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Introduction 

In recent years, the equations defining a projective variety X = P '  and the syzygies 
among  them have attracted considerable attention. Classical results giving condi- 
tions to guarantee that X is projectively normal  or cut out by quadrics have 
emerged as the first cases of more  general statements about  higher syzygies. 
Specifically, theorems in this direction have been established for curves [G1],  finite 
sets I-GL], and abelian varieties [K] .  Mukai  observed that one can view the known 
results as dealing with embeddings defined by line bundles of the type Kx + P, 
where P is an explicit multiple of a suitably positive bundle. He suggested that in 
this form, analogous statements should hold on an arbitrary smooth  projective 
variety X. Our  first purpose here is to show that this is indeed the case, at least 
when P is a multiple of a very ample line bundle. 

To give precise statements, we require some notat ion and definitions. Let X be 
a smooth  complex projective variety of  dimension n, and let L be a very ample 
line bundle on X, defining an embedding X~P=PH~ Denote  by 
S = Sym ~ H~ the homogeneous  coordinate ring of the projective space P, and 
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consider the graded S-module R = R(L) = @ H~ Ld). Let E. be a minimal 
graded free resolution of R: 

 9 ' ' ~ @ S ( - a 2 , j ) ~ @ S ( - a l , j ) ~ @ S ( - a o , ~ ) - - * R ~ O  . 

II tl II 
E2 E1 Eo 

We have indicated here the fact that R has a canonical generator in degree zero. 
Observe that all ao,i _-> 2 since we are dealing with a linearly normal embedding, 
and that all al, j _-> i + 1 when i > 1 thanks to the fact that X doesn't lie on any 
hyperplanes. 

We shall be concerned with situations in which the first few modules of syzygies 
of R(L) are as simple as possible: 

Definition. The line bundle L satisfies Property (Np) if 

and 

E o = S  when p > 0  

E i = @ S ( - i -  1) (i.e. allai, j = i +  1) for 1 ~<i~<p.  

Note that if Eo = S, then E~ determines a resolution of the homogeneous ideal 
I = Ix/p of X in P. Thus the definition may be summarized very concretely as 
follows: 

L satisfies(No) r X embeds in PH~ as a projectively normal variety; 
L satisfies (N1) ~ (No) holds for L, and the homogeneous ideal I of X is gener- 

ated by quadrics; 
L satisfies (N2) "~ (No) and (N1) hold for L, and the module of syzygies among 

quadratic generators Qi e I is spanned by relations of the form 
~ L i .  Qi = 0, where the Li are linear polynomials; 

and so on. Properties (No) and (N1) are what Mumford [M2] calls respectively 
normal generation and normal presentation. 

We refer the reader for instance to [L2, Sect. 1] for a survey of some of the many 
classical statements on the projective normality and defining equations of finite 
sets, curves and abelian varieties. Concerning higher syzygies, the first geometric 
result was due to Green [G1], who proved that if X is a smooth curve of genus 9, 
and if deg(L) > 29 + 1 + p, then L satisfies (Np). This was recovered in [GL2]  as 
a consequence of an analogous statement for finite sets. The second author 
conjectured| (p + 3) .in [L2] that if L is an ample line bundle on an abelian variety,' then 
L satisfies (Np), and Kempf  proved a slightly weaker result in [K] .  On an 
arbitrary variety, Green [G2] showed that any "sufficiently positive" bundle 
L satisfies (Np), but his theorem does not include any explicit conditions on L to 
guarantee (Np). In fact, for a long time it was not even clear (at least to the present 
authors) what form an explicit result might take. Mukai then remarked that one 
could view the theorem for curves as asserting that if D is an ample bundle on 
a curve X, then (Np) holds for Kx + (p + 3)D. And of course put like this, one sees 
what shape a general statement should have. 

Our first main result is the following 
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Theorem 1 Let X be a smooth complex projective variety of dimension n, and let A be 
a very ample line bundle on X. Then (Np) holds for the bundle Kx + (n + 1 + p)A. 
More generally, if B is any numerically effective line bundle on X, then 

Kx + (n + 1 + p)A + B satisfies (Np) . 

In other words, (Np) holds for L as soon as L is "at least as positive as" 
Kx + (n + 1 + p)A. The theorem implies for instance that under the embedding 
defined by Kx + (n + 2)A, the homogeneous ideal of X is generated by quadrics. 
We remark that at least for p = 0 and 1, Butler [B] has constructed examples of 
n-folds X carrying an ample (but not very ample!) bundle D such that (Np) fails for 
Kx + (n + l + p)D. 

When p -- 0, the theorem asserts the projective normality of the embedding 
defined by Kx + (n + 1)A + B (see (0.4)). A quick proof of this fact using the 
Kodaira vanishing theorem was given previously with Bertram [BELl. In fact, the 
argument in [BEL] gives the stronger statement that Kx + nA + B is normally 
generated provided that it is very ample. These results on normal generation have 
been obtained independently by Andreatta, Ballico, and Sommese lABS, ABS]. 
Starting with the projective normality of Kx + nA + B, one can show by the 
methods of the present paper that /f p > 1, then with one exception (Np) holds 
already for Kx + (n + p)A + B (see w However in the interests of unity we focus 
here mainly on the theorem as stated. In a somewhat different direction, Butler [B] 
has established that if X is a ruled variety over a smooth curve, then 
Kx + (2n + I)D is normally generated provided merely that D is an ample line 
bundle, and he has obtained analogous statements for higher syzygies. Butler's 
work on scrolls was important in guiding our thinking on these questions. 

It is well known that results on syzygies may be interpreted in terms of the 
vanishing of certain Koszul cohomology groups (cf. [G1, G2]). For X = P", Green 
[G2, G4] proved a general vanishing theorem for such groups, which he, Voisin 
and others (c.f. [G5]) have used to make interesting infinitesimal computations in 
Hodge theory. In this spirit, we may view Theorem 1 as a special case of the 
following, which generalizes Green's statement to arbitrary varieties: 

Theorem 2 Let A be a very ample line bundle, and let B and C be numerically effective 
line bundles on a smooth complex projective n-fold X. Put 

Ld= Kx + dA + B and Nj. = Kx + fA  + C .  

Let W c H~ Ld) be a base-point free subspace of codimension c, and consider the 
Koszul-type complex 

A "+~ W |  H~ ~ A p W |  H~ | Ny) ~ A p -~ W |  H~ 2 | Nf ) .  

I f  d > n + 1 and f >  (n + 1) + p + c, then this complex is exact (in the middle). 

Green's result is the case X = P" and A = (gp,(1). 
We hope that Theorem 2 may open the door to finding explicit formulations of 

theorems hitherto known precisely for P" but only asymptotically in general. In 
this direction we prove in w the following, which may be seen as making precise 
some results of [CGGH]  and [G3] concerning "sufficiently positive" divisors. 
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Proposition 3 Let X be a smooth complex projective threefold, and let A be a very 
ample and B a nef line bundle on X. 

(1) I f  Y613Kx + 16A + B[ is a sufficiently 9eneral smooth divisor, then 
Pic(Y) = Pic(X). 

(2) I f  YEIKx  + 8A + BI is any smooth divisor, then the infinitesimal Torelli 
theorem holds for Y, i.e. the derivative of the period mapping is injective at Y. 

Note that when X = p3, (1) is just the classical Noether-Lefschetz theorem and (2) 
is the elementary fact that infinitesimal Torelli holds for surfaces of degrees > 4. 

The proofs of the theorems combine the theory of Castelnuovo-Mumford 
regularity with some vanishing theorems for bundles. It is known that the syzygies 
of L and the complexes appearing in Theorem 2 are governed by the cohomology 
of a vector bundle ML associated to L = Ld; roughly speaking, one has to verify 
that HI(X ,  A P + I M L @ N f ) =  0. When X = P", the required vanishing follows 
from the multiplicative behavior ILl ,  (2.7)] of Castelnuovo-Mumford regularity. 
In general, however, there does not seem to be a good theory of regularity on an 
arbitrary variety. But in the case at hand, when L = Kx + dA + B with d > n + 1, 
we show in effect that the best features of the case X = P" persist. Specifically, we 
use considerations of regularity to build non-exact "resolutions" first of ML and 
then of its p + 1-fold tensor product TP+aML. The strategy is then to use the 
existence of these "resolutions" to read off the required vanishings. A similar tact 
was taken in [GLP, w but here we are forced to deal with the homology of the 
complexes so constructed. This is achieved by means of the following vanishing 
theorem of Le Potier-Sommese type, which combines and unifies a number of 
statements appearing for instance in [LeP],  IS] and [SS, Chap. 5]: 

(*) Let E1 . . . . .  E, be vector bundles on X,  of ranks el . . . . .  er, and let A be an ample 
line bundle on X. Assume that each Ei is generated by its 91obal sections, and fix 
integers a~, . . . , a~ > 1. Then 

Hk(X, K x ( ~ A a I E I ( ~ ' " ( ~ A a r E r Q A ) = O  for k>(ea  - a l ) + " "  + ( e r - a r ) .  

In the application, each E~ is a twist of the normal bundle N of X in PH~ We 
hope that some of these techniques may find other applications in the future. 

The paper is organized as follows. In w 1 we review the cohomological inter- 
pretation of Property (Np) and the Koszul complexes appearing in Theorem 2, and 
we prove the vanishing theorem (*). w is devoted to the proofs of the main results. 
We present in w some variants and applications of these results. Finally, we discuss 
in w some open problems. 

0 Notation and conventions 

(0.1) We work throughout over the complex numbers. 

(0.2) If X is a variety and F is a coherent sheaf on X, we write Hi(F) for the 
cohomology group H~(X, F) if no confusion seems likely. If C. is a complex of 
sheaves on X, we denote by ~Yg~(C.) the ith homology sheaf of C~ Kx is the 
canonical bundle of a smooth variety X. We will usually write L k for the k-fold 
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tensor power L | of a line bundle L. However in discussing adjunction-type 
bundles of the form Kx + dA it seems to be traditional to use additive notation, 
and at the risk of notational inconsistency we have decided to respect this tradition. 

(0.3) Let X be an irreducible projective variety. Recall that a line bundle B on X is 
numerically effective or nef if cl(B) .F >= 0 for every irreducible curve F ~ X. It 
follows from Kleiman's criterion for ampleness that if A is ample and B is nef, then 
A | B is again ample. 

(0.4) The definition of Property (Np) makes perfectly good sense as soon as L is 
generated by its global sections. Thus for example (No) means in this context that 
the natural maps S"H~ -~ H~ m) are surjective for all m > 0. When p = 0 and 
(X, A, B) = (P", (_gp,(1), (ge,) Theorem 1 should be understood in this broader sense, 
since in this instance the bundle appearing in the statement is trivial. However as 
explained in the proof of Proposition 2.4, in all other cases Kx + (n + 1 + p)A + B 
is ample. 

1 Preliminaries 

Cohomological interpretations 

For the convenience of the reader, we begin by reviewing a cohomological criterion 
for Property (Np) to hold, and for the exactness of certain Koszul complexes. 
Details may be found for instance in [GL2],  [L2], or [G5]. 

Let X be an irreducible complex projective variety of dimension n, and let L be 
an ample line bundle on X which is generated by its global sections. Then there is 
a canonical surjective evaluation homomorphism eL : H~ L) | (gx ~ L. Define 

(1.1) M r  = ker(eL), 

so that ML is a vector bundle on X of rank r(L) = h~ L) - 1. By construction 
ML sits in the basic exact sequence 

(1.2) 0 ~ ML --> H~ L) |162 (Px ~ L -~ 0.  

Fix now a line bundle N on X and integers p, q > 0, and set V = H~ LV). 
Then one can form the Koszul-type complex 

K.: A v+ l V | H~ ~-1 | N) ~AV V | H~ | N) 

--',A p-1 V | H~ q+ l | N) . 

More generally, suppose that W ~ V = H~ L) is any base-point free subspace. 
Then one can define analogously a vector bundle Mw on X via the exact sequence 

(1.3) O-~ M w ~  W | 1 6 2  L ~O 

and again one can form a complex 

KW.. A p+I W |  H~ q-1 | N) --*A v W@ H~ q @ N) 

~ A  p-1 W |  H~ q+l |  . 
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Lemma 1.4 Assume that H i ( X ,  L q- 1 @ N) = O. Then the complex KWis exact (in 
the middle) if and only if 

(1.5) H 1 (X, A p+ i Mw | L q- 1 | N)  = 0 . 

In particular, K.  is exact if and only if H i (X ,  AP+I ML | L q-1 | N) = O. 

Proof. Taking exterior powers in (1.3) and twisting by L q | N yields the exact 
sequence 

(*)v,q: O * A V M w @ L q | 1 7 4 1 6 2 1 7 4  |  

of vector bundles on X. The complex K. w may be analyzed by splicing together in 
the evident way several of these sequences. Specifically, let 

dr,q: A P W |  H~174  N ) - o  A p-1 W |  H~ q+~ |  

dv+l,q_l: A p+I W |  HO(L q-1 | N ) ~ A P W |  H~174  N) , 

be the maps appearing in K. w. Then one finds that 

ker(dp,q) = H~ AVMw | L q | N ) ,  

ker(dp+ 1,q_ 1) = i m { n ~  p+I W@  L q-1 | X )  --+ H~ | L q | N ) } ,  

the latter map coming from (.)p+l,q_ 1. The lemma then follows from the exact 
sequence of cohomology associated to (  9 );+ 1,q- 1. [] 

As for syzygies, one has 

Lemma 1.6 Assume that L is very ample, and that H i (X ,  L k) =for all k > 1, Then 
L satisfies property (Np) if and only if 

Ha(X, A a M L |  V a = < p + l  and b>= l .  

Proof. The case p = 0 follows upon twisting (1.2) by powers of L and taking 
cohomology. So we assume p > 0. Then an argument with graded Tor's shows that 
the homology of K. with N = (gx gives the generators in degree p + q of the pth 
module of syzygies of the graded module G H ~ (X, Lm). (See for instance [G3], [L2, 
w 1.3] or [GL2, w 1] for details.) Hence the assertion follows from (1.5). [] 

A vanishing theorem of Le Potier-Sommese type 

Our next object is to record a vanishing theorem which interpolates among 
a number of results from [LeP], [S] and [SS, Chap. V]. The following exceedingly 
simple proof, which is based on an idea of Manivel [Man], was communicated to 
us by Demailly. In a preliminary version of this paper we gave a more elaborate 
argument using the approach of Schneider [Sch] and techniques of [SS]. 

Proposition 1.7. Let X be a smooth complex projective variety of dimension n. Let 
E l , . .   9 E, be vector bundles on X, of ranks el . . . . .  er, and let A be an ample line 
bundle on X. Assume that each Ei is generated by its global sections, and f ix  integers 
a l , . . . , a , - > _  1. Then 

Hk(X, K x |  A ~' E~ |   9 . |  A ~ E , |  A) = 0 

for k > (el - al) + " "  + (e, - a,). 
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Remark. It is enough that  all the El be numerically effective. The conclusion of(1.7) 
also holds if each Ei is ample and A is numerically effective. 

Proof (Demailly-Manivel).  The idea is simply to reduce to Le Potier 's theorem 
that if F is a globally generated bundle of r a n k f a n d  A is an ample line bundle, then 
Hk(X, K x | 1 7 4  0 for k > f - a .  In fact, consider the vector bundle 
F = E 1 0 '  " " O E,. Then 

A"'E1 | 1 7 4  is a direct summand  of A/~' + + ~ , ) ( E 1  • " ' 0 ) E , ) .  

But rank F = e~ §  9  9  9 + er, so the result follows by applying Le Potier to F. [] 

2 The main theorem 

Throughou t  this section, X denotes a smooth  irreducible complex projective 
variety of dimension n, A is a very ample line bundle on X, and B and C are 
numerically effective line bundles on X. Given integers d and f, we write 

La= K x + d A + B  and N s = K x + f A + C .  

It is s tandard and elementary (cf. the proof  of Proposi t ion 2.4 below) that if 
d > n + 1, then La is base-point-free [and very ample unless d = n + 1  and 
(X, A, B) = (P", Cp,(l), Cp~ Consequently,  provided that d > n + 1, the vector 
bundle 

d e f  
Me = Ml.d 

of (1.1) is defined. 
Our  purpose in this section is to prove the following 

Theorem 2.1 Denote by Tq(Md) the q-fold tensor power of Ma. Then 

Hk(X, Tq(Ma)| when k>O 

provided that d > n + 1 and f > n + 1 + q -  k. 

Remark. Using a result from [BEL]  (or lABS])  to handle the case q = 1, one can 
prove a slightly stronger vanishing. See (3.1) below. 

Note  that the theorem indeed implies the geometric results for which we are 
aiming: 

Corollary 2.2 If d > n + 1 + p, then the line bundle La satisfies Property (N,). 

Proof Fix p > 0 and d > n + p + 1. Then L d is base-point free, and hence for every 
k > 1, Ld ~ k is of the form K~c + dA + C for some nef line bundle C (depending on 
k). Hence in the first place Hi(X, L ~  k) = 0 by Kodaira.  Furthermore,  it follows 
from (2.1) that if q < p + 1, then HI(X, TqMa | L~ k) = 0 for all k > 1. Since we 
are in characteristic zero, A q Me is a direct summand  of  Tq(Ma), and therefore the 
assertion follows from Lemma 1.6. [] 
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Corollary 2.3 Let W ~_ H~ Ld) be a base-point free subspace of codimension c. I f  
d > n + 1 and f >  (n + 1) + p + c, then the complex 

A p+I W |  H~ ~ A p W |  H~ | Nf) ~ A p-1 W |  H~ 2 | Nf) 

appearin9 in the statement of  Theorem 2 is exact. 

Proof When W = H~ Ld), SO that  c = 0, the s ta tement  follows f rom (1.4) and 
the theorem. In general, one argues just as in [G4]  or [G5] .  In brief, fix a filtration 
H~ Ld) = Wo ~ ~ ~ " " " ~ W~ = W by subspaees each having codimension 
one in the next, and let Mi be the bundle Mw, defined in (1.3). By (1.4), it suffices to 
prove 

(*) Hk(X, A P M i |  for k > 0  a n d f > ( n +  1 ) + p + i - k .  

One argues by induction on i, the case i = 0 having just  been treated. To  this end, 
observe that  one has exact sequences 0 ~ Mi+l  --* Mi ~ Cx ~ 0, and hence also 

(**) O ~  APMi+I ~ A P M i ~  AP-I  MI+I ~ 0 .  

Twisting (**) by Nf and taking cohomology,  one concludes with a downward  
induction on p. [] 

We now turn to the p roof  of Theorem 2.1. The following proposi t ion,  which 
constructs a non-exact  "resolut ion" of Md, plays a crucial role in all that  follows. 

Proposition 2.4 Assume that d > n + 1. Then there exist finite dimensional vector 
spaces Vi and a complex R.  of vector bundles on X of the form 

1/2 |  -2 --~ I/'1 |  A -1  9 "" --*Md--* O .  

(2.5) t[ II II 
R2 R1 Ro 

(In other words, for i > O, Ri =  9 A -i is a direct sum of  copies of A-i .)  This complex 
has the properties: 

(1) The map e is surjective, i.e. ~r = 0; 
(2) For i > 1, 

9~i(R.) = Ai N * | Ld , 

where N = NX/PH~ denotes the normal bundle to X in PH~ X bein9 embedded 
by the complete linear series associated to A. 

Remark. The construct ion will show that  (2.5) is a bounded  complex, i.e. that  
R~ = 0 for i >> 0. But this is un impor tan t  for our  purposes.  

Proof We consider the embedding X = P = P H ~  defined by A. Viewing Ld as 
a sheaf on P, note  to begin with that  

(2.6) Hi(p, Ld(-- i)) = 0 for i > 0 .  

In fact, since d > n + 1, A | 1 7 4  B - being the tensor  product  of  a nef and an 
ample  line bundle - is ample  when i < n. Hence HI(X, Ld(-- i)) = 0 for i > 0 by 
Koda i r a  vanishing. 
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N ow (2.6) means precisely that L d is 0-regular in the sense of  Castel- 
n u o v o - M u m f o r d  (cf. [M1, Chap. 14], [M2],  or [EG]) .  This implies in the first 
place that La is generated by its global sections, as stated above.* Furthermore,  La, 
like any 0-regular sheaf, admits a (finite) locally free resolution of the form 

 9 ' " ~  V2 | 1 6 2  (gp( -  2 ) ~  Va | 1 6 2  (gp( -  1)--+ V o | 1 6 2  

where the Vii are vector spaces and Vo = H~ La). We denote by S. the corres- 
ponding complex of vector bundles on P, so that S~ = V~ @r (~v(-  i). 

Consider next the restriction T. = S. | Cx of S. to X. Thus T~ = V~ @ ~ A - i and 
we assert that  

(2.7) ~t:~(T.) = Ai N * | La . 

In fact, evidently ~ ( T . )  = Tor~P(@x, La). On  the other hand, comput ing  this Tor  
via a resolution of (~x (or using a change of rings spectral sequence) one sees that 

Tor~P(Cx, Ld) = Tor~'P((~x, Cx) @e~Ld . 

Hence (2.7) follows from the well-known formula Tor~P(Cx, Cx) = A i N  * 
Finally the natural map 

e: To = H~ Ld) |162 (gX -+ La = Jfo(T.) 

is just the canonical evaluation homomorphism.  Hence Md = ker(e). Setting 
R~ = T~ for i > 0 and Ro = Ma, the proposi t ion follows. [] 

The next step is to build an analogous "resolution" of  the vector bundle 
Tq(Md) | IV:. To this end, recall first the Kunneth  formula: 

Lemma 2.8 Let E. and F.  be complexes o f  locally free coherent sheaves on X.  
Assume that E. and F.  are bounded below, and that their homology sheaves ~V.(E.) 
and :~f.(F.) are locally free. Then 

~ , ( E .  | F.)  = @ ~ v ( e . )  | ,,~t~q(F.) . 
p+q=i 

Proof  This is a special case of [EGA, III.6.7.8]. [] 

Proposition 2.9 Assume that d > n + 1, f ix  integers q , f >  1 and as above let 
IV: = K x  + f A  + C. Then there exists a complex Q.:  9  9  9 ~ Q2 ~ Q1 ~ Qo -~ 0 o f  
vector bundles on X with the following properties: 

(1) Qo = Tq(Ma) | N,;  
(2) For i > 1, Qi is a direct sum o f  copies o f  vector bundles o f  the form 

TP(Md) | N: - i  

with p < q -  1; 
(3) ~ ( Q . )  = 0 when i < q - 1; 

* One may argue as follows that L a is very ample unless d = n + l  and (X,A,B)= 
(P", (9p,(1), (gp.). Since A is very ample it is enough to show that L d_ 1 is globally generated. Hence 
when d > n + 1 there is nothing more to prove. So assume d = n + 1. Then one knows by work of 
Sommese et al. (cf. [E]) that K x + nA is globally generated provided that (X, A) 4= (P", Cp,). 
Hence ifB = Cx we are done. But ifB 4:(9 x, then H"(X, K x | B) = H~ B*)* = 0. This implies 
by Kodaira that L. is 0-regular, and therefore globally generated. 
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(4) For i > q, 

~ ( Q . )  = @ A"'N*| ' .| |177174 
a I + ' " + a a = i  

a ~ , . . . , a  >= 1 

where C' is a numerically effective line bundle (depending on i), and N = Nx/eno(,~) is 
the normal bundle to X in PH~ 

Proof. One simply takes Q. = T q ( R . ) |  Nf ,  where R. is the complex (2.5) con- 
structed in Proposition 2.4, and Tq(R.)  is its q-fold tensor product. Then assertions 
(1) and (2) are clear. The homology sheaves of Tq(R.)  are computed by repeatedly 
applying Lemma 2.8. But 

~ ( T q ( R o )  @ Ns) = ~ ( T q ( R . ) )  | N s ,  

since N s is locally flee, and the proposition follows. [] 

The following elementary lemma allows one to deduce the vanishing of 
Hk( X,  Qo) from a non-exact "resolution of a sheaf Q0 as in (2.9). 

Lemma 2.10 (compare [GLP, Lemma 1.6]) Let  

Q.: " " ~ Qz --* QI -~ Qo ~ O 

be a complex o f  coherent sheaves on X,  with ~ surjective. Assume that 

(1) Hk(X,  Q,)  = Hk+ ' (X ,  Q2) . . . .  = H"(X,  Q,-k+a) = 0 
[i.e. H k + i - l ( X ,  Qi) = O for  all i > 1]; 
(2) Hk+' (X ,  HI (Q . ) )  = Hk+Z(X, Hz(Q.)) . . . . .  H"(X,  J f , - k (Q. ) )  = 0 
[i.e. Hk+i(x ,  Jf~(Q.)) = O for  all i > 1]. 

Then Hk(X,  Qo) = O. 

Proof  This is most easily verified by chopping Q~ into short exact sequences in the 
usual way, and chasing through the resulting diagram. Alternatively, one can 
examine the two hypercohomology spectral sequences associated to Q.. [] 

Finally, we will need to control the cohomology of twists of sheaves of the form 
A" N* |   9  9 | A "" N*. This is where the vanishing theorem proved in w 1 makes 
its appearance. 

Lemma 2.11 Denote by N = NX/pH~ the normal bundle to X in PH~ and let C' 
be any nef  line bundle on X.  Fix  integers al . . . . .  a s > 1. Then 

Hk(X,  A"' N *  |   9 "|  A"~ N *  |  q+l | A t |  C')) = 0 

for k > al +  9  9  9 + a s and r > q(n + 1) + ~ al. 

Proof  We apply (1.7) to the globally generated vector bundle N | A*. Specifically, 
set e = rkN, and note that det(N | A*) = K x  | A "+ a. Then 

Aa' N * |  "" |  * |  +1 | A" | C') 
II 

A " ' ( N * |  |  9 .| A a ' ( N * | 1 7 4 1 7 4 1 7 4 1 7 4  r -  q(n + 1)- y~ a~| ) 

II 
A e - a l ( N  | A * ) |  . . |  A e - ' , ( N  | A * ) | 1 7 4  Ar-q(n+ I)-  ~ ~ 1 7 4  C') . 
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But when r > q(n + 1) + ~ al, the bundle A r - qln + 1) - Ya, | C'  is ample. Therefore 
the required vanishing is a consequence of Proposi t ion  1.7. [] 

N o w  we give the 

Proof of  Theorem 2.1 We argue by induction on q. When  q = 0 the theorem simply 
asserts the vanishings (2.6) established during the p roof  of Proposi t ion 2.4. So 
suppose that  q > 0, fix integers d > n + 1, and f >  n + q + 1 - k, and assume the 
theorem known for tensor powers TP(Md) with p < q - 1. 

We propose  to apply L e m m a  2.10 to the complex Q. constructed in Proposi t ion 
2.9. To  this end, we check first of all the vanishing (2.10)(1), which, in the case at 
hand amoun t s  to the assertion that  

(*) Hk+i- l (X,  T P ( m a ) |  for all i>= 1, p < q -  1. 

But s i n c e f - i > ( n + q +  1 - k ) - i > n + p +  1 - ( k + i -  1),(*) follows from 
the induction hypothesis. 

For  (2.10)(2), we are required to verify that  

(**) Hk+i(X, Aa, N * |  . .  . | 1 7 4  

for all i > 1 whenever al +  9  9  9 + aq = i with al . . . . .  aq > 1. But this is only 
non-trivial when k + i < n, and hence we may  suppose ~ ai < n - k. Then 

q d + f > q ( n +  1 ) + ( n - k ) + ( q +  1) > q(n + 1) + ~ a i ,  

and therefore (**) is a consequence of L e m m a  2.11. This completes the proof  of the 
Theorem.  [] 

3 Variants and applications 

Keeping nota t ion  as in w we start  by indicating a slight strengthening of our main  
theorem. 

Proposition 3.1 Assume that (X, A, B) ~ (P", (~w(1), Cp.). 

(1) I f  p > 1, then the line bundle Ld satisfies Property (Np) whenever d ~ n + p. 
(2) I f  d > n + 1 and f >  n + p + c, then the complex appearin9 in the statement 

of Theorem 2 is exact. 

Sketch of proof As in w it is enough to prove that  if q > 1, then 

(3.2) Hk(X, T q ( M d ) |  for k > 0 ,  d > n +  1, a n d f > n + q - k .  

To  treat  the case q = 1, we use a result f rom [BEL]  (or essentially also from [ABS])  
to the effect that  with the stated exception, the natural  m a p  

H~ La) | H~ Ur --* H~ La | Ur 

is surjective provided that  d , f >  n. This implies that  Hi(X ,  Md | Nr)= 0 when 
d , f >  n. One finds from (1.2) that  Hk(X, Md | Nr = 0 for k > 2, d > n + 1, and 
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f > n + 1 -- k, which proves (3.2) for q = 1. Now so long as d > n + 1, the "resolu- 
tions" constructed in (2.4) and (2.9) still exist. And checking the numbers in the 
proof of Theorem 2.1 shows that ifq > 2 the induction works just as before to yield 
(3.2). [] 

Theorem 1 ties up in an amusing way with a result of Mumford's. Consider 
a smooth projective subvariety X c pr  having degree d, and write H for a hyper- 
plane divisor on X. Mumford [M1] proved that X is scheme-theoretically defined 
by quadrics in the embedding X c pN defined by the linear system [dHI. This 
generalizes as follows: 

Proposition 3.3 Let X c pr be a smooth complex projective variety of degree d, and 
let H be the hyperplane divisor of X. Then the line bundle (gx(kH) satisfies property 
(Nk + l -d). 

Proof. Assume that X has dimension n. It  is enough to show that 

(*) the divisor B = (d - n - 2)H - Kx moves in a base point free linear system 

for then the assertion follows from (2.2). But this is elementary and presumably 
well-known; we learned the following argument from Mumford. Specifically, (*) is 
clear if r < n + l .  So assume r > n + 2  and consider a linear projection 
f :  X ~ P"+ 1. If D s is the double point divisor o f f  then Df - (d - n - 2)H - Kx 
thanks to the double point formula. But by varying the center of projection, we can 
choose f so that O I misses any given point of X, and (*) follows. [] 

Another application of these ideas concerns Koszul rings. Recall that a graded 
IE-algebra R = @i > 0 Ri with R0 = C is said to be Koszul if TorR(k, k) is purely of 
degree i for i __> l, where k denotes the residue field of R. This is a regularity 
condition on R that has been of interest to algebraists for some time, and was 
recently introduced into geometric questions by Kempf  [K]. For the ring R(L) 
associated to a very ample line bundle L on a variety X, the property of being 
Koszul is somewhat stronger than (N1). Butler [B] has shown that if L is a line 
bundle of degree > 2g + 2 on a curve of genus g, then the corresponding ring is 
Koszul. It is natural to ask for analogous statements for adjunction-type bundles 
on an arbitrary smooth variety. In this direction, Pareschi has used the techniques 
of the present paper to prove the following: 

Theorem [P]  Let X be a smooth complex projective variety of dimension n, and let 
A be a very ample and B a nefline bundle on X.  Put L d = K x -b dA + B, and consider 
the graded ring R = R(Ld) associated to Ld. I f  d >-_ n + 2, then R is a Koszul ring. 

Pareschi also proves a strengthening in the spirit of Proposition 3.1 above. 
Finally we give an example of how Theorem 2 may be used to render explicit 

some infinitesimal Hodge-theoretic computations previously known only asymp- 
totically. 

Proposition 3.4 Let X be a smooth complex projective threefold, and let A be a very 
ample and B a nef line bundle on X. 

(1) I f  Y e [ 3 K x +  16A + B [  is a sufficiently general smooth divisor, then 
Pic ( r )  = Pie(X) 
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(2) I f  YeIKx + 8A + B] is any smooth divisor, then the infinitesimal Torelli 
theorem holds for II, i.e. the derivative of the period mapping is injective at Y. 

Remark. When X -- p3, statement (1) is just the usual Noether-Lefschetz theorem, 
while (2) is the elementary fact that infinitesimal Torelli holds for surfaces of degree 
> 4. Both statements were known to hold for "sufficiently positive" divisors 

[CGGH, G3]. The novelty here lies in giving an explicit meaning to "sufficiently 
ample". One could deduce (I) from a global theorem of Moisezon [Mois], but the 
present result - being infinitesimal in nature - is arguably more elementary. 

Proof. The Hodge-theoretic part of the argument is a standard application of the 
ideas surrounding infinitesimal variations of Hodge structures. But for the benefit 
of the reader, we will recall briefly the approach of [ CGGH ]  and [G3]. 

For (1), let N = Nr/x be the normal bundle of Y in X. Then Pic~ = Pic~ 
thanks to the Lefschetz theorems, so it suffices to prove that H~'I(Y) = H~,a(X) 
for Y sufficiently general in the appropriate linear series. Since in any event the 
cokernel of the map H2(X, Z) ~ H2(y, 71) is torsion free, it suffices in turn to prove 
that if D is any divisor on a sufficiently general Y, then [D] ~im{Hl(X,  O~) 
Ha(Y, Or1)}. Consider to this end the natural maps 

7:HI(Y, 0~) + H2(Y, N*) 

fl:H2(y, N*) ~ Hom(H~ N), HE(y, (gy)), 

and set c~ = fl o ~. The theory of [ C G G H ]  identifies ker(c~) as those (1, 1)-classes 
on Y that to first order remain of type (1, 1) under all infinitesimal deformations 
of Y in X. So it's enough to prove that for any smooth YsI3Kx + 16A + BI, 

kere  = im{Hl(X, O f ) ~  Ha(Y, Or~)}  9 

This is turn will follow if we show 

(i) fl is injective; 
(ii) The map Ha(X, f21) -+ HI(Y, Ok] Y) is surjective. 

For  (i) it is equivalent by duality to check the surjectivity of the multiplication 

H~ N) | H~ Kr) --* H~ Y, g | gy) . 

Set L = (gx(Y) = 3Kx + 16A + B, so that N = LI Yand Kr  = (Kx @ L)] Y. Then 
an evident commutative diagram shows that it's enough to prove the surjectivity of 

(*) H~ L) | H~ Kx @ L) ~ H~ Kx | L 2 ) .  

Now L | Kx = Kx + 4A + C where C = 3Kx + 12A + B is nef. Hence the surjec- 
tivity of (*) follows from the case p -- 0 of Theorem 2. 

Turning to (ii), it suffices to prove H2(X, Oxl( - Y)) = 0, or dually 

(**) H'(X, t?}~ | L) = 0 

To this end we apply the Griffiths vanishing theorem (cf. [SS, Theorem 5.52]). 
Specifically, 02 | A 3 - being a quotient of O~,Ho(A) (3) - is generated by its global 
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sections, and det(Ox 2 | A 3) = 2Kx + 9A. So for any nef line bundle B, Griffiths 
vanishing gives 

Ht(X, (2x2(3A + (2Kx + 9A) + (Kx + 4A + B))) = O. 

This yields (*) and with it statement (1) of the proposition. 
For (2) we will assume that (X, A, B) ~ (p3, 0e3(1) ' (9p3) (where the statement is 

evident), in which case Kx + 4A + B is ample. As above, put L = Cx(Y)= 
Kx + 8A + B. Arguing as in [G3, w 1] it is enough this time to prove 

(i) H I ( Y , ~ |  
(ii) H~ Kx | L) | H~ Kx | L 2) --* H~ K 2 | L 3) is surjective. 

In fact, (i) implies that Hi(Y, 0 r ) ~  HZ(Y, N * |  K~-I), i.e. that Hi(Y, Or)* is 
a quotient of H~ N @ KrZ); and it follows from (ii) and the hypothesis on L that 
the multiplication 

H~ Kr) | H~ N | Kr)  --* gO(y, N | K~) 

is surjective. But the coderivative of the period maps factors through the resulting 
composition 

H~ Kv) | H~ N | Kr) ~ Hi(Y, Or)* , 

so the assertion of the proposition follows. Now (i) is a consequence of the exact 
sequence 

0--g2~ | Kx x |  -2 ~ (21| g x  1 |  -a --. ~2~ | K~ -~ ~ 0 .  

Indeed, when L = Kx + 8A + B, HI( f2~|  I |  -1) = 0 by Nakano vanish- 
ing, and H2(~2~ | Kx I | L - z )  = 0 by Griffiths vanishing, as above. Similarly (ii) 
follows from Theorem 2. [] 

Remark. Using Proposition 3.1, one can give a slightly stronger statement when 
X + P". We leave this to the interested reader. 

Remark. Observe that it is the use of Griffiths vanishing in the previous proof that 
the accounts for the somewhat strange shape of statement (1): the point is that the 
argument requires that Kx appear with coefficient > 3 in L. Paoletti has construc- 
ted examples showing that - contrary to what one might expect - there cannot exist 
a universal constant ~ such that Ha(X, g22(Kx + cA)) = 0 for all very ample line 
bundles A on all threefolds X. 

Remark. One can generalize Green's bound [G4] on the codimension of compon- 
ents for which the statement of (3.4)(1) fails. Keeping notation as in (3.4), let 
L = 3K + dA + B, and let Z c ILl be an irreducible component of the set of all 
smooth surfaces Ye ILl such that P i c ( Y)#  Pic(X). Note that the tangent space 
TrZ to Z at Y sits in H~ L)flEs, where seH~ L) is the section defining Y, and 
hence determines in the natural way a subspace WrZ ~ H~ L). Then arguing as 
in [G4] and the proof of (3.4) one finds the following: 

(*) Assume that at a general point Y e Z  the linear system WyS ~ H~ L) is 
base-point free. Then codim(Z, [3Kx + dA + B[) > d - 16. 
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Note that when X = p3 the condition on WrY, is automatic. The examples of Kim 
[Kim] suggest that some sort of hypotheses are needed to obtain a bound in 
general. 

4 Open problems 

In conclusion, we present a number of open problems. 
The reader will note that Theorem 1 does not imply Green's result on syzygies 

of curves, because we have always assumed that A is very ample. The most naive 
(and rash) hope in general would be the following 

Possibility. l f  X is a smooth complex projective variety of dimension n and D is any 
ample divisor on X, then (Np) holds for Kx + (n + 2 + p)D. 

This does yield the result for curves, but at the moment it seems completely out of 
reach. For  example, a celebrated conjecture of Fujita asserts that Kx + (n + 2)D is 
very ample whenever D is ample, but in spite of the very interesting work of 
Demailly [D], this is unknown already when n = 3. So if one wants to study 
syzygies, it seems that for the time being one should set one's sights lower. One 
place to start might be 

Problem 4.1 Can one extend the results of the present paper to deal with bundles of 
the form Kx + dA + B assumin9 only that A is ample and 9enerated by its #lobal 
sections? 

One hopes for statements having the shape of Theorems 1 and 2, although perhaps 
the numbers will have to be adjusted a bit. 

In view of Reider's work I-R] and other recent progress, it does seem realistic to 
ask for optimal results for surfaces. Hence we pose the following, which is essen- 
tially due to Mukai: 

Conjecture 4.2 I f  X is a smooth projective surface, and D is an ample divisor on X,  
then K x + (p + 4)D satisfies Property (Np). 

This would already be very exciting to know when p = 0 - even this case seems to 
require new ideas. 

Adjunction-type bundles Kx + dA have been the focus of considerable study, 
notably by Fujita, and Sommese and his school (cf. [Sed]). Much of this work is 
concerned with classifying situations in which the bundles in question fail to be 
very ample. It seems to us natural to study also exceptional algebraic and geomet- 
ric behavior when Kx + dA is very ample. In this direction we pose: 

Problem 4.3 Can one say anythin9 about the classification of very ample line bundles 
A on smooth n-folds X where (Np)failsfor Kx + (n + p - 1)A? 

In other words, we are asking about the "borderline" cases in Proposition 3.1. For  
curves, one has a very rich conjectural picture of the interaction of geometry with 
syzygies (cf. [GL1, w Although probably the most one can hope for in general is 
a much coarser overview, still one expects that (4.3) could lead to some picture of 
how geometry can affect syzygies in higher dimensions. 
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In a related direction, in the case of curves one has a good sense - again partly 
conjectural [GL1, loc. cit.] - of the bahavior of the whole minimal resolution E, of 
the graded ring R(L) of a line bundle of large degree. It is natural to ask for at least 
a rough picture in general: 

Problem 4.4 Let A be a very ample line bundle on a smooth n-fold X, and set 
L~ = Kx + dA. I f  d > O, what can one say about the overall shape of the resolution of 
R(Ln)? 

One might want to assume here that HI(X, (gx) = 0 for 0 < i < n, so that R(Ld) is 
Cohen-Macaulay.  In general it is our impression that the varieties whose resolu- 
tions have been studied by algebraists are for the most part either close to being 
rational (e.g. determinantal) or of very small dimension (e.g. finite sets or curves). 
Hence it would not be surprising if there were interesting but accessible phenomina 
that have so far escaped notice. 

The next question was suggested by W. Fulton. Let G be a semi-simple 
algebraic group, and consider an irreducible representation V = V(2) of G with 
highest weight 2. Let X = G/P(2)~ PV(2) be the corresponding homogeneous 
space, so that X carries a very ample homogeneous line bundle L(2) with 
H~ L(2)) = V(2). Then we define p(2) to be the largest integer p for which (Np) 
holds for L(2). 

Problem 4.5 Compute p(2) group-theoretically. 

It seems that the value of this invariant is already unknown for the various 
embeddings of P". Kempf  and his school have studied the syzygies among the 
Plucker quadrics. 

Finally, we have given in Proposition 3.4 an illustration of how the results of the 
present paper can be used to find explicit formulations of Hodge-theoretic state- 
ments proved by infinitesimal techniques. 

Problem 4.6 Can one give precise versions of other results (e.g. from [ C G G H ] )  
known to hold for "sufficiently positive" divisors or complete intersections in a given 
variety X?  

The difficulty here seems to lie in controlling the sort of groups for which we 
invoked Griffiths vanishing in the proof of (3.4), the problem being that the 
numbers threaten to become quite messy. Perhaps with some new ideas one could 
circumvent these calculations, although one will have to keep in mind the examples 
of Paoletti mentioned above. 

Acknowledgement. We are grateful to A. Bertram, D. Butler, J.-P. Demailly and S. Mukai for 
valuable discussions. 
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