
THE GONALITY CONJECTURE ON SYZYGIES OF ALGEBRAIC
CURVES OF LARGE DEGREE

by LAWRENCE EIN and ROBERT LAZARSFELD

Introduction

The purpose of this note is to show that a small variant of the methods used by
Voisin in [13, 14] leads to a surprisingly quick proof of the gonality conjecture of [9],
asserting that one can read off the gonality of an algebraic curve C from its syzygies in the
embedding defined by any one line bundle of sufficiently large degree. More generally, we
establish a necessary and sufficient condition for the asymptotic vanishing of the weight
one syzygies of the module associated to an arbitrary line bundle on C.

Let C be a smooth complex projective curve of genus g ≥ 2, and let L be a very
ample line bundle of degree d on C defining an embedding

C ⊆ PH0(C,L) = Pr.

Starting with the work of Green in [7, 8] there has been a great deal of interest in under-
standing connections between the geometry of C and L and their syzygies. More precisely,
write S = Sym H0(C,L) for the homogeneous coordinate ring of Pr , and denote by

R = R(L) =
⊕

m

H0(C,mL)

the graded S-module associated to L. Consider next the minimal graded free resolution
E• = E•(L) of R over S:

0 Er−1 · · · E2 E1 E0 R 0,

where Ep
∼= ⊕S(−ap,j). Note that if L is normally generated then E0 = S, in which case

E• gives rise to a minimal resolution of the homogeneous ideal I = IC/Pr of C in Pr .
As customary, we denote by Kp,q(C;L) the vector space of minimal generators of Ep in
degree p + q, so that

Ep =
⊕

q

Kp,q(C;L) ⊗C S(−p − q).

We will be concerned here with investigating the grading of E•(L)—i.e. determining
which of the Kp,q are non-vanishing—when L has very large degree.
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It is elementary that if H1(C,L) = 0 then Kp,q(C;L) = 0 for q ≥ 3. Moreover, work
of Green [7] and others shows that if d = deg(L) ' 0, so that in particular r = d −g, then:

Kp,0(C;L) (= 0 ⇐⇒ p = 0;
Kp,2(C;L) (= 0 ⇐⇒ r − g ≤ p ≤ r − 1.

It follows from this that

Kp,1(C;L) (= 0 for 1 ≤ p ≤ r − 1 − g,

but these results leave open the question of when Kp,1(C;L) (= 0 for p ∈ [r − g, r − 1].
Our first main result is that this is determined by the gonality gon(C) of C, i.e. the least
degree of a branched covering C → P1.

Theorem A. — If deg(L) ' 0, then

Kp,1(C;L) (= 0 ⇐⇒ 1 ≤ p ≤ r − gon(C).

Thus one can read off the gonality of a curve from the resolution of the ideal of C
in the embedding defined by any one line bundle of sufficiently large degree. The cases
p = r − 1, p = r − 2 were established by Green [7], and the general statement was con-
jectured in [9], where it was observed that if 1 ≤ p ≤ r − gon(C), then Kp,1(C;L) (= 0.1

Using Voisin’s results [13, 14] on syzygies of general canonical curves, Aprodu and Voisin
[1, 3] proved the statement of the theorem for a general curve of each gonality. We show
(Remark 2.2) that the conclusion of the theorem holds for instance once deg(L) ≥ g3, but
we suspect that it should be enough to assume a lower bound on d that is linear in g.2

Theorem A follows from a more general result concerning the weight one asymp-
totic syzygies associated to an arbitrary divisor B. Specifically, fix a line bundle B on C,
and with L as above consider the S = Sym H0(L) module

R = R(B;L) =
⊕

m

H0(C,B + mL).

One can again form the graded minimal free resolution E•(B;L) of R(B;L) over S, giv-
ing rise to Koszul cohomology groups Kp,q(C,B;L). As in the case B = OC discussed in
the previous paragraphs, the Kp,0 and the Kp,2 are completely controlled when deg L ' 0,
and so the issue is to understand the weight one groups Kp,1(C,B;L) when L has large
degree.

1 In fact, suppose that p : C → P1 is a branched covering of degree k. Then when deg(L) ' 0 the linear spaces
spanned by the fibres of p sweep out a k-dimensional scroll S ⊂ Pr containing C. But the resolution of IS/Pr has a linear
strand of length r − k, which forces Kp,1(C;L) (= 0 for 1 ≤ p ≤ r − k. Thus the essential content of the theorem is that if
Kr−k,1(C;L) (= 0 and deg L ' 0, then C carries a pencil of degree ≤ k.

2 Rathmann has recently established such a result: see Remark 2.5.
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Recall that B is said to be p-very ample if every effective divisor ξ of degree (p + 1)

on C imposes independent conditions on the sections of B, i.e. if the natural map

H0(C,B) −→ H0(C,B ⊗ Oξ )

is surjective for every ξ ∈ Cp+1 =def Symp+1 C. Our second main result is:

Theorem B. — Fix B and p ≥ 0. Then

Kp,1(C,B;L) = 0 for all L with deg L ' 0

if and only if B is p-very ample.

Serre duality implies that the vector spaces

Kp,q(C,B;L) and Kr−1−p,2−q(C,KC − B;L)

are naturally dual, KC being the canonical divisor of C, and one then finds that Theo-
rem A is equivalent to the case B = KC of Theorem B. While this is arguably the most
interesting instance of the result, it will become clear that decoupling B and L is helpful
in guiding the argument.

When B fails to be p-very ample, it is natural to introduce the invariant

γp(B) = dim
{
ξ ∈ Cp+1

∣∣ H0(B) −→ H0(B ⊗ Oξ ) not surjective
}
.

Theorem C. — Let Ld = dA + E, where A is an ample line bundle on C and E is arbitrary.
Fix B and p, and assume that B is not p-very ample. Then there is a polynomial P(d) of degree γp(B)

in d such that

dim Kp,1(C,B;Ld) = P(d) for d ' 0.

In some cases, we are also able to compute the leading coefficient of P(d). We note
that Yang [15] has recently proven (by somewhat related arguments) that the dimensions
of the vector spaces Kp,0 and Kp,1 grow polynomially on an arbitrary variety.

Theorems B and C follow in a surprisingly simple manner from a small variant of
the Hilbert scheme computations pioneered by Voisin in her proof [13, 14] of Green’s
conjecture for general canonical curves. It is well-known that Kp,1(C,B;L) can be com-
puted as the cohomology of the Koszul-type complex

#p+1H0(L) ⊗ H0(B) −→ #pH0(L) ⊗ H0(B + L)

−→ #p−1H0(L) ⊗ H0(B + 2L),

and the basic strategy is to realize this complex geometrically. In brief, a line bundle B
on C determines a vector bundle EB = Ep+1,B of rank p + 1 on the symmetric product
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Cp+1 whose fibre at a point ξ ∈ Cp+1 is the vector space H0(C,B ⊗Oξ ). The natural map
H0(B) −→ H0(B ⊗ Oξ ) globalizes to a homomorphism of vector bundles

(*) evB = evp+1,B : H0(C,B) ⊗C OCp+1 −→ EB,

and evidently evB is surjective as a map of vector bundles if and only if B is p-very ample.
On the other hand, if NL = det EL, then it is well-known that H0(NL) = #p+1H0(C,L),
and twisting (*) by NL gives rise to a vector bundle map

(**) H0(C,B) ⊗ NL −→ EB ⊗ NL.

Computations of Voisin identify H0(Cp+1,EB ⊗ NL) with the space Zp,1(C,B;L) of
Koszul cycles, and hence Kp,1(C,B;L) = 0 if and only if the homomorphism

H0(C,B) ⊗ H0(Cp+1,NL) −→ H0(Cp+1,EB ⊗ NL)

determined by (**) is surjective. But assuming that B is p-very ample, so that (**) is
surjective as a map of bundles, this follows for deg L ' 0 simply by applying Serre–Fujita
vanishing to the kernel of (**). We note that the main difference from Voisin’s set-up—
apart from separating B and L, which clarifies the issue—is that we push down to the
symmetric product rather than working on the universal family over it. Some related
computations had earlier appeared in the paper [10], where it was shown that one could
see the syzygies of canonical curves in cohomology related to the cotangent bundle E$C

of the symmetric product, but it has to be admitted that nothing came of these.
We are grateful to Marian Aprodu, Gabi Farkas, B. Purnaprajna, Frank Schreyer,

David Stapleton, Bernd Sturmfels, Brooke Ullery and Claire Voisin for valuable discus-
sions and encouragement.

1. Proofs

This section is devoted to the proofs of Theorems A, B and C from the Introduc-
tion. We keep the notation introduced there.3 Thus C is a smooth projective curve of
genus g, and L is a very ample line bundle of degree d on C defining an embedding

C ⊆ PH0(L) = Pr.

We fix an arbitrary line bundle on B on C, and we are interested in the Koszul cohomol-
ogy groups

Kp,q(B;L) = Kp,q(C,B;L)

3 In addition, we continue to allow ourselves to be a little sloppy in confounding additive and multiplicative notation
for divisors and line bundles.
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arising as the cohomology of the Koszul-type complex:

#p+1H0(L) ⊗ H0(B + (q − 1)L
)
−→ #pH0(L) ⊗ H0(B + qL)

−→ #p−1H0(L) ⊗ H0(B + (q + 1)L
)
.

We recall that results of Green and others imply that if d = deg(L) ' 0, then Kp,q(B;L) =
0 for all q ≥ 3, and:

Kp,0(B;L) (= 0 ⇐⇒ p ∈
[
0, h0(B) − 1

]

Kp,2(B;L) (= 0 ⇐⇒ p ∈
[
r − h1(B), r − 1

]

(cf. [5, Proposition 5.1, Corollary 5.2]).4 So the issue is to understand which of the groups
Kp,1(B;L) vanish when deg L ' 0.

Write Ck for the kth symmetric product of C, viewed as parameterizing all effective
divisors on C of degree k. We consider the commutative diagram:

(1.1)

C

C × Cp

jp+1

σp+1

pr1

C × Cp+1

pr2

pr1

Cp+1

where σp+1 and jp+1 are the maps defined by

σp+1(x, ξ) = x + ξ, jp+1(x, ξ) = (x, x + ξ).

Note that σp+1 realizes C × Cp as the universal family of degree p + 1 divisors over Cp+1.
The proofs revolve around two well-studied tautological sheaves on Cp+1. First

given a line bundle B on C, define

EB = Ep+1,B =def σp+1,∗pr∗
1(B).

Thus EB is a vector bundle of rank p+1 on Cp+1 whose fibre at ξ ∈ Cp+1 is identified with
the vector space H0(C,B ⊗ Oξ ). It follows from the construction that H0(Cp+1,EB) =
H0(C,B), which gives rise to a homomorphism:

(1.2) evB = evp+1,B : H0(C,B) ⊗C OCp+1 −→ EB

4 In particular, if H0(B) = 0 then Kp,0(B;L) = 0 for all p, and if H1(B) = 0, then Kp,2(B;L) = 0 for all p provided
that deg L ' 0.



LAWRENCE EIN, ROBERT LAZARSFELD

of vector bundles on Cp+1. Evidently evB is surjective if and only if B is p-very ample.
Next, given a line bundle L on C, put

NL = Np+1,L = det EL.

Alternatively, NL characterized by the fact that its pullback to the Cartesian product is
isomorphic to the (p + 1)-fold box product of L with itself twisted by the ideal of the sum
of the pairwise-diagonals. Note that #p+1 evL determines a map

#p+1H0(C,L) −→ H0(Cp+1,NL),

and it was established e.g. in [6, 13] that this is an isomorphism. Twisting evB by NL, one
arrives at the vector bundle map

(1.3) H0(C,B) ⊗C NL −→ EB ⊗ NL

that lies at the heart of the proof.
Our main results follow immediately from two lemmas whose proofs appear at the

end of this section. The first, which is effectively due to Voisin, states that Kp,1(B;L) = 0
if and only if (1.3) is surjective on global sections. The second asserts that as L gets very
positive on C, the corresponding line bundles NL become sufficiently positive on Cp+1 to
satisfy a Serre-type vanishing theorem.

Lemma 1.1 (Voisin). — The global sections of EB ⊗ NL are identified with the space

Zp,1(B;L) = ker
(
#pH0(L) ⊗ H0(B + L) −→ #p−1H0(L) ⊗ H0(B + 2L)

)

of Koszul cycles, and the homomorphism

H0(C,B) ⊗ H0(Cp+1,NL)

= H0(C,B) ⊗ #p+1H0(C,L) −→ H0(Cp+1,EB ⊗ NL)

arising from (1.3) is identified with the Koszul differential. In particular,

Kp,1(C,B;L) = 0

if and only if the bundle map (1.3) determines a surjection on global sections.

Lemma 1.2. — Let F be any coherent sheaf on Cp+1. There exists an integer d0 = d0(F)

having the property that if d = deg(L) ≥ d0(F), then

Hi(Cp+1,F ⊗ NL) = 0 for i > 0.
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Granting the lemmas for now, we prove the main results.

Proof of Theorem B. — Assume that B is p-very ample, so that evB in (1.2) is surjective.
Denote by MB = Mp+1,B its kernel:

(1.4) 0 −→ MB −→ H0(C,B) ⊗ OCp+1 −→ EB −→ 0.

To show that Kp,1(B;L) = 0 when deg L ' 0, it suffices by Lemma 1.1 to prove that

(1.5) H1(Cp+1,MB ⊗ NL) = 0

for very positive L. But this follows from Lemma 1.2. Conversely, if evB is not surjective,
then it is elementary—and we will see momentarily in the proof of Theorem C—that
Kp,1(B;L) (= 0 for every sufficiently positive L. !

Remark 1.3. — Proposition 2.1 below gives an effective lower bound on deg(L)

that is sufficient to guarantee the vanishing (1.5). !

Proof of Theorem C. — Denote by MB = Mp+1,B and FB respectively the kernel and
cokernel of evB:

(1.6) 0 −→ MB −→ H0(B) ⊗ OCp+1 −→ EB −→ FB −→ 0.

Taking Ld = dA + E as in the statement of the theorem, put Nd = NLd . We will see in the
proof of Lemma 1.2 below that

Nd = NE + dSA,

where SA is an ample divisor on Cp+1. On the other hand, it follows from the two lemmas
that for d ' 0

Kp,1(C,B;Ld) = H0(Cp+1,FB ⊗ Nd).

Therefore dim Kp,1(C,B;Ld) is given for d ' 0 by the Hilbert polynomial of FB ⊗ NE

with respect to SA. But γp(B) = dim SuppFB, and the result follows. !

Remark 1.4. — This argument shows that Kp,0(C,B;Ld) = H0(Cp+1,MB ⊗ Nd)

provided that d is large. Hence (assuming that p ≤ r(B)) the dimension of this Koszul
group always grows as a polynomial of degree (r(B) − p) in d when d ' 0.5 In other
words, it is the growth of the Kp,1 groups that exhibit interesting dependence on geome-
try. !

5 The arguments of [15] show that analogously on a variety of dimension n, dim Kp,0 grows as a polynomial of
degree n(r(B) − p).
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We next recall the well-known argument that the case B = KC of Theorem B
implies the Gonality Conjecture.

Proof of Theorem A. — Fix p ≤ g. We need to show that if deg(L) ' 0, and if

(*) Kr(L)−p,1(C;L) (= 0,

then C carries a pencil of degree ≤ p. By duality, (*) implies that

Kp−1,1(C,KC;L) (= 0,

and hence by Theorem B there exists an effective divisor ξ ∈ Cp of degree p that fails to
impose independent conditions on |KC|. But then ξ moves in a non-trivial linear series
thanks to geometric Riemann–Roch. !

We conclude this section by proving the two lemmas stated above.

Proof of Lemma 1.1. — It follows from the projection formula and the constructions
that

H0(Cp+1,EB ⊗ NL) = H0(C × Cp, pr∗
1 B ⊗ σ ∗

p+1NL
)

= H0(C × Cp, (jp+1)
∗(pr∗

1 B ⊗ pr∗
2 NL

))
.

Moreover the map induced by (1.3) on global sections is identified with the restriction

H0(C × Cp+1,B " NL) −→ H0(C × Cp, (B " NL)|(C × Cp)
)
.

But this is exactly Voisin’s Hilbert-schematic interpretation of Koszul cohomology, and
from this point one can argue just as in [2, Lemma 5.4]. In brief, one observes that on
C × Cp one has an isomorphism

j∗p+1(Np+1,L) = (L " Np,L)(−D),

where D ⊆ C × Cp is the image of jp : C × Cp−1 ↪→ C × Cp. Therefore

H0(C × Cp, (jp+1)
∗(B " Np+1,L)

)

is identified with

ker
(
H0(C × Cp,OC(B + L)" Np,L

)

−→ H0(C × Cp−1,OC(B + 2L)" Np−1,L
))

,

and the assertion follows. !
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Proof of Lemma 1.2. — Given a divisor A on C, the divisor TA =def
∑

pr∗
i (A) on

the Cartesian product Cp+1 descends to a divisor SA = Sp+1,A on Cp+1. For example, if
A = x1 + · · · + xd , then

SA = Cp,x1 + · · · + Cp,xd ∈ Div(Cp+1),

where Cp,x denotes the image of the map Cp ↪→ Cp+1 given by ξ 1→ ξ + x. One has
SA1+A2 = SA1 + SA2 , and SA is ample on Cp+1 if and only if A is ample on C. Observe
next that if L is line bundle on C, then NL+A = NL + SA on Cp+1. This is well-known, but
it can be checked directly from the definitions by observing that if x ∈ C is a point then
there is an exact sequence

0 −→ EL −→ EL(x) −→ OCp,x −→ 0

of sheaves on Cp+1.
Now fix an ample divisor A of degree a on C and a coherent sheaf F on Cp+1. By

Fujita–Serre vanishing, there exists an integer m0 = m0(F) such that if P is any nef divisor
on Cp+1, then

(*) Hi(Cp+1,F(mSA + P)
)
= 0 for i > 0

whenever m ≥ m0. Put

d0 = d0(F) = (2g + p) + m0a,

and suppose that deg(L) ≥ d0. Then L = L0 + m0A where L0 is p-very ample, and in
particular NL0 is globally generated. Therefore

NL = m0SA + (nef),

and so (*) gives the required vanishing. Alternatively, one could prove the lemma by
pulling back to the symmetric product. !

2. Complements

This section is devoted to some additional results, and a conjecture about what one
might hope for in higher dimensions.6

We start by establishing an effective version of Theorem B. Since the statement is
presumably far from optimal we only sketch the proof.

6 Some subsequent developments are stated in Remark 2.5 appearing at the end of the section. These involve a
substantial improvement of Proposition 2.1 due to Rathmann, and the fact that Conjecture 2.4 has been established by
Yang and the authors.
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Proposition 2.1. — Assume that B is p-very ample. Then Kp,1(C,B;L) = 0 for every line
bundle L with

(2.1) deg(L) >
(
p2 + p + 2

)
(g − 1) + (p + 1)deg(B).

Sketch of proof. — Keeping notation as in the proof of Theorem B, one needs to
prove that H1(Cp+1,MB ⊗ NL) = 0 when deg(L) satisfies the stated bound. If h0(C,B) >

2(p + 1), we replace H0(C,B) in (1.4) by a general subspace of dimension 2p + 2 to
define a vector bundle M′

B of rank p + 1 sitting in an exact sequence

0 −→ M′
B −→ MB −→ ⊕OCp+1 −→ 0,

and one is reduced to proving that H1(Cp+1,M′
B ⊗ NL) = 0. Note that M′

B ⊗ NB—being
a quotient of #p(M∗

B)—is globally generated, and that det M′
B = −NB.

We assert that if L satisfies (2.1), then

(*) NL − (p + 1)NB − KCp+1 is ample.

Granting this, we see that if (2.1) holds, then

M′
B ⊗ NL =

(
M′

B ⊗ NB
)
⊗ det

(
M′

B ⊗ NB
)
⊗ KCp+1 ⊗ A

where is A is ample, so the Griffiths vanishing theorem [11, 7.3.2] applies. For (*), it is
equivalent to check the statement after pulling back by the quotient π : Cp+1 → Cp+1.
One has π∗NL = TL − (, where TL = ∑

pr∗
i L is the symmetrization of L and ( ∈

Div(Cp+1) is the union of the pairwise diagonals. Since KCp+1 = NKC, the claim (*) reduces
with some computation to the fact that if D is a divisor on C, then TD + ( is nef on Cp+1

if and only if deg D ≥ p(g − 1). !

Remark 2.2. — The Proposition guarantees that we can detect whether KC is p-
very ample (or equivalently, whether gon(C) ≥ p + 2) by the vanishing of Kp,1(C,KC;L)

for any L with

deg(L) >
(
p2 + 3p + 3

)
(g − 1).

But in any event gon(C) ≤ g+3
2 , and it follows (with some computation) that the gonality

of C is determined by the weight one syzygies of C with respect to any line bundle of
degree ≥ g3. However we expect that such cubic bounds are far from optimal: one hopes
that it is enough that the degree of L grows linearly in g, as suggested by the results
of [1, 3].7 !

7 See Remark 2.5.
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As suggested by Schreyer, we observe next that in some cases one can use the proof
of Theorem C to get more information about the polynomial P(d) appearing there. We
focus on the most interesting case B = KC, and content ourselves with illustrating the
method in a simple instance. Specifically, suppose that C carries finitely many pencils

α1, . . . ,αs ∈ W1
p+1(C)

of degree p + 1, while no other divisors of degree p + 1 on C move in non-trivial linear
series. We assume also that each αi is (scheme-theoretically) an isolated point in W1

p+1(C)

in the sense that the multiplication maps

(*) H0(αi) ⊗ H0(KC − αi) −→ H0(K)

are surjective for each i.8

Proposition 2.3. — Under the hypotheses just stated, take Ld = d · x for some point x ∈ C.
Then for d ' 0,

dim Kp,1(C,KC;Ld) = s · d + (constant).

We note that Yang has made some interesting computations of the dimensions of
the groups Kp,0(C,KC;Ld) on a general curve, including determining the leading coeffi-
cient of the resulting polynomial.

Sketch of proof of Proposition 2.3. — Note that each αi determines a copy of P1 = |αi|
sitting in the symmetric product Cp+1, and these are precisely the positive-dimensional
fibres of the Abel–Jacobi map

u = up+1 : Cp+1 −→ Jacp+1(C).

Now when B = KC, the evaluation (1.2) is identified with the coderivative du of u, and by
a well-known computation [4, Chap. IV.4], the condition (*) implies that

coker du =
s⊕

i=1

$1
|αi |.

In particular, the sheaf FKC appearing in (1.6) has rank one along each P1 = |αi|. On
the other hand, if Ld = d · x then the divisor Nd has degree d + (constant) along |αi|, so
each of these copies of P1 contributes a term of the same shape to the Hilbert polynomial
of FKC. !

8 Recall that the Gieseker–Petri theorem asserts that the hypothesis holds automatically for a general curve of genus
g = 2p, in which case s is given by a certain Catalan number.
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Finally, we make some remarks about what one might expect in higher dimensions.
Let X be a smooth projective variety of dimension n, and let Ld = dA + E where A is an
ample and E an arbitrary divisor on X. Given a line bundle B on X, one would like to
give geometric conditions on B in order that

(2.2) Kp,1(X,B;Ld) = 0 for all d ' 0 :

as explained above and in [5, Problem 7.2] this is the most interesting group from an
asymptotic viewpoint. It is conceivable that it suffices to assume that B is p-very ample
in the sense that H0(B) imposes independent conditions on every subscheme ξ ⊆ X of
length p + 1, but this seems out of reach. On the other hand, recall that B is said to be
p-jet very ample if for every effective zero-cycle

z = a1x1 + · · · + asxs

of degree p + 1 on X, the natural mapping

H0(X,B) −→ H0(X,B ⊗ OX/ma1
1 · · · · · mas

s

)

is surjective, where mi ⊆ OX is the ideal sheaf of xi . When dim X = 1 this is the same as
p-very ample, but in higher dimensions the condition on jets is stronger.

Conjecture 2.4. — If B is p-jet very ample, then (2.2) holds.

It is very possible that the ideas of [15] will be helpful for this.

Remark 2.5 (Added in February, 2015). — We mention two developments that have
occurred since the paper was written, but that have not yet appeared. First, Rathmann
[12] has shown that if B is p-very ample, then Kp,1(C,B;L) = 0 as soon as

H1(C,L − B) = H1(L) = 0.

In particular the gonality conjecture holds for any line bundle L with deg L ≥ 4g − 3.
Secondly, the authors and Yang have established Conjecture 2.4. The proof will appear
elsewhere.
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