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Introduction

A classical theorem of Cayley and Bacharach asserts that if D1, D2 ⊆ P2 are curves of
degrees d1 and d2 meeting transversely, then any curve of degree d1+d2−3 passing through all
but one of the d1d2 points of D1∩D2 must also contain the remaining point. Generalizations
of this statement have been a source of fascination for decades. Algebraically, the essential
point is that complete intersection quotients of a polynomial ring are Gorenstein. We refer
the reader to [6, Part I] for a detailed overview.

The most natural geometric setting for results of this sort was introduced in the paper
[7] of Griffiths and Harris. Specifically, let X be a smooth complex projective variety of
dimension n, let E be a vector bundle on X of rank n, and set L = detE. Suppose given
a section s ∈ Γ

(
X,E

)
that vanishes simply along a finite set Z ⊆ X. Griffiths and Harris

prove that if

h ∈ Γ
(
X,OX(KX + L)

)
vanishes at all but one of the points of Z, then it vanishes at the remaining point as well.
This of course implies statements for hypersurfaces in projective space by taking E to be a
direct sum of line bundles.

The starting point of the present note was the paper [10] of Mu-Lin Li, who proposed
an extension allowing for excessive vanishing. With X, E and L as above, suppose that s ∈
Γ
(
X,E

)
is a section that vanishes scheme-theoretically along a smooth subvariety W ⊆ X

of dimension w ≥ 0 in addition to a non-empty reduced finite set Z ⊆ X:

Zeroes(s) = W t Z.

For example, one might imagine three surfaces in P3 cutting out the union of a smooth curve
and a finite set. Assuming for simplicity that W is irreducible, its normal bundle NW/X sits
naturally as a sub-bundle of the restriction E |W , giving rise to an exact sequence

(*) 0 −→ NW/X −→ E |W −→ V −→ 0,

where V is a vector bundle of rank w on W . Li’s result is the following:

Research of the first author partially supported by NSF grant DMS-1801870.
Research of the second author partially supported by NSF grant DMS-1739285.

1



2 LAWRENCE EIN AND ROBERT LAZARSFELD

1

Z

a
C

L

a2

① ⑧⑧/¥
BO

BO

BO

Figure 1. Twisted cubic and secant line: C ∪ L = Q1 ∩Q2

Theorem ([10], Corollary 1.3). Assume that the exact sequence (∗) splits. Then any section
of OX(KX + L) vanishing on W and at all but one of the points of Z vanishes also on the
remaining point of Z.

His argument is analytic in nature, using what he calls “virtual residues.”

It is natural to ask whether the statement remains true without assuming the splitting
of (*). The following example shows that this is not the case.

Example. Let C ⊆ P3 be a rational normal cubic curve, and fix general surfaces

Q1 , Q2 , F ⊇ C

containing C, with degQ1 = degQ2 = 2 and degF = d > 2. Recall that Q1 ∩ Q2 = C ∪ L
where L is a line meeting C at two points a1, a2 ∈ L. Therefore

Q1 ∩Q2 ∩ F = C t Z,
where Z consists of the (d − 2) additional points of intersection of F with L. (See Figure
1.) The conclusion of Li’s theorem would be that any surface H of degree 2 + 2 + d− 4 = d
passing through C and all but one of the points of Z passes through the remaining one.
However this need not happen: for instance, one can take H to be the union of a general
cubic through C and (d− 3) planes each passing through exactly one of the points of Z. �

On the other hand, staying in the setting of the Example, suppose that H ⊆ P3 is a
surface of degree d that passes doubly through C and in addition contains all but one of the
points of Z. Then H meets L twice at a1 and a2 as well as at (d − 3) other points, and
therefore H ⊇ L. In other words, in this case the conclusion of Li’s theorem does hold if
one looks at surfaces that have multiplicity ≥ 2 along C. This is an illustration of our first
general result.

Theorem A. With X and E and L = detE as above, consider a section s ∈ Γ
(
X,E

)
with

Zeroes(s) =scheme-theoretically W t Z,

where W is smooth of dimension w and Z is a non-empty reduced finite set. Suppose that

h ∈ Γ
(
X,OX(KX + L)⊗ Iw+1

W

)
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is a section of KX + L vanishing to order (w + 1) along W , as well as at all but one of the
points of Z. Then h vanishes also at the remaining point of Z.

Note that if dimW = 0, this reduces to the classical result. See also Example 2.6 for an
application to statements closer to the spirit of [10].

Theorem A is a special case of a more general result involving multiplier ideals. Con-
tinuing to keep X,E and L as before, consider a section s ∈ Γ

(
X,E

)
that vanishes simply

along a non-empty finite set Z ⊆ X and arbitrarily along a scheme disjoint from Z defined
by an ideal b ⊆ OX . In other words, we ask that that the image of the map

E∗ −→ OX
defined by s be the ideal b · IZ , with b + IZ = OX . One can associate to b and its powers
multiplier ideals J

(
bm
)

= J
(
X , bm

)
⊆ OX that measure in a somewhat delicate way the

singularities of elements of b. We prove:

Theorem B. Let

h ∈ Γ
(
OX(KX + L)⊗ J

(
bn
))

be a section of OX(KX + L) vanishing along the multiplier ideal J
(
bn
)
, and suppose that h

vanishes at all but one of the points of Z. Then it vanishes also at the remaining point.

If b = IW is the ideal sheaf of a smooth subvariety of dimension w, then J
(
bn
)

= Iw+1
W ,

yielding Theorem A. We remark that it is not essential that s vanish simply along the finite
set Z, but then one has to reformulate (in a well-understood manner) what it means for h
to vanish at all but one of the points of Z: see Remarks 1.4 and 2.4.

Theorem B follows almost immediately from the classical statement, but at the risk of
making the result seem more subtle than it is let us explain conceptually why one expects
multiplier ideals to enter the picture. When Zeroes(s) = Z is a finite set, one can think of
Cayley-Bacharach as arising via duality from the exactness of the Koszul complex

(Kos) 0 −→ ΛnE∗ −→ Λn−1E∗ −→ . . . −→ Λ2E∗ −→ E∗ −→ IZ −→ 0

determined by s. (See §1 for a review of the argument, which is due to Griffiths–Harris.) If s
vanishes excessively this complex is no longer exact, which is why – as in the example above
– the most naive analogue of Cayley-Bacharach fails. However (Kos) contains a subcomplex
involving multiplier ideals that always is exact:

(Skod) 0 −→ ΛnE∗ −→ Λn−1E∗ ⊗ J
(
b
)
−→ . . . −→ E∗ ⊗ J

(
bn−1

)
−→ J

(
bn
)
· IZ −→ 0.

(This is essentially the Skoda complex introduced in [5]: see Example 2.5 below.) One can
view Theorem B as coming from (Skod) in much the same way that the classical result arises
from (Koz).

There are variants of the Griffiths–Harris theorem that also extend to the setting of
excess vanishing. As above, let s ∈ Γ

(
X,E

)
be a section that vanishes simply on a finite set

Z. Tan and Viehweg [13] in effect prove the following:
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Theorem. Fix an arbitrary line bundle A on X, and write Z = Z1 tZ2 as the union of two
disjoint non-empty subsets. Set

v1 = dim coker
(
H0(A) −→ H0

(
A⊗OZ1

))
v2 = dim coker

(
H0
(
IZ(KX + L− A)

)
↪→ H0

(
IZ2(KX + L− A)

))
,

so that v1 measures the failure of Z1 to impose independent conditions on H0(A), while v2
counts the number of sections of OX(KX + L− A) vanishing on Z2 but not on Z1. Then

(1) v2 ≤ v1.

So for example, if A = OX and Z1 consists of single point x ∈ Z, then v1 = 0 and this
reduces to the classical statement. Similarly, if we choose Z1 in such a way that it imposes
independent conditions on H0(A) then the assertion is that any section of OX(KX +L−A)
vanishing on Z2 = Z − Z1 also vanishes on Z1. The theorem of Tan–Viehweg generalizes
analogous statements for hypersurfaces in projective space ([1], [4], [6]).1

We prove that in the case of possibly excessive vanishing, the analogous statement
remains true taking into account multiplier ideal corrections.

Theorem C. Suppose as above that s defines the ideal b · IZ ⊆ OX . Then the inequality (1)
continues to hold provided that one takes

v2 = dim coker
(
H0
(
IZ(KX + L− A)⊗ J

(
bn
))
↪→ H0

(
IZ2(KX + L− A)⊗ J

(
bn
)))

Again this follows quite directly from the classical statement.

Concerning the organization of this note, we start in §1 with a review of the theorem
of Griffiths–Harris, and the extension in the spirit of Tan and Viehweg. As an application
of the latter, we give at the end of the section a somewhat simplified and strengthened
account of some results of Sun [11] concerning finite determinantal loci: see Theorem 1.5.2

In §2 we derive the results involving multiplier ideals by applying the classical theorems on
a log resolution of the base ideal. Since our primary interests lie on excess vanishing, we
make the simplifying assumption throughout the main exposition that the finite zero-locus
Z is reduced. The well-understood modifications needed in the general case are discussed in
Remarks 1.4, 1.9 and 2.4. We work throughout over the complex numbers.

1. A Review of Cayley-Bacharach with Proper Vanishing

In this section we review the classical theorem of Cayley-Bacharach from the viewpoint
Griffiths–Harris and its extension in the spirit Tan and Viehweg. As an application, we give
at the end of the section some results of Cayley-Bacharach type for degeneracy loci.

1In the classical case, vanishings for the cohomology of line bundles on projective space yield the stronger
assertion that v2 = v1.

2In an earlier version of this paper, we overlooked the work of Sun. We apologize for this ommission.
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Suppose then that X is a smooth complex projective variety of dimension n, and let E
be a vector bundle of rank n on X, with detE = L. We assume given a section s ∈ Γ

(
X,E

)
vanishing simply on a non-empty finite set Z ⊆ X. Thus

#Z =

∫
X

cn(E).

In this setting, the basic result is due to Griffiths and Harris [7]:

Theorem 1.1. Consider a section

h ∈ Γ
(
X,OX(KX + L)

)
vanishing at all but one of the points of Z. Then h vanishes on the remaining one as well.

We outline the argument of Griffiths and Harris from [7]. The starting point of the proof
is to form the Koszul complex determined by s:

0 −→ ΛnE∗ −→ Λn−1E∗ −→ . . . −→ E∗ −→ OX −→ OZ −→ 0.

Because X is smooth and s vanishes in the expected codimension n, this is exact. Now twist
through by OX(KX + L). Recalling that L = ΛnE this gives a long exact sequence:

(1.1) 0 −→ OX(KX) −→ Λn−1E∗ ⊗OX(K+L) −→ . . .

. . . −→ E∗ ⊗OX(KX + L) −→ OX(KX + L) −→ OZ(KK + L) −→ 0.

Splitting this into short exact sequences and taking cohomology, one arrives at maps

(1.2) H0
(
X,OX(KX + L)

)
−→ H0

(
Z,OZ(KX + L)

) δ−→ Hn
(
X,OX(KX)

)
whose composition is zero. (Absent additional vanishings, (1.2) might not be exact.)

On the other hand, note that L⊗OZ = det(NZ/X) and hence there is a natural identi-
fication

OZ(KX + L) = ωZ .

Therefore duality canonically identifies δ with a homomorphism

(*) δ′ : H0
(
Z,OZ

)∗ −→ H0
(
X,OX

)∗
.

Not surprisingly, one has the:

Lemma. The mapping δ′ in (∗) is the dual of the canonical restriction

H0
(
X,OX

)
−→ H0

(
Z,OZ

)
.

As Griffiths and Harris observe, this is ultimately a consequence of the functoriality of duality.
We give the proof of a more general result – Lemma 1.3 below – in Appendix A.

Granting the Lemma, Theorem 1.1 follows at once. In fact, in terms of the natural
basis for H0

(
Z,OZ

)
and its dual, the Lemma shows that δ′ is given by the matrix (1, . . . , 1).

Therefore if h ∈ H0
(
X,OX(KX + L)

)
were to vanish at all but one of the points of Z but

not at the remaining one, then h|Z 6∈ ker(δ), contradicting the fact that the composition in
(1.2) is the zero mapping.
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We turn now to a result in the spirit of Tan and Viehweg [13].3 Keeping assumptions
and notation as above, write Z = Z1 tZ2 as the union of two non-empty subsets, and fix an
arbitrary line bundle A. Recall the statement:

Theorem 1.2. Define

V1 = coker
(
H0(A) −→ H0

(
A⊗OZ1

))
,

V2 = coker
(
H0
(
IZ(KX + L− A)

)
↪→ H0

(
IZ2(KX + L− A)

))
Then dimV2 ≤ dimV1.

As noted in the Introduction, this implies Theorem 1.1 (at least when #Z ≥ 2).

For the proof, one starts by tensoring (1.1) by OX(−A). Taking cohomology as before,
one arrives at a complex

(1.3) H0
(
OX(KX + L− A)

) res−→ H0
(
OZ(KX + L− A)

) δ−→ Hn
(
OX(KX − A)

)
.

Moreover, via the decomposition

H0
(
OZ(KX + L− A)

)
= H0

(
OZ1(KX + L− A)

)
⊕ H0

(
OZ2(KX + L− A)

)
,

this restricts to a subcomplex

(1.4) H0
(
OX(KX + L− A)⊗ IZ2

) res1−→ H0
(
OZ1(KX + L− A)

) δ1−→ Hn
(
OX(KX − A)

)
.

Note next that
ker(res1) = H0

(
(KX + L− A)⊗ IZ

)
,

and hence V2 = Im(res1). On the other hand, since (1.4) is a complex, one has

dim Im(res1) ≤ dim ker(δ1).

It is therefore sufficient to show that

(*) dim ker(δ1) = dim coker
(
H0(A) −→ H0

(
A⊗OZ1

))
.

For this we again apply duality, which identifies δ and δ1 with a diagram of maps

H0
(
Z,A⊗OZ

)∗
δ′

++
H0
(
X,A

)∗
.

H0
(
Z1, A⊗OZ1

)∗?�

OO

δ′1

33

As above the crucial point is to verify:

Lemma 1.3. The mappings δ′ and δ′1 are dual to the natural restriction morphisms

H0
(
X,A

)
−→ H0

(
Z,A⊗OZ

)
, H0

(
X,A

)
−→ H0

(
Z1, A⊗OZ1

)
.

3The actual statement and proof in [13] are rather more complicated, but Theorem 1.2 is essentially what
is established there. In [12], Tan relates these statements to the Fujita conjecture.
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A proof of the Lemma appears in Appendix A. The Lemma implies that in fact

ker δ1 = V ∗1 ,

and Theorem 1.2 is proved.

Remark 1.4. (Non-reduced zero schemes). It is not necessary to assume that the finite
scheme Z be reduced. In fact, since Z is Gorenstein, one can associate to any subscheme
Z1 ⊆ Z a residual scheme Z2 ⊆ Z having various natural properties: see [6, p. 311 ff] for a
nice discussion. The hypothesis in Theorem 1.1 should then be that h vanishes on the scheme
residual to a point x ∈ Z. In Theorem 1.2 one works with a residual pair Z1, Z2 ⊆ Z. In
this more general setting, one no longer has the embedding OZ1 ⊆ OZ used in the proof.
Instead, one replaces this with the canonical inclusion

ωZ1 ⊗ ω∗Z ↪→ OZ ,

and then the argument with duality goes through. We leave details to the interested reader.
�

We conclude this section by sketching an application of Theorem 1.2 to statements,
essentially due to Sun [11], of Cayley-Bacharach type for determinantal loci. The present
approach is somewhat different than that of [11], which uses Eagon-Northcott complexes.

We start with the set-up. Let X be a smooth projective variety of dimension n, and let
E be a vector bundle on X of rank n+ e for some e ≥ 0. Suppose given sections

s0, . . . , se ∈ Γ
(
X,E

)
that drop rank simply along a reduced finite set Z, so that once again #Z =

∫
cn(E). Denote

by W ⊆ H0(E) the (e + 1)-dimensional subspace spanned by the si, and write V = W ∗ for
the dual of W . The si determine a natural vector bundle map w : WX −→ E, where
WX = W ⊗C OX is the trivial vector bundle with fibre W . By assumption w has rank
exactly e at each point of Z, and hence its dual determines an exact sequence

(1.5) E∗
u−→ VX −→ BZ −→ 0.

where VX = V ⊗COX and BZ is a line bundle on Z. In particular, there is a natural mapping

φ = φu : Z −→ P(V ) = Pe.

More concretely, φ sends each point z ∈ Z to the one-dimensional quotient coker
(
u(z)

)
of

V . In particular, for any subset Z ′ ⊆ Z, and any k ≥ 0, one gets a homomorphism

ρZ′,k : H0
(
OP(k)

)
−→ H0

(
φ∗OZ′(k)

)
= H0

(
Z ′, B⊗kZ |Z

′).
Equivalently, this is the mapping

SkV −→ H0
(
Z ′, B⊗kZ | Z

′)
arising from (1.5).
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Figure 2. Eleven points in intersection of cubic and quartic

Theorem 1.5. In the situation just described, set L = detE, and write Z = Z1 t Z2 as the
disjoint union of two non-empty subsets. Define

(1.6)
c1 = dim coker

(
ρZ1,n−1 : H0

(
OP(n− 1)

)
−→ H0

(
φ∗OZ1(n− 1)

))
c2 = dim coker

(
H0
(
X, IZ(KX + L)

)
↪→ H0

(
X, IZ2(KX + L)

))
Then c2 ≤ c1.

Example 1.6. Let C,D ⊆ P2 denote respectively a cubic and a quartic curve meeting
transversely at twelve points. Take O ∈ C ∩D, and set

Z = (C ∩D)− {O},

so that Z consists of eleven of the twelve intersection points of C and D. Then Z is the
degeneracy locus of a map

O2
P2

w−→ OP2(1)⊕OP2(2)⊕OP2(3), 4

whose dual (1.5) has the form

OP2(−1)⊕OP2(−2)⊕OP2(−3) −→ O2
P2 .

Now pick two points P,Q ∈ Z and take Z1 = {P,Q}. If the line joining P and Q passes
through O, then c1 = 1, otherwise c1 = 0. According to the the Theorem, in the former case
there may be an additional cubic passing through the remaining nine points of Z, but in the
latter case there is none. If we take D to be the union of a cubic C ′ and a line L, and if
P,Q,O ∈ L, then in fact c2 = 1. (See Figure 2.) �

4If O is defined by linear forms L1 and L2, then the equations defining C and D are expressed as

A1L1 −A2L2 , B1L1 −B2L2,

where degAi = 2, degBi = 3. The map w is then given by the matrix

L1 L2

A2 A1

B2 B1

 .
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Proof of Theorem 1.5. Set Y = P(VX) = X ×P(V ), with projections

pr1 : Y −→ X , pr2 : Y −→ P(V ).

The plan is to use a well-known construction to realize Z as the zero-locus of a section
of a vector bundle on Y , and then apply Theorem 1.2. Specifically, the presentation (1.5)
determines an embedding Z ⊆ Y under which BZ = pr∗2

(
OP(V )(1)

)
|Z. Moreover, Z is

defined in Y by the vanishing of the composition

pr∗1E
∗ pr∗1(u) //

&&

pr∗1VX

��
pr∗2OP(V )(1).

In other words, writing

F = pr∗1E ⊗ pr∗2OP(V )(1),

Z ⊆ Y is the zero-locus of a section s ∈ Γ(Y, F ). Note next that

KY + detF = pr∗1
(
OX(KX + detE

))
⊗ pr∗2OP(V )(n− 1).

We now apply Theorem 1.2 with A = pr∗2OP(V )(n − 1). Then on the one hand, for any
Z ′ ⊆ Z, the restriction

H0
(
Y,A

)
−→ H0

(
Z ′, A|Z ′

)
is identified with the map ρZ′,n−1 appearing in (1.6). On the other hand, since

KY + detF − A = pr∗1
(
KX + detE

)
,

for any Z ′ ⊆ Z one has

H0
(
Y,OY (KY + detF − A)⊗ IZ′/Y

)
= H0

(
X,OX(KX + detE)⊗ IZ′/X

)
.

The Theorem follows. �

Example 1.7. When Z1 consists of a single point in Z, we find that if s0, . . . , se ∈ Γ
(
X,E

)
drop rank along Z, then any section of OX(KX + L) vanishing at all but one of the points
of Z vanishes at the remaining one. (This is a special case of [11, Theorem 4.1]. It also can
be deduced directly from the theorem of Griffiths-Harris.)

Remark 1.8. (More general degeneracy loci). An analogous statement – with essen-
tially the same proof – holds for more general determinantal loci. Specifically, consider vector
bundles V and E of ranks e + 1 and n + e, and suppose that w : V ∗ −→ E is a homomor-
phism that drops rank simply on a reduced finite set Z ⊆ X. As above, this gives rise to a
surjection

E∗ −→ V −→ B ⊗OZ −→ 0.

Then the statement of Theorem 1.5 remains valid provided that one takes L = detE+detV
and

c1 = dim coker
(
H0
(
X,Sn−1V

)
−→ H0

(
X,Bn−1 ⊗OZ

))
. �
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Remark 1.9. (Non-reduced degeneracy loci). One can remove the hypothesis that the
finite set Z be reduced by assuming instead that the map w (and hence also v) drops rank
by exactly one at every point x ∈ Z. In this case coker(u) is still a line bundle on the
degeneracy scheme Z defined by the vanishing of the maximal minors of u, as one sees by
locally pulling back u from the space of all matrices. Then Z again embeds in Y , where it is
the zero-locus of a section of a vector bundle. In particular Z is a local complete intersection
scheme, and therefore Gorenstein, and one can proceed as in Remark 1.4. �

2. Excess Vanishing

This section is devoted to the proofs of Theorems B and C from the Introduction.

We begin with a quick review of the basic facts about multiplier ideals, referring to [8,
Chapter 9] or [9] for details. Let X be a smooth complex variety of dimension n, and let
b ⊆ OX be a coherent sheaf of ideals on X. One associates to b and its powers a multiplier
ideal sheaf

J
(
bm
)

= J
(
X , bm

)
⊆ OX ,

as follows. Start by forming a log resolution µ : X ′ −→ X of b, i.e. a proper birational map,
with X ′ smooth, such that

b · OX′ = OX′(−B)

where B is an effective divisor on X ′ such that B+KX′/X has simple normal crossing support.
One then takes

(2.1) J
(
bm
)

= µ∗
(
OX

(
KX′/X −mB

))
.5

One shows that the definition is independent of the choice of log-resolution. The intuition
is that these multiplier ideals measure the singularities of functions f ∈ b, with “deeper”
ideals corresponding to “greater singularities.”

Multiplier ideals satisfy many pleasant properties. We mention two here by way of
orienting the reader. First, keeping notation as in (2.1), one has:

(2.2) Rjµ∗
(
OX

(
KX′/X −mB

))
= 0 for j > 0.

This is known as the local vanishing theorem for multiplier ideals, and it guarantees in effect
that the J

(
bm
)

will be particularly well-behaved. Secondly, Skoda’s theorem states that

J
(
bn
)

= b · J
(
bn−1

)
,

where as always n = dimX. In particular, J
(
bn
)
⊆ b, meaning that the multiplier ideals

appearing in Theorems 2.2 and 2.3 below are at least as deep as b itself.

Example 2.1. (Multiplier ideals of smooth subvarieties). Suppose that W ⊆ X is a
smooth subvariety of dimension w. Let us show that

J
(
X , ImW

)
= IdW ,

5More generally one can define J
(
bc
)

for any rational number c > 0, but we will not requiren this.
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where d = max{0, w + 1 + (m− n)}. In fact, the blowing up µ : X ′ = BlW (X) −→ X of W
is a log resolution, with

KX′/X = (n− w − 1)E , IW · OX′ = OX′(−E),

E ⊆ OX′ being the exceptional divisor. Therefore

J
(
ImW
)

= µ∗ (OX ((n− w − 1−m)E )) = IdW ,

as claimed.

We now come to our main results. Let X be smooth complex projective variety of
dimension n, and E a rank n vector bundle on X with detE = L.

Theorem 2.2. Let s ∈ Γ
(
X,E

)
be a section whose zero-scheme is defined by the ideal

b · IZ ⊆ OX ,
where Z ⊆ X is a non-empty reduced finite set, and b ⊆ OX is an arbitrary ideal whose
zero-locus is disjoint from Z. Suppose that

h ∈ Γ
(
X , OX(KX + L)⊗ J

(
bn
))

is a section vanishing at all but one of the points of Z. Then h vanishes on the remaining
point as well.

Theorem 2.3. In the setting of Theorem 2.2, write Z = Z1 t Z2 as the disjoint union of
two non-empty subsets, and fix an arbitrary line bundle A on X. Write

v1 = dim coker
(
H0(A) −→ H0

(
A⊗OZ1

))
v2 = dim coker

(
H0
(
IZ(KX + L− A)⊗ J

(
bn
))
↪→ H0

(
IZ2(KX + L− A)⊗ J

(
bn
)))

.

Then v2 ≤ v1.

Observe that Theorem A from the Introduction follows from 2.2 together with Example 2.1.

Remark 2.4. (Non-reduced zeros). Provided that one proceeds as in Remark 1.4, one
can remove the assumption that the zero-scheme Z be reduced. �

Proof of Theorems 2.2 and 2.3. We will deduce both results from the corresponding state-
ments in §1. Specifically, let µ : X ′ −→ X be a log resolution of b, with

b · OX′ = OX′(−B),

where B is an effective divisor on X ′ with SNC support. We may and do suppose that µ
is constructed by a sequence of blowings up over Zeroes(b), so that in particular µ is an
isomorphism over a neighborhood of Z. Therefore Z embeds naturally as a subset Z ′ ⊆ X ′.

By assumption the image of the natural mapping E∗ −→ OX determined by s is the
ideal b · IZ/X . This mapping pulls back to a surjection

µ∗E∗ // // OX′(−B) · IZ′/X′ .
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In particular, setting
E ′ = µ∗E ⊗OX′(−B),

s gives rise to a section s′ ∈ Γ
(
X ′, E ′

)
vanishing exactly on Z ′ ⊆ X ′.

For 2.2, we apply Theorem 1.1 to this section. That result asserts that every section

h′ ∈ Γ
(
X ′,OX′(KX′ + detE ′)

)
vanishing at all but one of the points of Z ′ also vanshes at the remaining one. But observe
that

KX′ + detE ′ ≡lin (KX′/X − nB) + µ∗(KX + detE).

Therefore
µ∗
(
OX′(KX′ + detE ′)

)
= OX(KX + detE)⊗ J

(
bn
)
,

and in particular

Γ
(
X,OX(KX + detE)⊗ J

(
bn
))

= Γ
(
X ′,OX′(KX′ + detE ′)

)
.

Recalling that µ is an isomorphism over a neighborhood of Z, Theorem 2.2 follows.

Theorem 2.3 follows in a similar manner from Theorem 1.2. Staying in the same setting,
write Z ′ = Z ′1tZ ′2 for the decomposition of Z ′ determined by Z1 and Z2, and put A′ = µ∗A.
Then

H0
(
X ′, A′

)
= H0

(
X,A

)
,

and hence

v1 = dim coker
(
H0(A′) −→ H0

(
A′ ⊗OZ′1

))
.

Moreover

H0
(
X, IZ(KX + L− A)⊗ J

(
bn
))

= H0
(
X ′, IZ′(KX′ + detE ′ − A′)

)
H0
(
X, IZ2(KX + L− A)⊗ J

(
bn
))

= H0
(
X ′, IZ′2(KX′ + detE ′ − A′)

)
,

and hence 1.2 yields 2.3. �

Example 2.5. (Skoda–Koszul complex). Let s ∈ Γ
(
X,E

)
be as in the hypothesis of

Theorems 2.2 and 2.3. If dim Zeroes(s) ≥ 1, then the Koszul complex determined by s is
not exact. However we assert that the Koszul complex determined by s contains an exact
subcomplex

(*) 0 −→ ΛnE∗ −→ Λn−1E∗ ⊗ J
(
b
)
−→ . . . −→ E∗ ⊗ J

(
bn−1

)
−→ J

(
bn
)
· IZ −→ 0.

In fact, consider the Koszul complex on X ′ arising from s′ ∈ Γ
(
X ′, E ′

)
:

0 −→ ΛnE ′∗ −→ Λn−1E ′∗ −→ . . . −→ E ′∗ −→ IZ′ −→ 0.

It is exact since s′ vanishes in codimension n. Twisting by OX′(KX′/X −nB), one arrives at
an exact sequence on X ′ with terms of the form

µ∗
(
Λn−iE∗

)
⊗OX′(KX′/X − iB).

These have vanishing higher direct images thanks to (2.2), and it follows that the direct
image of the twisted Kosul complex remains exact. But

µ∗
(
µ∗
(
Λn−iE∗

)
⊗OX′(KX′/X − iB)

)
= Λn−iE∗ ⊗ J

(
bi
)
,
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yielding the long exact sequence (*). �

Example 2.6. (Statements of Li-type). By adjusting the numerics, one can deduce from
Theorem A statements closer to the spirit of [10]. For example, suppose that W ⊆ Pn is
a smooth variety of dimension w that is cut out scheme-theoretically by hypersurfaces of
degree e, and consider hypersurfaces D1, . . . , Dn of degrees d1, . . . , dn such that

D1 ∩ . . . ∩Dn =scheme-theoretically W t Z,

where Z is a non-empty reduced finite set. Then any hypersurface H with

degH =
(∑

di

)
− (n+ 1)− w · e

passing through W and all but one of the points of Z must also pass through the remaining
point of Z. For instance, in the example from the Introduction this applies if H is a surface
of degree d−2 passing through C and all but one of the (d−2) points of Z. (In fact, we may
choose hypersurfaces H1, . . . , Hw of degree e passing through W but missing every point of Z.
The assertion then follows by applying Theorem A to the hypersurface H+H1+. . .+Hw.) �

Example 2.7. (Fibres of rational coverings of projective space). Let X be a smooth
projective variety of dimension n, let

f : X 99K Pn

be a generically finite rational mapping, and let Z ⊆ X be a generic fibre of f . Denote by
D ⊆ X the proper transform of a hyperplane in Pn, so that f is defined by a linear series
|V | ⊆ |D |, with base ideal b = b

(
|V |
)
. Then Z is the isolated zero-locus of a section of

OnX(D) vanishing also along b, so Theorem 2.2 implies:

(*)
Any section of OX(KX + nD)⊗ J

(
bn
)

vanishing at all but
one of the points of Z also vanishes at the remaining one.

Observe that we can find a section t ∈ Γ
(
X,OX(D)⊗ b

)
not vanishing at any point of Z,

and then multiplication by tn determines an embedding

OX(KX) ↪→ OX
(
KX + nD

)
⊗ J

(
bn
)

that is an isomorphism along Z. So we recover the statement – proved using Mumford’s
trace in [2] – that Z satisfies the Cayley-Bacharach property with respect to |KX |. However
(*) is a priori stronger since |OX(KX + nD)⊗ J

(
bn
)
| is typically larger than |KX |. The

statements for KX are used in [2] and [3] to study the degree of irrationality of X – ie the
least degree of a covering f : X 99K Pn. It would be interesting to know if (*) can lead to any
improvements. In a similar vein, given an arbitrary line bundle A, Theorem 2.3 leads to a
statement involving the linear series |KX − A| whose formulation we leave to the reader. �

Remark 2.8. (Degeneracy loci). We do not know whether or how one can generalize
Theorem 1.5 to the case of vector bundle maps with excess degeneracies. �
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Appendix A. Proof of Lemma 1.3

We sketch here one way to verify the identification asserted in Lemma 1.3. For clarity
we work in a slightly more general setting.

Consider then a finite subscheme Z ⊆ X of a smooth projective variety of dimension n.
Fix a locally free acyclic complex

(L•) 0 −→ L−n −→ L−n+1 −→ . . . −→ L−1 −→ L0 −→ 0,

with L0 = OX resolving OZ as an OX-module, so that OZ = H0(L•). Let A be an arbitrary
line bundle on X, and consider the complex M• = DX(L• ⊗ A) = L

∨
• ⊗ A∗ ⊗ ωX [n]. This

has the form

(M•) 0 −→M−n −→M−n+1 −→ . . . −→M−1 −→M0 −→ 0,

where M−n+i = L∗i ⊗ωX⊗A∗, and M• is an acyclic resolution of the sheaf Extn(A⊗OZ , ωX).
Breaking the long exact sequence

0→ L∗0 ⊗ ωX ⊗ A∗ → L∗1 ⊗ ωX ⊗ A∗ → . . .→ L∗−n ⊗ ωX ⊗ A∗ → Extn(A⊗OZ , ωX)→ 0

into short exact sequences and taking cohomology, and recalling that L0 = OX , one arrives
at a homomorphism:

δ : H0
(
X,Extn(A⊗OZ , ωX)

)
−→ Hn

(
X,ωX ⊗ A∗

)
Now

H0
(
X,Extn(A⊗OZ , ωX)

)
= Extn

(
A⊗OZ , ωX

)
is Grothendieck dual to H0

(
X,A⊗OZ

)
, and Hn

(
X,ωX ⊗ A∗

)
is dual to H0

(
X,A

)
, so δ is

identified with a mapping

δ′ : H0
(
X,A⊗OZ

)∗ −→ H0
(
X,A

)∗
.

Proposition A.1. The homomorphism δ′ is dual to the restriction mapping

ρ : H0
(
X,A

)
−→ H0

(
X,A⊗OZ

)
.

The first statement in Lemma 1.3 follows from this together with the self-duality of the
Koszul complex. We leave the second statement – involving the subscheme Z1 of Z – to the
reader.

Proof. This follows from the functoriality of Grothendieck–Verdier duality. Specifically, we
view L• as representing OZ in Db(X). Recalling again that L0 = OX , the restriction A −→
A ⊗ OZ is represented by the natural map of complexes u : A[0] −→ L• ⊗ A, and ρ :
H0(A) −→ H0(A⊗OZ) is given by the resulting homomorphism

H0(u) : H0
(
X,A[0]

)
−→ H0

(
X,L• ⊗ A

)
on hypercohomology. Now the map D(u) : DX(L• ⊗ A) −→ DX(A[0]) determined by u is
the evident morphism

M• −→M−n[n] = ωX ⊗ A∗[n].
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By Grothendieck–Verdier duality, H0(u) is dual to the resulting homomorphism

H0
(
X,M•

)
−→ H0

(
X,ωX ⊗ A∗[n]

)
.

The Proposition is therefore a consequence of the following �

Lemma A.2. Consider an acyclic complex

(M•) 0 −→M−n −→M−n+1 −→ . . . −→M−1 −→M0 −→ 0,

resolving a sheaf F on the n-dimensional projective variety X. Then the mapping

H0
(
X,F

)
−→ Hn

(
X,M−n

)
determined by splitting (M•) into short exact sequences and taking cohomology coincides with
the induced map on hypercohomology

H0
(
X,M•

)
−→ H0

(
X,M−n[n]

)
.

Proof. Denote by (M•)≤−i the naive truncation of M•, obtained by replacing Mj with the
zero sheaf for j > −i. There is an evident map (M•)≤−i −→ (M•)≤−(i+1) of complexes that
induces on H0 the connecting homomorphism

H i
(
X , H−i

(
(M•)≤−i

))
−→ H i+1

(
X , H−i−1

(
(M•)≤−(i+1)

))
determined by the short exact sequence of sheaves

0 −→ H−i−1
(
(M•)≤−(i+1)

)
−→M−i −→ H−i

(
(M•)≤−i

)
−→ 0.

Applying this remark successively starting with i = 0, the Lemma follows. �
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