mukai’s theory [Muk] of the Fourier functor on an abelian
variety that if F is a coherent sheaf on A such that Hi(A,F ⌦ P ) = 0 for all i � 0
and all P 2 Pic0(A), then F = 0. Thus we have a contradiction.
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Variables Complexes V, Lecture Notes in Math. 1188 (1986), 245-256. MR 89d:32064

[Z] Qi Zhang, Global holomorphic one-forms and Euler characteristics on projective mani-
folds with ample canonical bundles (to appear).

Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois

60680

E-mail address: U22425@math.uic.edu

Department of Mathematics, University of California, Los Angeles, California 90024

E-mail address: rkl@math.ucla.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


