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STABILITY OF SYZYGY BUNDLES ON
AN ALGEBRAIC SURFACE

Lawrence Ein, Robert Lazarsfeld and Yusuf Mustopa

Abstract. We establish the stability of the syzygy bundle associated to any sufficiently
positive embedding of an algebraic surface.

Introduction

The purpose of this paper is to prove the stability of the syzygy bundle associated to
any sufficiently positive embedding of an algebraic surface.

Let X be a smooth projective algebraic variety over an algebraically closed field
k, and let L be a very ample line bundle on X. The syzygy (or kernel) bundle ML

associated to L is by definition the kernel of the evaluation map

evalL : H0(L) ⊗k OX −→ L.

Thus ML sits in an exact sequence

0 −→ ML −→ H0(L) ⊗k OX −→ L −→ 0.

These vector bundles (and some analogues) arise in a variety of geometric and alge-
braic problems, ranging from the syzygies of X to questions of tight closure. Con-
sequently, there has been considerable interest in trying to establish the stability of
ML in various settings. When X is a smooth curve of genus g ≥ 1, the situation is
well-understood thanks to the work of several authors [1, 3, 4, 8, 12, 13]; in particular,
ML is stable as soon as deg L ≥ 2g +1. When X = Pn and L = OPn(d), the stability
of ML was established by Flenner [9, Cor. 2.2] in characteristic 0 and by Trivedi [14]
in characteristic > 0 for many d. A more general statement, due to Coandǎ [6], treats
the bundles associated to possibly incomplete linear subseries of H0

(
Pn,OPn(d)

)
.

Motivated by questions of tight closure, the stability of syzygy bundles on Pn arising
from a somewhat more general construction has been studied by Brenner [2] and by
Costa, Marques and Miró–Roig [7, 11]. In dimension 2, Camere [5] recently proved
that kernel bundles on K3 and abelian surfaces are stable.

We show here that if L is a sufficiently positive divisor on any smooth projective
surface X, then ML is stable with respect to a suitable hyperplane section of X.
Specifically, fix an ample divisor A and an arbitrary divisor P on X. Given a large
integer d, set

Ld = dA + P,

and write Md = MLd . Our main result is

Theorem A. If d is sufficiently large, then Md is slope stable with respect to A.
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Recall that the conclusion means that if F ⊆ Md is a subsheaf with 0 < rank (F ) <
rank (Md), then

c1(F ) · A
rank F

<
c1(Md) · A
rank Md

.

Since a slope-stable bundle is also Gieseker stable, it follows that Md is para-
meterized for d ≫ 0 by a point on the moduli space of bundles on X with suitable
numerical invariants. On the other hand, working over C, Camere [5, Proposition 2]
shows that if H1(X,OX) = 0, and if the natural map

H0(X, KX) ⊗ H0(X, L) −→ H0(X, KX + L)

is surjective for some very ample line bundle L, then ML is rigid. However, this
surjectivity is automatic if KX is globally generated and L is sufficiently positive.
Hence, we deduce

Corollary B. Let X be a complex projective surface with vanishing irregularity
q(X) = 0, and assume that KX is globally generated. Then Md corresponds to an
isolated point of the moduli space of stable vector bundles on X when d ≫ 0.

It is natural to suppose that the analogue of Theorem A holds also for varieties of
dimension ≥ 3, but unfortunately our proof does not work in this setting. However,
if Pic(X) ∼= Z, then the argument of Coandǎ [6] goes through with little change to
establish:

Proposition C. Assume that dimX ≥ 2 and that Pic(X) = Z · [A] for some ample
divisor A. Write Ld = dA. Then Md =def MLd is A-stable for d ≫ 0.

As in [5] the strategy for Theorem A is to reduce the question to the stability
of syzygy bundles on curves, but we avoid the detailed calculations appearing in
that paper. In order to explain the idea, we sketch a quick proof of Camere’s result [5,
Theorem 1] that if L is a globally generated ample line bundle on a K3 surface X, then
ML is L-stable. Supposing to the contrary, let F ⊆ ML be a saturated destabilizing
subsheaf, and fix a general point x ∈ X. Consider now a general curve C ∈ |L⊗mx|;
we may suppose that F sits as a sub-bundle of ML along C. Restriction to C yields
a diagram:

(*)

F |C! "

!!
0 "" OC

"" ML|C "" ML|C "" 0,

where ML|C is the syzygy bundle on C associated to ΩC = L|C. However, ML|C is
semi-stable by [13], while

µ
(
F |C

)
≥ µ

(
ML|C) > µ

(
ML|C

)
.

It follows that F |C cannot inject into ML|C , and hence the two sub-bundles F |C
and OC of ML|C have a non-trivial intersection, which in turn implies that OC is
contained in F |C . On the other hand, consider the fibres at x of the various bundles in
play. The vertical map in (*) corresponds to a fixed subspace F (x) ! H0(X, L⊗mx).
So we would be asserting that the equation defining a general curve C ∈ |L ⊗ mx |
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lies in this subspace, and this is certainly not the case. The proof of Theorem A in
general proceeds in an analogous manner, the main complication being that we have
to deal with a trivial vector bundle of higher rank appearing on the left in the bottom
row of (*).

Concerning the organization of the paper, Section 1 is devoted to the proof of
Theorem A. Proposition C appears in Section 2, where we also propose some open
problems.

1. Proof of main theorem

This section is devoted to the proof of Theorem A from the Introduction.
We start by fixing notation and set-up. As in the Introduction, X is a smooth

projective surface, and Ld = dA + P where A is an ample divisor, and P is an
arbitrary divisor on X. For the duration of the argument, we fix an integer b ≫ 0
such that (bA + P − KX) is very ample, and so that H1(X, Lb) = 0, and put

B = Lb = bA + P.

Observe that b and B are independent of d. We also assume henceforth that d is
sufficiently large, so that it satisfies the following properties:

(i) Ld and Ld−b are very ample.
(ii) For all x ∈ X, the natural mapping

(1.1) H0
(
X, (d − b)A ⊗ mx

)
⊗ H0

(
X, B

)
−→ H0

(
X, Ld ⊗ mx

)

is surjective (where mx denotes the ideal sheaf of x).
Fixing such an integer d, assume now that Md = MLd is not A-stable. Recall that

this means that there exists a non-trivial subsheaf

Fd ⊆ Md

such that
c1(Fd) · A
rank Fd

≥ c1(Md) · A
rank Md

.

Without loss of generality, we assume that Fd ⊆ Md is saturated, and we fix a point
x = xd ∈ X at which Fd is locally free.

The plan is to use the stability of syzygy bundles on curves to show that if d ≫ 0,
then no such Fd can actually exist. To this end, consider a general curve

Cd ∈ |(d − b)A| = |Ld − B |
passing through the fixed point x ∈ X. We may assume that Cd is smooth and
irreducible, and that Md/Fd is locally free along Cd. Observe also that for any torsion-
free sheaf F on X that is locally free along Cd, one has

µA

(
F

)
=

1
(d − b)

· µ
(
F|Cd

)
.

In particular, if F is A-unstable as a sheaf on X, then F|Cd is unstable on Cd.
We now consider the restriction of Md and Fd to Cd. Writing Md = MLd

for the
syzygy bundle on Cd of the restriction Ld = Ld|Cd, a straightforward analysis of the
exact sequence 0 → B → Ld → Ld → 0 yields an exact sequence

0 −→ H0(B)Cd −→ Md|Cd −→ Md −→ 0,
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where the term on the left is the trivial bundle on Cd with fibre H0(X, B). We
complete this to a diagram

(1.2)

0 "" Kd
""

! "

!!

Fd | Cd
""

! "

!!

Nd
""

! "

!!

0

0 "" H0(B)Cd
"" Md|Cd

"" Md
"" 0

of vector bundles on Cd, where Nd denotes the image of Fd|Cd in Md, and Kd is the
kernel of the resulting map Fd|Cd −→ Nd.

Observe now that

Ld|Cd ≡lin

(
Cd + B

)
|Cd ≡lin

(
KX + Cd + Q)|Cd

where Q = bA + P − KX is very ample by assumption. In particular, deg(Ld|Cd) >
2g(Cd)+1, and hence Md is stable on Cd thanks to [8]. On the other hand, it follows
from the bottom row of (1.2) that µ(Md|Cd) > µ(Md), and hence

(1.3) µ
(
Fd|Cd

)
≥ µ

(
Md|Cd) > µ

(
Md

)
.

Therefore Fd|Cd cannot be a subsheaf of Md, and hence Kd ̸= 0.
The following two lemmas constitute the heart of the proof. The first asserts that

the destabilizing subsheaf Fd must have large rank.

Lemma 1.1. One has

rank(Fd) ≥ h0
(
(Ld − B) ⊗ mx

)
= h0

(
Ld − B

)
− 1.

The second lemma shows that if d is sufficiently large, then the vertical inclusion on
the left of (1.2) is the identity.

Lemma 1.2. If d ≫ 0, then Kd = H0(B)Cd .

Granting these assertions for now, we give the

Proof of Theorem A. We need to show that if d ≫ 0 then the picture introduced
above cannot occur. To this end, we consider the fibres at the fixed point x ∈ X of
the vector bundles appearing in the left hand square of (1.2). Since the fibre of the
map evalL at x is the natural surjection H0(Ld) → H0(Ld ⊗Ox), the fibre Md(x) of
Md at x is canonically identified with H0(X, Ld ⊗ mx), so these take the form

(1.4)

Fd(x)! "

!!
H0(X, B) # ! Cd "" H0(X, Ld ⊗ mx).

Here the bottom map is the natural inclusion determined by a local equation for
Cd ∈ |(Ld − B) ⊗ mx |. It follows from Lemma 1.2 that H0(X, B) maps into the
subspace

Fd(x) ! H0(X, Ld ⊗ mx).
So for the required contradiction, it is enough to show that as Cd varies over an open
subset of |(Ld − B) ⊗ mx |, the images of the corresponding embeddings of H0(X, B)
span all of H0(X, Ld⊗mx). But this follows from the surjectivity of the map (1.1). !
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Proof of Lemma 1.1. We continue to work with the diagram (1.4), and we write
Psub(W ) for the projective space of one-dimensional subspaces of a vector space W .
Multiplication of sections gives rise to a finite morphism:

µd : Psub

(
H0(X, (Ld − B) ⊗ mx)

)
× Psub

(
H0(X, B)

)
−→ Psub

(
H0(X, Ld ⊗ mx)

)
.

Set
Z = µ−1

d

(
Psub

(
Fd(x)

))
.

Then

(*) dimPsub

(
Fd(x)

)
≥ dimZ

thanks to the finiteness of µd. On the other hand, for general Cd ∈ |(Ld − B) ⊗ mx |,
the image of the corresponding inclusion

H0(X, B) ⊆ H0(X, Ld ⊗ mx)

must meet the subspace Fd(x) ⊆ H0(X, Ld ⊗ mx) non-trivially: indeed, this follows
from (1.2) and the fact that Kd(x) ̸= 0. However, this means that the projection

(**) pr2 : Z −→ Psub

(
H0(X, (Ld − B) ⊗ mx)

)

is dominant. The Lemma follows upon combining (*) and (**). !
Proof of Lemma 1.2. Since Md/Fd is locally free along Cd, it follows from (1.2) that
Kd is a saturated subsheaf of H0(B)Cd , so it suffices to show that rank Kd = h0(B).
The argument is numerical. First, note from (1.2) and the stability of Md that

(1.5)

µ
(
Fd|Cd

)
=

deg Kd + deg Nd

rank Fd
≤ deg Nd

rank Fd

= µ
(
Nd

)
·
(

rank Nd

rank Fd

)

< µ
(
Md

)
·
(

1 − rank Kd

rank Fd

)
.

Now deg(Md|Cd) = deg(Md), and since

µ
(
Md|Cd

)
≤ µ

(
Fd|Cd

)
,

equation (1.5) yields:

deg(Md|Cd)
rank Md + h0(B)

<
deg(Md|Cd)

rank Md
·
(

1 − rank Kd

rank Fd

)
.

Observing that deg(Md|Cd) < 0, this is equivalent to the inequality

1
rank Md + h0(B)

>
1

rank Md
·
(

1 − rank Kd

rank Fd

)
,

i.e.,
rank Md

rank Md + h0(B)
> 1 − rank Kd

rank Fd
.

Thus,
rank Kd

rank Fd
> 1 − rank Md

rank Md + h0(B)
=

h0(B)
rank Md

,



78 LAWRENCE EIN, ROBERT LAZARSFELD AND YUSUF MUSTOPA

and hence

(*) rank Kd > h0(B) ·
(

rank Fd

rank Md

)
.

However, by the previous lemma, rank Fd ≥ h0(X, Ld − B) − 1. Furthermore, B is
independent of d, and rank Md = h0(X, Ld)− 1. Thus as d grows, the fraction on the
right in (*) becomes arbitrarily close to 1.1 It follows that

rank Kd > h0(B) − 1

provided that d ≫ 0, and hence rank Kd = h0(B), as required. !

2. Complements

In this section, we first of all prove Proposition C by adapting the method of proof of
Theorem 1.1 in [6]. Then we propose some open problems.

2.1. Coandǎ’s argument. We begin by stating (without proof) two preliminary
results on which the method rests; the first of these is a cohomological characterization
of stability, and the second is a vanishing theorem of Green.

Lemma 2.1. Let E be a vector bundle on X. If for every r with 0 < r < rk(E) and
for every line bundle N on X with µL(ΛrE ⊗ N) ≤ 0 one has H0(ΛrE ⊗ N) = 0,
then E is L−stable. !
Lemma 2.2 ([10, 3.a.1]). Let N, N ′ be line bundles on X and assume N is very
ample. Then for r ≥ h0(N ′), we have H0(ΛrMN ⊗ N ′) = 0. !
Proof of Proposition C. Let X be a smooth projective variety of dimension n ≥ 2 for
which Pic(X) ∼= Z · [A] for an ample line bundle A. Consider the function q : N → Q
defined by q(t) = h0(tA)−1

t . Since q(t) = An

n! tn−1 + O(tn−2) for t ≫ 0 by asymptotic
Riemann–Roch, there exists a positive integer d0 satisfying the following properties:

(1) For all integers a satisfying 1 ≤ a ≤ d0 − 1, we have q(a) < q(d0).
(2) For all integers d ≥ d0, we have that dA is very ample and q(d) < q(d + 1).

An immediate consequence is that q(a) < q(d) whenever d ≥ d0 and 1 ≤ a ≤ d − 1.
For the rest of the proof, we fix an integer d ≥ d0.

Recalling that Pic(X) = Z · [A] by assumption, it suffices by Lemmas 2.1 and 2.2
to show that given integers a and 0 < r < h0(dA) − 1, one has the implication

(2.1) µA(ΛrMd ⊗OX(aA)) ≤ 0 =⇒ r ≥ h0(aA),

where as before Md = MdA. This is automatic for a ≤ 0, so we assume a ≥ 1
throughout. We have that

(2.2) µA(ΛrMd ⊗OX(aA)) = r · µA(Md) + a · (An) = (An) ·
(

a − dr

h0(dA) − 1

)

Our assumption that µA(ΛrMd ⊗OX(aA)) ≤ 0 then implies that a ≤ d·r
h0(dA)−1 , or

(2.3) r ≥ a ·
(

h0(dA) − 1
d

)
.

1In fact, h0(Ld) − h0(Ld − B) = O(d), whereas h0(Ld) grows quadratically in d.
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In particular, a < d, so 1 ≤ a ≤ d − 1. We will be done once we verify that

(2.4) a ·
(

h0(dA) − 1
d

)
> h0(aA) − 1,

for 1 ≤ a ≤ d− 1. However, (2.4) is equivalent to q(a) < q(d), so this follows from our
assumption on d. !

Remark 2.3 (Rigidity of ML). Let L be a very ample line bundle on a smooth
complex projective variety X of dimension ≥ 3 with H1(X,OX) = 0. Then arguing as
in the proof of [5, Proposition 1], one sees that ML is rigid, i.e., Ext1(ML, ML) = 0.
Consequently, in the situation of Proposition C, Md again represents an isolated point
of the moduli space of bundles when dimC X ≥ 3 and d ≫ 0.

2.2. Some open problems. Recall that if X is a smooth curve of genus g ≥ 1,
then ML is stable as soon as deg L ≥ 2g + 1. This suggests

Problem 2.4. Find an effective version of Theorem A.

Presumably one would want to work with divisors of the sort L = KX + B + N with
B satisfying a suitable positivity hypothesis, and N nef.

It is also interesting to ask whether Md satisfies some stronger stability properties:

Problem 2.5. As before, let Ld = dA + P , and put Md = MLd . Is Md slope stable
with respect to any polarization on X when d ≫ 0? In characteristic p > 0, is it
strongly stable?

Finally, we conjecture that our main result extends to all dimensions.

Conjecture 2.6. Let X be a smooth projective variety of dimension n, and define
Md as above. Then Md is A-stable for every d ≫ 0.
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