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LOCAL POSITIVITY OF AMPLE LINE BUNDLES

LAWRENCE EIN, OLIVER KUCHLE & ROBERT LAZARSFELD

Introduction
The purpose of this paper is to establish a lower bound on the Se 

shadri constants measuring the local positivity of an ample line bundle
at a general point of a complex projective variety of arbitrary dimen 
sion.

Let X be an irreducible complex projective variety, and let L  be a
nef line bundle on X. Demailly [6] has introduced a very interesting
invariant which in effect measures how positive L  is locally near a given
smooth point x G  X. This Seshadri constant e(L,x) £ R may be
defined as follows. Consider the blowing up

of X at x, and denote by E = f~ ι(x) C Y the exceptional divisor.
Then f*L  is a nef line bundle on Y, and we put

e(L, x) =  sup {e > 0 | f*L   e E is nef } .
Here f*L  — eE is considered as an R divisor on Y, and to say that it
is nef means simply that f*L  C" > eE C for every irreducible curve
C C Y. For example, if L  is very ample, then e(L,x) > 1 for every
smooth point x G  X. Seshadri's criterion (cf. [10 (Chapter 1)]) states
that L  is ample if and only if there is a positive number e > 0 such
that e(L,rr) > e for every x £ X. We refer to Section 1 below, as well
as [6 (§6)], for alternative characterizations and further properties of
Seshadri constants.
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It was shown by an elementary argument in [7] that if S is a smooth
projective surface, and L  is an ample line bundle on S, then e(L, x) > 1
for all except perhaps countably many x G  S. This suggested the
somewhat surprising possibility that there could be a similar lower
bound on the local positivity of an ample line bundle at a general
point of an irreducible projective variety of any dimension. Our main
result shows that this is indeed the case:

Theorem 1. Let L be a nef and big line bundle on an irreducible
projective variety X of dimension n. Then

e(L,x) >  

for all x G  X outside a countable union of proper closed subvarieties of
X. Moreover given any δ > 0 the locus

ex «L> x)>άδ}
contains a Zariski open dense set.

More generally, we prove that if there exists a countable union B C X
of proper closed subvarieties, plus a real number α > 0 such that for
1 < r < n:

LCι(L)r > (r a)r V r dimensional Y CX with Y (£_

then e(L,x) > a for all sufficiently general x G  X. Examples con 
structed by Miranda show that given any b > 0, there exist X, L  and x
such that 0 < e(L, x) < b. In other words, there cannot be a bound (in 
dependent of X and L) that holds at every point. On the other hand,
it is unlikely that the particular constant appearing in Theorem 1 is
optimal. In fact, it is natural to conjecture that in the setting of the
Theorem one should have e(L,x) > 1 for a very general point x G  X.

Recent interest in Seshadri constants stems in part from the fact that
they govern an elementary method for producing sections of adjoint
bundles. Our bounds then imply the following, which complements the
non vanishing theorems of Kollar ([12 (§3)]):

Corollary 2. Let L be a nef line bundle on a smooth projective
variety X of dimension n > 2, and given an integer s > 0 suppose that

L
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for every r dimensional subvariety Y C X not contained in some fixed
countable union B C X of proper subvarieties. Then the adjoint series
\Oχ(Kx + L)\  generates s jets at a general point x E X, i.e., the
evaluation map

H°(X, OX(KX + D) —>•  H°(X,OX(KX + L)® Ox/ ls
x
+1)

is surjective. In particular.

It follows for example that if A is ample, then Oχ(Kx +  (ns + n2)A)
generates s jets at almost all points x G l . We remark that contrary to
what one might expect from extrapolating the well known conjectures
of Pujita [9] on global generation and very ampleness, there cannot exist
a linear function f(s) (depending on n, but independent of X and A)
such that Oχ(Kx +  f{s)A) generates s jets for s » 0 at every point of
X (Remark 1.7).

Similarly, we have
Corollary 3. Suppose that L is a nef and big line bundle on a

smooth protective variety X of dimension n > 2. Then for all m > 2n2,
the linear series \Kx+mL\  is very big1, i.e., the corresponding rational
map

Φ\Kx+mL\  : X —> P

maps X birationally onto its image.
For example, suppose that X is a smooth minimal variety of general

type, i.e., Kx is nef and big. Then the pluricanonical rational maps

Φ\mκ\  : X —> P

are birational onto their images for m > 2n2. This extends (with
somewhat weaker numbers) the results of Ando [1] in the cases n < 5.
More generally, if X is a general type minimal n fold of global index
r, then \mrKχ\  is again very big when m > 2n2 (Corollary 4.6). As

lrΓhis terminology was suggested by Kollar to replace what used to be known as
"birationally very ample"
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above, one also has an analogue of Corollary 3 for the linear series
\KX + L\  involving intersection numbers of L  with subvarieties of X.

The proof of Theorem 1 draws inspiration from two sources: first,
the arguments used in [17], [4] and [14] to prove boundedness of Fano
manifolds of Picard number one; and secondly, some of the geometric
ideas occuring in [3], [18] and especialy [8]. Roughly speaking, if The 
orem 1 fails, then given a general point x E X there exists a curve
Cx C X through x such that

mxύtx(Cx) ^

We start by fixing a divisor Ex E  \ kL\  for k » 0 with suitably large
multiplicity at x. If one could arrange that Cx <£. Ex, then one arrives
right away at a contradiction by estimating Ex Cx in terms of mul 
tiplicities at x. Unfortunately it does not seem to be immediate that
one can do so. Instead, we use a gap construction to show that for an
appropriate choice of y = y(x), we can at least control the difference of
the multiplicities of Ex at y and at a general point of Cy. The principal
new ingredient is then an argument showing that we can rechoose the
divisors Ex in such a way as to ensure that Cy (jL Ex while keeping the
multiplicity mult2/(.Ea;) of Ex at y fairly large, and then we are done.
Stated somewhat informally, the main lemma here is the following:

Suppose that {Zt C Vt}teτ is a family of subvarieties of a
smooth variety X, parametrized by a smooth affine variety
T, and assume that UteTVt is dense in X. Suppose also
there is given a family {Et}teτ € \L\ of divisors in a fixed
linear series on X, with

a = multZt (Et) and b = multyt (Et)

for general t E T. Then one can find another family of
divisors {E't}teτ E  \L\  such that

Vt £ E't a n d m u l t Z t ( E ' t ) >a b

for general t €T.
We refer to Proposition 2.3 for the precise statement and proof. De-
noting by {st} E Γ(X, L) the family of sections defining Eu the idea is
to construct E[ as the divisor of the section Dst E Γ(X, L), where D is
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a general differential operator of order b in t. For divisors on projective
space (and other compactifications of group varieties), the process of
differentiating in order to arrive at a proper intersection plays an im 
portant role e.g. in [3] and [8]. Our observation here is that the same
idea works in a deformation theoretic context, and we hope that the
lemma may find other applications in the future.

Concerning the organization of the paper, we start in Section 1 with a
quick review of general facts about Seshadri constants. In Section 2 we
discuss multiplicities in a family of divisors, and show in particular that
by differentiating in parameter directions one can lower the multiplicity
of such a family along a covering family of subvarieties. The proof of
the main result occupies Section 3, and finally we give some elementary
applications in Section 4.

We have profitted from discussions with F. Campana, V. Ma§ek, A.
Nadel and G. Xu, and have benefitted from several suggestions by J.
Kollar. Nadel in particular stressed some years ago the relevance of
techniques from diophantine approximation and transcendence theory
to arguments of this type. We are especially endebted to M. Naka 
maye for helping us to understand some of these arithmetically moti 
vated ideas. In particular, the crucial Proposition 2.3 was inspired by a
proof Nakamaye showed us of Dyson's lemma concerning singularities
of curves in P 1 x P 1.

0. Notation and conventions

(0.1). We work throughout over the complex numbers C.
(0.2). We will say that a property holds at a general point of a

variety X if it holds for a non empty Zariski open subset of X. It
holds at a very general point if it is satisfied off the union of countably
many proper closed subvarieties of X.

(0.3). If X is a projective variety of dimension n, and L  is a line
bundle on X, we denote by Ln G  Z the top self intersection number of
L. Given a subvariety Z C X of dimension r, Lr Z indicates the degree
JzCι(L)r G  Z. Recall that a line bundle L  is numerically effective or
nef if L C > 0 for all effective curves C C X. Kleiman's criterion
([10 (Chapter 1)]) implies that a line bundle is nef if and only if it lies
in the closure of the ample cone in the Neron   Severi vector space
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NS(X)R,. Recall also that a nef line bundle L  is big if and only if
Ln > 0. Similar definitions and remarks hold for (numerical equivalence
classes of) Q Cartier Q divisors on X.

(0.4). For varieties X and T, prλ : X x T  —> X, pr2 : X xT  —> T
denote the projections. If Z —> T  is a mapping, Zt denotes the fibre
of Z over t G  T. G iven a Zariski closed subset (or subscheme) Z C
X x T, we consider the fibre Zt of pr2 as a subset (or subscheme) of
X. Similarly, Zx C T is the fibre of Z over x e X. If F C I is a
subvariety, Xy C Oχ denotes its ideal sheaf.

1. Seshadri constants

In this section, we recall briefly some of the basic facts about Seshadri
constants. We start with a

Definition 1.1. ([6]) Let X be a projective variety, x G  X a point
and L  a nef line bundle on X. Then the Seshadri constant of L at x is
the real number

where the infimum is taken over all reduced and irreducible curves
C C X passing through x. (We remark that it is enough here that L
be a Q Cartier Q divisor.)

I t is elementary (and standard) that (1.1) is equivalent to the alter 
native definition given in the Introduction:

L e m m a 1.2. Let X be α projective variety, L a nef line bundle on
X, and x G  X a smooth point. Let

be the blowing up of X at x, and denote by E = f~λ(x) C Y the
exceptional divisor. Then

e(L,x) = sup{e > 0 | f*L e Eisnef}.

N ote that the supremum in Lemma 1.2 is actually a maximum.
There are interesting characterizations of Seshadri constants involv 

ing the generation of jets. Recall that given a line bundle B o n a
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smooth variety X, and an integer s > 0, we say that the linear series
\B\  generates s jets at x G  X if the evaluation map

H°(X,OX(B)) —> H°(X,OX(B) ®  Ox/ τ
s+ι)

is surjective, where lx denotes the ideal sheaf of x. The following
Proposition — which is a variant of [6 (Theorem 6.4)] — shows in effect
that computing the Seshadri constant e(L,x) is equivalent to finding a
linear function f(s) such that the adjoint series \KX + f(s)L\  generates
s jets at x for all s ^> 0.

Proposition 1.3. Let L be α nef and big line bundle on a smooth
projective variety X of dimension n.

(1.3.1). / /
5 nr>  +e(L,x) e(L,z) '

then \KX +  rL\  generates s jets at x G  X. The same statement holds
ifr = 4p^τ and Ln > e{L,x)n.

e{L,x)
(1.3.2). Conversely, suppose there is a real number e > 0 plus a

constant c G  R such that \Kχ + rL\  generates s jets at x G  X for all
s ^> 0 whenever

sr>   +c.
e

Then e{L,x) > e.
Proof (1). [6 (Prop. 6.8)] This is a standard application of

Kawamata Viehweg vanishing for nef and big line bundles. In brief,
let /  : Y =  B\ X(X) —> X be the blowing up of X at x, with excep 
tional divisor E CY. It suffices to show that

x
1 ] =H1{Y,OY{KY+rf*L {s

Setting e =  e(L,rz), one has the numerical equivalence

rf*L  (s + n)E =  ̂ ( / * L   eE) + (r   ~
Hence rf*L — (s + n)E is big and nef, and (*) follows from Vanishing.

(2). Let C 3 x be a reduced and irreducible curve with multx(C) =
m. Fix s » 0 and let r be the least integer >  (s/ e)+c. The geometrical



200 L. EIN, O. KUCHLE & R. LAZARSFELD

interpretation of the fact that \Kχ +  rL\  generates s jets at x is that
we can find a divisor Dx G  \Kχ +  rL|, with mv\ ϊx(Dx) =  s, having an
arbitrarily prescribed tangent cone at x. In particular, we can choose
Dx such that the tangent cones to Dx and C a t a; meet properly, and
since C is irreducible it follows that Dx and C themselves meet properly.
Then

C {Kx + rL) > multx(C) mvltx{Dx) =  m 5,
and hence

CL s C'KX

m ~ r rm
Since r < (s/ e) +  c +  1, the claim follows by letting s —> 00.

Our main result (Theorem 3.1) will give a lower bound on the Se 
shadri constant of a nef and big line bundle at a very general point,
i.e., a bound which holds off the union of countably many proper sub 
varieties. However the following Lemma shows that one then obtains
a statement valid on a Zariski open set:

Lem m a 1.4. Let L be a nef and big line bundle on an irreducible
projectiυe variety X. Suppose that there is a positive rational number
B > 0 such that e(L,y) > B for a very general point y G  X. Then the
locus

ίxeX e{L,x) >B\

contains a Zariski open dense set.
Proof. Assume for the time being that L  is ample. Given a smooth

point x £ X, let

be the blowing up of X at # , with exceptional divisor Ex C Yx. Con 
sider the Q divisor

Mx =άe{ f*xL  B EX

on Yx. It follows from the hypothesis and characterization (1.2) of
Seshadri constants that fyL — e{L, y) Ey is nef, and hence My is ample.
Since ampleness is an open condition in a flat family of line bundles,
there exists a non empty Zariski open subset U C X of smooth points
of X such that Mx is ample whenever x G  U. But by (1.2) again, the
ampleness of Mx implies that e(L, x) > £?, which proves the assertion
for ample L. Now following a suggestion of Kollar, we reduce the case
of nef and big L  to this one.
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Recall that, for L  big, we can write L = A +  R with an ample Q 
divisor A and an effective Q divisor R (cf. [16 (1.9)]). Since L  is also
nef, the Q divisors

R A m  1
Am= L  =  A+ R

m m

are again ample, and we have the estimate

L C > Am C >  ^——L C
m

for all irreducible curves C % R. Concerning the second inequality
observe that mAm = rπL — R — (m — l)L + (L — R) where L — R is
nef. Therefore

γγη 1

e(L,y)>e(Am,y)> e(L,y)
  l

for y & R. Now pick a very general y £ R and write e(L, y) = B +  7 >
B. Chose an integer m » 0 such that (m — 1)(B + 7) > mB. Then
we have

e(Am,y) > ??—le(L,y) = ̂  1{B +  ) > B,
m m

and by the above there exists a Zariski open subset U C X such that
e(L,x) > e(Am,x) > B for all x eU.

Finally, for the convenience of the reader we recall from [7 (§3)], the
examples of Miranda showing that the Seshadri constants of an ample
line bundle can take on arbitrarily small positive values.

Proposition 1.5 (Miranda). Given any positive number b > 0,
there exist a protective variety X and an ample line bundle L on X
such that

0 < e{L,x) < b

for all x in a codimension two subset V C X.
Sketch of Proof. We first construct a line bundle N  on a surface

S having the required property. To this end, start with a reduced
and irreducible plane curve C C P 2 of degree d » 0 with a point
y G  C of multiplicity m > \ . Fix a second integral curve C C P 2 of
degree d meeting C transversely. Provided that d is sufficiently large,
by taking C" generally enough we can assume that all the curves in
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the pencil spanned by C and C" are reduced and irreducible. Blow up
the base points of this pencil to obtain a surface 5, admitting a map
/  : S —> P 1 with irreducible fibres, among them C C S. Observe
that any of the exceptional divisors over P 2 gives rise to a section
Γ C S of /  which meets C transversely at one point. Fix an integer
a > 2, and put N = aC + Γ. It follows from the Nakai criterion
that N  is ample. But N C = 1 whereas mult^C) =  m > \ , so
e(N,y) < b. As Viehweg pointed out, this gives rise automatically to
higher dimensional examples. In fact, take for instance X = S x P n ~ 2

and L  =  prl(N) ® pr2(0p(l)) . By considering the evident curve in
S x {z}, one sees that

n  2e(L, (y,z)) < e(5,y) < b for all z G  P

Thus it suffices to take V = {y} x P n"2 .
Remark 1.6. We do not know whether Seshadri constants can

become arbitrarily small on a codimension one subset of X. It is shown
in [7] that this cannot happen when X is a surface.

Remark 1.7. A well known conjecture of Fujita [9] asserts that if L
is an ample line bundle on a smooth projective variety X of dimension
n, then Oχ(Kx + (n+l)L) is free and Ox(Kx + (n+2)L) is very ample.
Extrapolating, one might be tempted to hope that for all s > 0:

(*) \Kχ + (n +  s + 1)L\  separates s jets at every point x G  X.

However (1.3.2) and (1.5) show that (*) is not true in general. In
fact, there cannot exist a linear function f(s) (depending on n but
independent of X and L) such that \KX + f(s)L\  generates s jets
at all x G  X. However when X is a surface, it follows from [2] or
[5] that there exists a quadratic function f(s) such that \KX + f(s)L\
separates s jets at every x E X. (Cf. [15 (§7)].)

Remark 1.8. Let X be a projective variety of dimension n, L  a nef
line bundle on X, and i G l a smooth point. Then

e(L,x) < y{Ln) for every x e X.

In fact, if /  : Y = B\ X(X) —> X is the blowing up of rr, with ex 
ceptional divisor JB, then (f*L — e(L,x) E)n > 0. As an interesting
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example, suppose that X is a simple abelian variety, and L  is a princi 
pal polarization on X. Then Nakamaye has shown that e(L,x) > 1 for
all x. Therefore one has the inequality:

(1.8.1) 1 <e{L,x) < Vri.π .
e

Since X is homogeneous, e(L,x) is independent of x G  X, so there is
a real number e(L) satisfying (1.8.1) canonically attached to a princi 
pally polarized abelian variety (X, L). However it is not obvious to us
what the value of this invariant is, even for Jacobians or very general
p.p.a.v.'s. Note that if C C X is any curve, then L C > n. Hence
(1.8.1) implies that the curves computing e(L,x) in (1.1) cannot be
smooth.

2. Multiplicity lemmas

This section is devoted to some preliminary results concerning mul 
tiplicity loci in a family of divisors. Proposition 2.3 — which allows
one to reduce the multiplicity of a family of divisors along a covering
family of subvarieties — is the crucial ingredient in the proof of our
main Theorem. It is in this section that we make essential use of the
fact that we are working in characteristic zero.

We start with some notation. If M is a smooth variety, and E is
an effective divisor on M, then the function x H> multx(2£) is Zariski
upper semicontinuous on M. Given an irreducible subvariety Z C M,
by mult z (2?) we mean the value of mu\ tx(E) at a general point x G  Z.
We refer to (0.4) for notation and conventions concerning projections
from products, and fibres of morphisms.

The first lemma allows one to make fibrewise calculations of multi 
plicities. It is certainly a well known fact, but we include a proof for
the convenience of the reader.

Lemma 2.1. Let X and T be smooth irreducible varieties, and
suppose that Z C X x T is an irreducible subvariety which dominates
T (under projection to the second factor). Let E C X x T be any
effective divisor. Then for a general point t G  T, and any irreducible
component Wt C Zt of the fibre Zt, we have:

= multz(£ ;).
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Proof. Consider more generally a mapping /  : M —> T  of smooth
varieties, and suppose that V C M is a smooth subvariety dominating
T. Assume given an effective divisor E C M with mu\ tv(E) =  α. We
will show that for a general point t E T, and any irreducible component
Wt C Vt:

(*) multWt(Et) = a.

The Lemma then follows by taking M to be an open subset of X x T
on which Z is smooth, and setting V = Z Γ)M.

To prove (*), note first that for b < a the section s E Γ(M, OM(E))
defining E lies in the subspace

Γ(M, 0 M ( £ ) ® 2* ) C Γ(M,

Hence 5 determines a section

δb(s) E Γ(V,2*

of a twist of the 6th symmetric power of the conormal bundle to V in
M. (One thinks of δb(s) as giving the 6th order terms in the Taylor
expansion of s in the directions normal to V.) One checks e.g. by
a calculation in local coordinates that δb(s) = 0 for b < a whereas
δa(s) φ 0. Now fix a point t E T  lying in the open subset of T  over
which the mappings M —> T  and V —> T  are smooth, and let st =
s\Mt G  T{MuOMt{Et)) be the restriction of 5 to Mu so that st is the
section defining Et. Then

δb(s)\Vt = δb(st) e Γ(Vt,Symb(Nlt/ Mt)(Et)).

But since V —> T  is dominating, a non zero section of a locally free
sheaf on V restricts to a non zero section on each irreducible component
Wt C Vt of a general fibre. Hence δb(st) =  0 for b < a and δa(st) φ
0 e T(WuOwt(Et)) for general t E T. But as we have just seen, this
implies that multwt(Et) — α5 &s claimed.

Remark 2.2. Some readers may prefer to see the argument phrased
in a more concrete manner. In the situation of (2.1) it is enough
to show that for sufficiently general t E T, and for any component
Wt C Zu there exists at least one point x EWt such that m u lt x( ^ ) =
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mult(X)ί)(i2). Now since Z dominates T, given general points t £ T
and x G  Wt C Zt we can find a local analytic section of the projection
Z —> T, say σ : U —> Z, defined in a (classical) neighborhood U of t
in T, whose image passes through the point (x,t). Replacing T  by [/,
and working analytically, we can assume given a holomorphic mapping
p : T —> X, and we are reduced to proving that

(*) mnltp{t)(Et) =  mult(p(t)ft)(£?)

for general t G T. But this follows easily from an explicit calculation in
local holomorphic coordinates. [Choose coordinates x and t on X and
T, and suppose p is given by p =  p(t). Defining y = x —p(t), expand a
local equation for E as a Taylor series in y and t.]

We now come to the main result of this section.
Proposition 2.3. Let X and T be smooth irreducible varieties,

with T affine, and suppose that

Z CV CX xT

are irreducible subvarieties such that V dominates X. Let L be a line
bundle on X, and suppose given on X x T a divisor

Ee\prl(L)\ .

Write
£ = mult z (E), k = mult v (E).

Then there exists a divisor

E> e \prl(L)\

on X x T having the property that

mxiitZ(E') >l k, and V £ Supp(E').

Let σ E Γ(X x T,pr{(L)) be the section defining E. In a word, the
plan is to obtain E' as the divisor of a section

σ' = DσeΓ(XxT,pr*1(L))1
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where D is a general differential operator of order < konT. So we begin
with some remarks about differentiating sections of the line bundle
pr{(L) in parameter directions.

Let T>\  be the (locally free) sheaf of differential operators of order < k
on T. Then sections of Vj> act naturally on the space Γ(X x T,prl(L))
of sections of pr{(L). Naively this comes about as follows. Choose
local coordinates x and t on X and T, and let gatβ{x) be the transition
functions of L  with respect to a suitable open covering of X. Then
sections of pr{(L) are given by collections of functions σ =  {sa(x,t)}
such that sa(x, t) =  gOίβ{x)sβ{x^ t). If D is a differential operator in the
ί variables, then

Dsa(x,t) =  ĝ β(x)Dsβ(x,t).

Therefore the {2?sα(a;,t)} patch together to define a section Dσ G
Γ(XxΓ, p r ί(L) ) .

To say the same thing in a more invariant fashion, let  )χxT(prl(L))
denote the sheaf of differential operators of order < k on pr{(L), i.e.,

T>k
x*T{pr{{L))   F £ x T (pr ί(L) ) ® K ( L ) ,

where  Pγxτ(P rΓ(^)) ιs the sheaf of principal parts associated to pr{(L).
Observe that there is a canonical inclusion of vector bundles

In fact, it follows from the construction of bundles of principal parts
plus the projection formula that one has an isomorphism:

=pr*2(P*(OT))

and then (*) is deduced from the surjection

—>PχxT/ x(prϊ(L)).

On the other hand, a section σ E T(X x T,pr{{L)) gives rise to a vector
bundle map

and hence by composition a homomorphism
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Given D ( , ^ ) ,

DσeT(XxT,prl(L))

is just the image of prl(D) E Γ(X x T,prl(Vγ)) under the map on
sections determined by j σ .

Proof of Proposition 2.3. Since T  is affine, the vector bundle V\  is
globally generated. Choose finitely many differential operators

which span V\  at every point of Γ. Let σ G Γ ( I x T,pr\{L)) be the
section defining the given divisor E, and consider the algebraic subset

X xTDB = {(x,t)\Daσ(x,t)=0 V a}

cut out by the common zeroes of all the sections Daσ E Γ(X xT,prl(L)).
We assert that

(*) V£B.

To verify this, we study the first projection

prx : X x T —•> X

Fix any point a; E X, and consider the fibre Ex C T of E over # .
Assume that Ex φT  (which will certainly hold for general rr), so that
Ex is a divisor on T. Given t E T, it follows from the fact that the D α

generate V\  at t that

(a;,*) E £ <= ^ multtOEk) > k.

On the other hand, since V dominates X, Lemma 2.1 applies to
and we conclude that

mult£ (Ex) = multv(J5) =  A;

for sufficiently general (x,t) E V. This proves (*).
Prom (*) it follows that if D E Γ(T,2?£) is a sufficiently general

C linear combination of the D α , then

σ'=de{Dσ<ΞΓ(XxT,prl(L))
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does not vanish on V. On the other hand, a differential operator of
order < k decreases multiplicities by at most k. Therefore if E' is the
divisor of σ', then multz(i£ ') > ί — A;, as required.

3. The main theorem

The purpose of this section is to prove:
Theorem 3.1. Let L be a nef line bundle on an n dimensional

irreducible projectiυe variety X. Suppose there exists a countable union
B C X of proper subυarieties of X plus a positive real number a > 0
such that

(3.1.1) {L)r  Y > {r a)r

for every irreducible subvariety Y C X of dimension r (1 < r < ή)
with Y <£B. Then

e(L,x) > a

for all x G  X outside the union of countably many proper subvarieties
ofX.

Observe that (3.1.1) implies that L  is big. Recall also that a line
bundle B is big if and only if there exist an ample divisor A and
an effective divisor E such that aB — A + E for some a » 0 (cf.
[16 (1.9)]). Thus given a nef and big line bundle L  on X, the restriction
of L  to Y (£_ E is again big, and hence the inequality (3.1.1) automat 
ically holds with a = K Therefore (3.1) implies the first statement of
Theorem 1 in the Introduction, and Lemma 1.4 yields the second asser 
tion. Similarly, Corollary 2 follows from (3.1) and the second statement
in (1.3.1). We will prove Corollary 3 in Section 4.

(3.2). Turning to the proof of Theorem 3.1, we start with some
preliminary remarks and reductions. First, the statement is clear if
dim X = 1. Therefore we may   and do   assume inductively that the
Theorem is known for all varieties of dimension < n.

Note next that there is no loss of generality in supposing that X is
smooth. In fact, let

/  : X1 —> X

be a resolution of singularities, and set V = f*L, so that L' is a nef
line bundle on X'. Suppose that Y C X is an r dimensional subvariety
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of X, not contained in the fundamental locus of / . If Y' C X' is the
proper transform of Y, then (L)r Y = (L')r Y'. Simililarly, if x G  X is
a point over which /  is an isomorphism, then one sees from (1.1) that

e(L,x) = e{L',x').

Thus it suffices to prove the theorem for X', so we will henceforth
assume that X is smooth.

(3.3). Let β > 0 be a real number and let x E X be a point at which
e(L,x) < β. Then there exists a reduced irreducible curve Cx C X
with

β.multx(Cx)>(L Cx).

Observe that the set of all pairs

Uc,x) C C X an integral curve, β multx(C) > (C L)\

is parametrized by countably many irreducible quasi projective vari 
eties. This is a consequence of the existence of Hubert schemes, plus
the fact that in a flat family of curves, it is a constructible condition
to be reduced and irreducible (cf. [11 (4.10)]). It follows to begin with
that the set

Uβ=άei\ xeX

can be expressed as a countable union of locally closed subsets of X.
Therefore to prove the Theorem, it is enough to show that Ua does
not contain a Zariski open subset of X. By the same token, it is even
sufficient to show that for any small rational δ > 0 the set Uas does
not contain a Zariski open subset. Indeed,

Ua=  \ J Ua δ,
δeQ+

and the latter is a countable union.
We fix now { « α and set 7 =  α — δ. So the issue is to show that

U  does not contain a Zariski open subset.
(3.4). Assume to the contrary that U  does contain a Zariski open

subset, i.e., that there exists a Zariski open subset U C. X such that

e(L,x) < 7 < a
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for every x G  U. Then for every x G  U there exists a reduced irreducible
curve Cx C X passing through x such that 7 mult x(C x) > (L  •  Cx).
We will say that Cx is a Seshadri exceptional curve tαsecf at x.

From the discussion in (3.3) it follows that there is an irreducible
family of Seshadri exceptional curves whose base points sweep out an
open subset of X. More precisely, there exists an irreducible quasi 
projective variety T, a dominant morphism

g : T  —> X,

plus an irreducible subvariety

CcIxT,

flat over T, such that for every t £ T  the fibre Ct is a Seshadri 
exceptional curve based at g(t) G  X. In other words, Ct C X is a
reduced irreducible curve, passing through g(t), with

Replacing T first by a suitable subvariety, and then by an open subset
we can   and do   assume that T  is smooth and affine, and that g :
T  —> X is quasi finite. Write

ΓcIxΓ

for the graph of 5, and as in (0.4) given a subset Z C X x T, denote
by Zt C X the fibre of Z over t £T, viewed as a subset of X.

(3.5). We next consider a construction analogous to one used by
Kollar, Miyaoka and Mori in their proof [14] of the boundedness of
Fano varieties of Picard number one.

Lem m a 3.5.1. Let Z C X x Γ be an irreducible closed subvariety
dominating both X andT. Then one can construct an irreducible closed
subvariety

CZcX x T

having the following properties:
(3.5.2) Z C CZ and dim CZ < dimZ + 1.
(3.5.3) For generic t G  Γ, the fibre (CZ)t C X has the form

(CZ)t = closure( | J Cs ),
sest



LOCAL POSITIVITY OF AMPLE LINE BUNDLES 211

where St C g~1(Zt) is a closed subset ofT, which dominates Zt.
In other words, for general t G T, (CZ)t is the closure of all the

points on a family of Seshadri exceptional curves {Cs}sest based at a
dense constructible subset of Zt.

Proof. F irst, let

S' = (gxidτ)~
1(Z) CTxT.

The hypothesis that Z dominates X implies that S' Φ 0. Fix an
irreducible component Si of S' whose image under g x idτ dominates Z.
Then dim Si — dim Z since g is quasi finite. Next, letting π : C —> T
denote the projection of C C X x T  onto the second factor, put

Vι = (π x idry'iSi) C I xTxT.

Very concretely, Vί may be described as the set

Vι = {(x,s,t) \ xeCs, g(s) G  Zu (s,t) G  Si}.

The fibres of the projection p : V\  —> S  are irreducible curves, and
hence Vί is irreducible, with

dim Vί =  dim S  +  1.

N ote also that p admits a section σ : S  —> Vί given by σ(s,t) =
(3(5), 5, t).

Consider now the projection prϊ3 : X x T xT  —> X x T  onto the
first and third factors, and set

V=prϊ3(Vι)CXxT.

Then V is an irreducible constructible subset of X x T, and V contains
an open subset of Z [viz. an open subset of (prχ3 oσ)(S )]. Given t €T,
let

where by (S )* we mean the fibre of S  C T x T  over the second factor.
Then by construction, for every t ET: Vt = UsestCs. Finally, put

CZ = closure(F) CX xT.
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Thus property (3.5.2) is clear. As for (3.5.3), from the remark it follows
that if V C X x T is an irreducible constructible subset dominating T,
then for general t G T,

closure(Vί) =  (closure(VΓ))ί.

This completes the proof of (3.5.1).
(3.6). The inductive hypothesis is now used to prove:
Lemma 3.6.1. Let Z C X xT be a proper irreducible subυariety

dominating both X and T, and consider the variety CZ C X x T
constructed in (3.5). Then Z is a proper subυariety of CZ.

Proof. Assume to the contrary that CZ = Z, and fix a very general
point t ET. Given a general point x G  Zt, from (3.5.3) it follows that
there exists a Seshadri exceptional curve Cs based at x such that Cs

lies in Zt = (CZ)t. But this means that the restriction L\Zt of L  to Zt

has small Seshadri constant at a general point, i.e.,

e{L\Zt,x)< 

for a dense open set of points x G  Zt. But every component of Zt has
dimension < n. Therefore the induction hypothesis will give a con 
tradiction once we show that L\Wt satisfies (3.1.1) for any irreducible
component Wt C Zt. Since the morphism Z —> X is dominating, for
sufficiently general t G  T  no component Wt of Zt lies entirely in B.
Hence for very general t G T, B Π Wt is a countable union of proper
subvarieties of Wt. On the other hand, if Y C Wt is a subvariety of
dimension r not lying in B Π Wt, then

Hence (3.1.1) holds for L\Wt, as required.
(3.7). Much as in [14], (3.5.1) will be used to construct a chain of

irreducible subvarieties Zi C X x T, as follows. Start with

Zo = Γ =  graph(5) , Zλ = C C X x T,

and then for 1 < i < n — 1 apply (3.5.1) inductively to form

CX x T.
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It follows from (3.6.1) that Z{ C Z i + i, and consequently Z; has relative
dimension i over T. In particular, Zn = X xT. Thus we have a chain

(3.7.1) Γ =  Zo C Zx C C Z n _ ! cZn = XxT

of irreducible subvarieties of X x T.
(3.8). We now come to the second construction, inspired by Nadel

[17], Campana [4] and the gap arguments used in connection with zero
estimates (cf. [3], [8], [18]). The idea is to choose a family of divisors
Et G  \ kL\  (k » 0) having high multiplicity at g(t) G  X, and to study
the multiplicities of Et along the subvarieties [Zi)t defined in (3.7).

We start with a pointwise description. Since (Ln) > (an)n > (ryn)n,
a standard parameter count shows that if k ^> 0, then given any point
x G  X there exists a divisor

Ex G  \ kL\  with mult^iί^) > kjn.

In fact, by Riemann Roch

whereas it is ^~fi—h o(kn) conditions to impose multiplicity [kηn + 1]
at a given point. In particular, we may apply this with x = g(t)
to construct a divisor Et having high multiplicity at the base of the
Seshadri exceptional curve Ct.

These remarks globalize in the following manner. Put b =  [kjn + 1],
and consider the projections prx : X x T —> X, pr2 : X x T —> T.
Then for k » 0 the torsion free C?τ module

has positive rank, where XΓ C O χ xτ denotes the ideal sheaf of Γ. As T
is affine, T  is globally generated. We fix a non sero section σ G  Γ(T, J7) ,
and since

) = T(X x T,prl(kL)

σ gives rise to a divisor

with multΓ(J5) >
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(3.9). Consider now the multiplicities

multZ ί (E)

of E along the sets Zt appearing in (3.7.1). We have

mu\ tZo{E) = multr(^) > kjn , multZn(E) =  m ult ( XxT ) ( j£ ) =  0.

It follows that there is at least one index i (0 < i < n — 1) such that

multz.(J5)   multZi+1(E) > kη.

The heart of the argument is that we can now apply Propostion 2.3
to produce a new divisor, not containing Z ί+ i, with relatively high
multiplicity along Z{.

Specifically, since Z i + 1 dominates X, Proposition 2.3 implies the
existence of a divisor

E'e\OXxT(pr*ΛkL))\

such that
multz. {E') > kj , Zi+1

Fix a general point t e T, and consider the divisor E't G  \ kL\  on X.
Then E't does not contain any component of (Zi+ι)t, whereas it follows
from Lemma 2.1 that

m\ήtWt(E't) = multz.(J5') > kj

for any irreducible component Wt of (Zi)t.
Consider finally a general point x G  Wt for some irreducible com 

ponent Wt C  (Zi)t. Then multx(E't) > kj. On the other hand, from
property (3.5.3) of the construction (3.5.1) of Zi+1 it follows that there
is a Seshadri exceptional curve Cs C {Zi+1)t based at x such that

Cs g Supp(£ί)

Thus Cs meets E't properly, and we find:

k(L C8) = E't'Ca> m ulta ί^) multx(C s)
> k γ multx(Cs).
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This contradicts the fact that Cs is Seshadri exceptional, and completes
the proof of Theorem 3.1.

4. Applications

In this section we give some simple applications of the main Theorem.
We begin with a criterion for birationality which, together with (3.1),

implies Corollary 3 in the Introduction.
Lem m a 4.1. Let X be a smooth projective variety of dimension

n > 2, and L a nef and big line bundle on X. Suppose that there exists
a countable union V C X of proper subvarieties such that e(L,x) > 2n
for all x G  X — V. Then the adjoint bundle Oχ(Kx + L) is very big,
i.e., the corresponding rational mapping

Φ\KX+L\  : X —> P

maps X birationally onto its image.
Proof. We start with a general remark. Suppose that X is an irre 

ducible projective variety, and B is a line bundle on X, with H°(X, B) φ
0, defining a rational mapping

φ = φ\ B\  : X —> P

Then we claim that φ is birational onto its image if and only if there
exists a countable union V C X of proper subvarieties such that φ is
defined and one to one on X — V. In fact, there exists in any event a
Zariski open subset U C X (which in general may be empty) on which
φ is defined and one to one. The stated condition implies that U Φ 0,
and so φ is generically one to one over its image, hence birational.

Returning to the situation of the Lemma, take B = Kx +  L. We
will prove momentarily that for any two distinct points x, y E X — V
one has the vanishing

(*) H\x,θχ(κx + L) ®τx®τy) = o.

But this means exactly that φ\κx+L\  is defined and one to one on X—V,
and hence is birational onto its image, as claimed. As for (*), let
/  : Y —> X be the blowing up of X at x and y, and denote by
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Ex,Ey C Y the exceptional divisors. Since e(L,x) > 2n and e(L,y) >
2n by hypothesis, it is a consequence of (1.2) that the Q divisors

 f*L — nEx,  f*L — nEy

are nef. Therefore f*L — nEx — nEy is nef. Moreover, since n > 2 we
have Ln > (2n)n > 2nn by (1.8), and so f*L   nEx   nEy is also big.
Then just as in (1.3), (*) follows from vanishing on Y.

In the rest of this section we outline how these results can be gener 
alized in the context of Q divisors. To begin with, note:

Remark 4.2. Suppose that X is an irreducible projective vari 
ety, and L  is a nef Q Cartier Q divisor on X satisfying the numeri 
cal hypotheses (3.1.1). Then e(L,x) > a for all smooth x £  X out 
side the union of countably many proper subvarieties. In fact, choose
a positive integer m > 0 such that rπL  is a Cartier divisor. Since
e(mL,x) = m e(L,x) for all x G l , the assertion follows from (3.1).

We will henceforth deal with the following set up:
Assumptions 4.3. X is a smooth irreducible projective variety of

dimension n > 2, and L  is a nef and big Q divisor on X. We suppose
that ∆ is a fractional Q divisor on X (i.e., L∆ J =  0) with normal
crossing support. Finally we assume that N  is an integral divisor on
X satisfying the numerical equivalence N  =  L + ∆ .

Arguing much as in the proof of (1.3.1), but using Kawamata Viehweg
vanishing for Q divisors, one then finds first of all:

Proposition 4.4. In the situation of (4 3) suppose that L satisfies
the numerical hypothesis (3.1.1) of Theorem 3.1. If

then \Kχ + N\  generates s jets at a very general point x £ Supp(A).
The case s = 0 is proven (in more generality, and with slightly weaker

numerical hypotheses) by Kollar in [12 (§3)]. As in [13 (§8)], this implies
for example that if X is a smooth projective variety with generically
large algebraic fundamental group, and L  is any big line bundle on X,
then H°(X, Ox (Kx + L)) φ 0. It would be interesting to know whether
one can use the cases s > 0 of Proposition 4.4 (or the birationality
statement of Proposition 4.5 below) to obtain further information under
suitable hypotheses on L. We note that from [13 (Lemma 8.2)], it
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follows that if X has generically large algebraic fundamental group, and
L is an ample line bundle on X, then given any a > 0 there exists an
etale covering m : X' —> X such that ra*L satisfies the hypotheses of
Theorem 3.1. However it is not immediately clear how to pass to useful
information on X beyond the non vanishing established by Kollar.

Arguing as in (4.1) one finds similarly:
Proposition 4.5. In the set up of (4>3), suppose that e(L,x) > 2n

for a very general point x G  X. Then Oχ(Kχ + N) is very big.
In view of Remark 4.2, this applies in particular if L  satisfies the

numerical hypotheses of (3.1.1) with α > 2n.
Finally, we give a simple application of (4.5) to pluricanonical maps

of minimal varieties:
Corollary 4.6. Let X be a minimal n fold of general type having

(global) index r, i.e., assume that X has only terminal singularities,
that Kx is nef and big, and that rKx is Cartier. Then the pluricanon 
ical series \mrKx\  is very big for m > 2n2 +  1.

Sketch of Proof Let /  : Y —> X be a log resolution of X. Since
X has only terminal singularities, we can write

Kγ + A = f*Kx+P,

where ∆ is a fractional divisor (i.e., L∆ J — 0) with normal crossing
support, and P is integral, effective and /  exceptional. Hence

Kγ + ∆ +  (mr   ΐ)ΓKx = f*{mrKx) + P.

By (3.1), e(ΓOx{rKx),y) > £ for very general y € Y. If m > 2n2,
then

e((mr - \ )ΓKX) >  ̂  ̂ >2n +  — ,
nr nr

and from (4.5) applied to N = ∆ +  (mr   l)f*Kx it follows that
the linear series \ f*(mrKx) + P\  is very big on Y. But since P is
/  exceptional,

( ( (
=  H°(X,Ox(mrKx)).

Therefore \mrKx\  is very big on X.
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