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Saturation bounds for smooth varieties
Lawrence Ein, Huy Tài Hà and Robert Lazarsfeld

We prove bounds on the saturation degrees of homogeneous ideals (and their powers) defining smooth
complex projective varieties. For example, we show that a classical statement due to Macaulay for
zero-dimensional complete intersection ideals holds for any smooth variety. For curves, we bound the
saturation degree of powers in terms of the regularity.

Introduction

We prove some saturation bounds for the ideals of nonsingular complex projective schemes and their
powers.

We begin with some background. Consider the polynomial ring S = C[x0, . . . , xr ] in r + 1 variables,
and fix homogeneous polynomials

f0, f1, . . . , f p 2 S with deg( fi ) = di .

We assume that d0 � d1 � · · · � dp, and we denote by

J = ( f0, f1, . . . , f p) ✓ S

the ideal that the polynomials span. Suppose now that J is primary for the irrelevant maximal ideal
m= (x0, . . . , xr ) or equivalently that dimC S/J < 1. In this case J contains all monomials of sufficiently
large degree, and it is a classical theorem of Macaulay [Carlson et al. 2003, Theorem 7.4.1] that

Jt = St for t � d0 + · · · + dr � r. (1)

Moreover, this bound is (always) sharp when p = r . Although less well known, a similar statement holds
for powers of J :

(J
a)t = St for t � ad0 + d1 + · · · + dr � r. (2)

This again is always sharp when p = r .
It is natural to ask whether there are analogous results for more general homogeneous ideals J , in

particular when
X =def Zeroes(J ) ✓ Pr
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is a smooth complex projective scheme. Of course if J has nontrivial zeroes, then it does not contain any
power of the maximal ideal. However, if one interprets (1) and (2) as saturation bounds, then the question
makes sense more generally. Specifically, recall that the saturation of a homogeneous ideal J is defined by

J
sat = { f 2 S | mk · f ✓ J for some k � 0}.

The quotient J
sat/J has finite length, and in particular,

(J
sat)t = Jt for t � 0.

The least such integer t is called the saturation degree sat. deg(J ) of J . Observing that J
sat = S if and only

if J is m-primary, statements (1) and (2) are equivalent to estimates for the saturation degrees of J and J
a .

So the problem becomes to bound the saturation degree of an ideal in terms of the degrees of its generators.
It is instructive to consider some examples. Let X ✓ Pr be a hyperplane defined by a linear form ` 2 S,

and set

fi = x
d�1
i

· ` and J = ( f0, . . . , fr ) ✓ S. (3)

Then J
sat = (`), and it follows from Macaulay’s theorem that

sat. deg(J ) = (r + 1)(d � 1) � r + 1 = (r + 1)d � 2r,

which is very close to the bound (1). On the other hand, it is not the case that the saturation degree of an
arbitrary ideal is bounded linearly in the degrees of its generators. For instance, the ideals

J = (x
d , y

d , xz
d�1 � ywd�1) ✓ C[x, y, z, w]

considered by Caviglia [2004, Example 4.2.1] have sat. deg(J ) ⇡ d
2.

Our first main result asserts that for ideals defining smooth varieties, the Macaulay bounds remain true
without modification.

Theorem A. As above, suppose that

J = ( f0, f1, . . . , f p) ✓ S

is generated by forms of degrees d0 � · · · � dp, and assume that the projective scheme

X =def Zeroes(J ) ✓ Pr

cut out by the fi is nonsingular. Then sat. deg(J )  d0 + · · · + dr � r , and more generally

sat. deg(J
a)  ad0 + d1 + · · · + dr � r. (4)

(If p < r , one takes dp+1 = · · · = dr = 0.) We do not know whether the stated bound is best possible,
but in any event it is asymptotically sharp. Indeed, if J is the ideal considered in (3), then Theorem A
predicts that sat. deg(J

a)  (a + r)d � r , whereas in fact sat. deg(J
a) = (a + r)d � 2r .
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Given a reduced algebraic set X ✓ Pr denote by IX ✓ S the saturated homogeneous ideal of X . Recall
that the symbolic powers of IX are

I
(a)
X

= { f 2 S | ordx( f ) � a for general (or every) x 2 X}.

Evidently I
a

X
✓ I

(a)
X

, and there has been a huge amount of interest in recent years in understanding the
connections between actual and symbolic powers; see [Ein et al. 2001; Hochster and Huneke 2002; Bocci
and Harbourne 2010; Dao et al. 2018]. If X is nonsingular, then I

(a)
X

= (I
a

X
)sat. Therefore, Theorem A

implies:

Corollary B. Assume that X ✓ Pr
is smooth, and that IX is generated in degrees d0 � d1 � · · · � dp.

Then

(I
(a)
X

)t = (I
a

X
)t for t � ad0 + d1 + · · · + dr � r.

For example, suppose that X ✓ P2 consists of the three coordinate points, so that IX = (xy, yz, zx) ✓
C[x, y, z]. Corollary B guarantees that I

a

X
and I

(a)
X

agree in degrees � 2a + 2, whereas in reality
sat. deg(I

a

X
) = 2a. So here again the statement is asymptotically but not precisely sharp.

In the case of finite sets, results of Geramita, Gimigliano and Pitteloud [Geramita et al. 1995], Chandler
[1997] and Sidman [2002] provide an alternative bound that is often best-possible. Recall that a scheme
X ✓ Pr is said to be m-regular in the sense of Castelnuovo–Mumford if its ideal sheaf IX ✓ OPr satisfies
the vanishings

H
i (Pr , IX (m � i)) = 0 for i > 0.

This is equivalent to asking that IX be generated in degrees  m, that the first syzygies among minimal
generators of IX appear in degrees  m + 1, the second syzygies in degrees  m + 2, and so on.1 The
authors just cited show that if X ✓ Pr is an m-regular finite set, then

sat. deg(I
a

X
)  am.

This is optimal for the example of the three coordinate points in P2.
Our second main result asserts that the same statement holds when dim X = 1.

Theorem C. Let X ✓ Pr
be a smooth m-regular curve. Then

(I
a

X
)t = (I

(a)
X

)t for t � am.

In fact, for the saturation bound it suffices that the curve X be reduced. The statement is optimal (for
all a) for instance when X ✓ P4 is a rational normal curve. We also show that if X ✓ Pr is a reduced
surface, then reg(Ia

X
)  a · reg(IX ). We do not know any examples where the analogous statements fail

for smooth varieties of higher dimension.

1For saturated ideals, Castelnuovo–Mumford regularity of IX agrees with an algebraic notion of regularity introduced by
Eisenbud and Goto [1984] that we propose to call arithmetic regularity. An arbitrary ideal J ✓ S is arithmetically m-regular
if and only if J

sat is m-regular and sat. deg(J )  m. Given that we are interested in establishing bounds on saturation degree,
unless otherwise stated we always refer to regularity in the geometric sense.
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Returning to the setting of Theorem A, the first and third authors showed with Bertram some years ago
[Bertram et al. 1991] that if X ✓ Pr is a smooth complex projective variety of codimension e cut out as
a scheme by homogeneous polynomials of degrees d0 � · · · � dp, then Ia

X
is (ad0+d1+ · · · +de�1�e)-

regular in the sense of Castelnuovo–Mumford. Note however that this does not address the questions of
saturation required to control the arithmetic (Eisenbud–Goto) regularity of I

a

X
.2 In fact, one can view

Theorem A as promoting the results of [Bertram et al. 1991] to statements about arithmetic regularity:

Corollary D. Assume that J ✓ S satisfies the hypotheses of Theorem A. Then

arith. reg(J
a)  ad0 + (d1 + · · · + dr � r).

It is known [Kodiyalam 2000; Cutkosky et al. 1999] that if J ✓ S is an arbitrary homogeneous ideal then

arith. reg(J
a) = ad + b when a � 0,

where d is the maximal degree needed to generate a reduction of J — which coincides with the generating
degree of J when it is equigenerated — and b is some constant. However, computing the constant term b

has proven elusive, and Corollary D gives a bound in the case at hand.
The proofs of these results revolve around using complexes of sheaves to study the image in

H
0
⇤ (Pr , Ia

X
) = (I

a

X
)sat of the powers of the ideal spanned by generators of IX or J : this approach was

inspired in part by geometrizing the arguments of [Cooper et al. 2020] for codimesion-two subvarieties.
Specifically, suppose that

" : U0 =def
M

OPr (�di ) ! IX

is the surjective map of sheaves determined by generators of IX or J . If X is m-regular, then this sits in
an exact complex U• of bundles

0 ! Ur�1 ! Ur�2 ! · · · ! U1 ! U0
"! IX ! 0,

where reg(Ui )  m + i . Weyman [1979] (see also [Tchernev 1996]) constructs a new complex L• =
Syma(U•) that takes the form

· · · ! L2 ! L1 ! S
a(U0) ! Ia

X
! 0,

where reg(Li )  am + i . This complex is exact only off X , but as in [Gruson et al. 1983] when dim X = 1
one can still read off the surjectivity of

H
0�Pr , S

a(U0)(t)
�
! H

0(Pr , Ia

X
(t))

for t � am. This gives Theorem C.
Turning to Theorem A, a natural idea is to start with the Koszul complex

· · · ! 33
U0 ! 32

U0 ! U0 ! IX ! 0.

2In particular, the proof of Proposition 2.2 in [Arsie and Vatne 2003] seems to be erroneous.
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As established by Buchsbaum and Eisenbud [1975], this determines a new complex

· · · ! S
a,12

(U0) ! S
a,1(U0) ! S

a(U0) ! Ia

X
! 0, (⇤)

where S
a,1k

(U0) denotes the Schur power of U0 corresponding to the Young diagram (a, 1k). We observe
that

reg(S
a,1i

(U0))  ad0 + d1 + · · · + di ,

so if (⇤) were exact then the statement of Theorem A would follow immediately. Unfortunately (⇤) is
exact only if X is a complete intersection, but by blowing-up X this construction yields an exact complex
whose cohomology groups one can control with some effort. At the end of the day, the computation boils
down to using Kodaira–Nakano vanishing on X to prove a vanishing statement for symmetric powers of
the normal bundle to X in Pr :

Proposition E. Let X ✓ Pr
be a smooth complex projective variety, and denote by N = NX/Pr the normal

bundle to X in Pr
. Then

H
i (X, S

k
N ⌦ det N ⌦OX (`)) = 0 for i > 0,

every k � 0 and every ` � �r .

(Similar but slightly different vanishings were established by Schneider and Zintl [1993].) We hope
that some of these ideas may find other applications in the future.3

The paper is organized as follows. Section 1 is devoted to Theorem C. We collect in Section 2 some
preliminary results towards the Macaulay-type bounds. Specifically, we discuss the Buchsbaum–Eisenbud
powers of Koszul complexes, the computation of some pushforwards from a blowing-up, and Proposition E.
The proof of Theorem A occupies Section 3.

Concerning our assumptions: we work throughout over the complex numbers. As the referee points
out, the main results stated above do not require X to be irreducible or even pure-dimensional. However,
the essential ideas occur for irreducible varieties, and we generally leave it to the reader to think through
this technical improvement.

1. Saturation and regularity

The present section is devoted to the proof of Theorem C from the Introduction.
We start with some general remarks. Let X ✓ Pr be a complex projective scheme, with ideal sheaf

IX ✓ OPr and homogeneous ideal IX ✓ S. Denote by U• the locally free resolution of IX obtained by
sheafifying a minimal graded free resolution of IX :

0 ! Ur ! Ur�1 ! · · · ! U1 ! U0
"! IX ! 0. (1-1)

3We remark that some of the auxiliary results appearing here — for example, Proposition E — were known to the first and
third authors some years ago in connection with their work on [Bertram et al. 1991]. However, they were put aside in favor of the
simpler arguments with vanishing theorems that eventually appeared in that paper.
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Thus each Ui is a direct sum of line bundles, and we recover the original resolution as the complex
H

0
⇤ (Pr , U•) obtained from U• by taking global sections of all twists.
Consider now the surjective homomorphism of sheaves

S
a(") : S

a
U0 ! Ia

X
.

For any t � 0 one has
H

0(Pr , Ia

X
(t)) = ((I

a

X
)sat)t .

On the other hand, the fact that U0 is constructed from minimal generators of IX implies that

im
�
H

0�Pr , S
a(U0)(t)

�
! H

0�Pr , Ia

X
(t)

��
= (I

a

X
)t .

Therefore:

Lemma 1.1. The degree t pieces of I
a

X
and (I

a

X
)sat

coincide if and only if the homomorphism

H
0�Pr , S

a(U0)(t)
�
! H

0(Pr , Ia

X
(t))

determined by S
a(") is surjective. ⇤

The plan is to study S
a(") by realizing it as the last map of a complex S

a(U•).
Specifically, consider a smooth variety M , a subvariety X ✓ M , and a locally free resolution U• of

IX ✓ OM as above:
0 ! Ur ! Ur�1 ! · · · ! U1 ! U0

"! IX ! 0. (1-2)

As explained by Weyman [1979] and Tchernev [1996], U• determines for fixed a � 1 a new complex
L• = S

a(U•) having the shape

· · · ! L4 ! L3 ! (S
a�2

U0 ⌦ 32
U1) � (S

a�1
U0 ⌦ U2) ! S

a�1
U0 ⌦ U1 ! S

a
U0 ! Ia

X
! 0. (1-3)

The last map on the right is S
a("), and the homomorphism S

a�1
U0 ⌦ U1 ! S

a
U0 is the natural one

arising as the composition
S

a�1
U0 ⌦ U1 ! S

a�1
U0 ⌦ U0 ! S

a
U0.

The Li are determined by setting

C
k(U j ) =

⇢
S

k
U j if j is even,

3k
U j if j is odd,

(1-4)

and then taking
Li =

M

k0+···+kr =a

k1+2k2+···+rkr =i

C
k0(U0) ⌦ C

k1(U1) ⌦ · · · ⌦ C
kr (Ur ). (1-5)

It follows from [Weyman 1979, Theorem 1] or [Tchernev 1996, Theorem 2.1] that

the complex (1-3) is exact away from X . (1-6)
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In general one does not expect exactness at points of X , but when X is smooth the right-most terms at
least are well-behaved:

Lemma 1.2. Assume that X is nonsingular. Then the sequence

S
a�1

U0 ⌦ U1 ! S
a
U0 ! Ia

X
! 0

is exact.

Proof. The question being local, we can work over the local ring O = OM,x of M at a point x 2 X .
Since X is smooth, I = IX,x ✓ O is generated by a regular sequence of length e = codim X . Thus I has
a minimal presentation

32U ! U ! I ! 0

given by the beginning of a Koszul complex, where U = Oe is a free module of rank e. Here one checks
by hand the exactness of

S
a�1U ⌦ 32U ! S

aU ! Ia ! 0.

(Compare (2-3) below.) An arbitrary free presentation of I then has the form

32U �A�B ! U �A ! I ! 0,

where A is a free module mapping to zero in I, B is a free module mapping to zero in U �A, and the
left-hand map is the identity on A. It suffices to verify the exactness of

S
a�1(U �A) ⌦ (32U �A) ! S

a(U �A) ! Ia ! 0,

and this is clear upon writing S
a(U �A) = S

aU �A⌦ S
a�1(U �A). ⇤

With these preliminaries out of the way, we now prove (a slight strengthening of) Theorem C from the
Introduction.

Theorem 1.3. Let X ✓ Pr
be a reduced (but possibly singular) curve, and assume that X is m-regular in

the sense of Castelnuovo–Mumford. Denote by IX ✓ S the homogeneous ideal of X. Then

sat. deg(I
a

X
)  am.

Proof. The m-regularity of X means that we can take a resolution U• of IX as in (1-1) where Ui is a
direct sum of line bundles of degrees � �m � i , i.e., reg(Ui )  m + i . Consider the resulting Weyman
complex L• = S

a(U•):
! L3 ! L2 ! L1 ! L0 ! Ia

X
! 0, (⇤)

where the last map is the surjection S
a(") : L0 = S

a
U0 ! IX . In view of Lemma 1.1, the issue is to

establish the surjectivity of the homomorphism

H
0(Pr , L0(t)) ! H

0(Pr , Ia

X
(t)) (⇤⇤)

for t � am. To this end, observe first from (1-4) and (1-5) that

reg(Li )  am + i.
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Consider next the homology sheaves Hi = Hi (L• ! Ia

X
) of the augmented complex (⇤). (So for i = 0

we understand H0 = ker(L0 ! Ia

X
)/ im(L1 ! L0).) Thanks to (1-6), these are all supported on the

one-dimensional set X . Moreover, it follows from Lemma 1.2 that H0 is supported on the finitely many
singular points of X . Therefore the required surjectivity (⇤⇤) is a consequence of the first statement of
the following lemma. ⇤
Lemma 1.4. Consider a complex L• of coherent sheaves on Pr

sitting in a diagram

· · · ! L3 ! L2 ! L1 ! L0
"! F ! 0, (1-7)

and denote by Hi =Hi (L• !F) the i-th homology sheaf of the augmented complex (1-7).4 Assume that "

is surjective, and let p be an integer with the property that Li is (p+i)-regular for every i .

(i) If each Hi is supported on a set of dimension  i , then the homomorphism

H
0(Pr , L0(t)) ! H

0(Pr ,F(t))

is surjective for t � p.

(ii) If each Hi is supported on a set of dimension  i + 1, then F is p-regular.

Proof. This is established by chopping L• into short exact sequences in the usual way and chasing through
the resulting diagram. (Compare [Lazarsfeld 2004, B.1.2, B.1.3], but note that the sheaf H0 there should
refer to the augmented complex, as above.) ⇤
Remark 1.5. The argument just completed shows that Theorem 1.3 remains true if X has several
irreducible components, as well as possibly isolated points.

We conclude this section by observing that the same argument proves that Castelnuovo–Mumford
regularity of surfaces behaves submultiplicatively in powers. For curves, this has been known for some
time [Chandler 1997; Sidman 2002].

Proposition 1.6. Let X ✓ Pr
be a reduced (but possibly singular) surface, and denote by IX ✓ OPr the

ideal sheaf of X. If IX is m-regular, then Ia

X
is am-regular.

Sketch of proof. One argues just as in the proof of Theorem 1.3, reducing to statement (ii) of the previous
lemma. ⇤

2. Macaulay-type bounds: preliminaries

This section is devoted to some preliminary results that will be used in the proof of Theorem A from the
Introduction. In the first subsection, we discuss symmetric powers of a Koszul complex. The second is
devoted to the computation of some direct images from a blowup. Finally Section 2C gives the proof of
Proposition E form the Introduction. We will focus mostly on the case when X is a variety.

2A. Powers of Koszul complexes. In this subsection we review the construction of symmetric powers of
a Koszul complex. In the local setting this (and much more) appears in [Buchsbaum and Eisenbud 1975],

4So as above, the group of zero-cycles used to compute H0 is ker(").
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and it was revisited by Srinivasan [1989]. However, for the convenience of the reader, we give here a
quick sketch of the particular facts we require. We continue to work over the complex numbers.

Let M be a smooth algebraic variety, and let V be a vector bundle of rank e on M . Fix integers
a, k � 1. We denote by S

a,1k�1
(V ) the Schur power of V corresponding to the partition (a, 1, . . . , 1)

(k � 1 repetitions of 1). It follows from Pieri’s rule that

S
a,1k�1

(V ) = ker
�
3k�1

V ⌦ S
a
V ! 3k�2

V ⌦ S
a+1

V
�
= im

�
3k

V ⌦ S
a�1

V ! 3k�1
V ⌦ S

a
V

�
. (2-1)

Remark 2.1 (properties of S
a,1k�1

(V )). We collect some useful observations concerning this Schur power.

(i) If k = 1 then S
a,1k�1

(V ) = S
a
V , while if a = 1 then S

a,1k�1
(V ) = 3k

V . Moreover,

S
a,1k�1

(V ) = 0 when k > rank V .

(ii) The bundle S
a,1k�1

(V ) is actually a summand of S
a�1

V ⌦ 3k
V . In fact, Pieri shows that

S
a�1

V ⌦ 3k
V = S

a,1k�1
(V ) � S

a�1,1k

(V ).

(iii) If L is a line bundle on M , then it follows from (2-1) or (ii) that

S
a,1k�1

(V ⌦ L) = S
a,1k�1

(V ) ⌦ L
⌦a+k�1.

(iv) Suppose that M = Pr and

V = OPr (�d0) � · · · �OPr (�dp)

with d0 � · · · � dp. Then it follows from (ii) that S
a,1k�1

(V ) is a direct sum of line bundles of
degrees ��(ad0+d1+· · ·+dk�1) and, moreover, a summand of this degree appears. In other words,

reg(S
a,1k�1

(V )) = ad0 + d1 + · · · + dk�1.

One can also realize S
a,1k�1

(V ) geometrically, à la Kempf [1970].

Lemma 2.2. Let ⇡ : P(V ) ! M be the projective bundle of one-dimensional quotients of V , and denote

by F the kernel of the canonical quotient ⇡⇤
V ! OP(V )(1), so that F sits in the short exact sequence

0 ! F ! ⇡⇤
V ! OP(V )(1) ! 0 (⇤)

of bundles on P(V ). Then

S
a,1k�1

(V ) = ⇡⇤(3k�1
F ⌦OP(V )(a)).

Proof. In fact, (⇤) gives rise to a long exact sequence

0 ! 3k�1
F ⌦OP(V )(a) ! 3k�1(⇡⇤

V ) ⌦OP(V )(a) ! 3k�2(⇡⇤
V ) ⌦OP(V )(a + 1) ! · · · .

The assertion follows from (2-1) upon taking direct images. ⇤
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Now suppose given a map of bundles

" : V ! OM (2-2)

whose image is the ideal sheaf I ✓ OM of a subscheme Z ✓ X : equivalently, " is dual to a section
OM ! V

⇤ whose zero-scheme is Z . We allow the possibility that " is surjective, in which case I = OM

and Z = ?.
If Z has the expected codimension e = rank(V ), then I is resolved by the Koszul complex associated

to ". The following result of Buchsbaum and Eisenbud gives the resolution of powers of I.

Proposition 2.3 [Buchsbaum and Eisenbud 1975, Theorem 3.1; Srinivasan 1989, Theorem 2.1]. Fix

a � 1. Then " determines a complex

· · · ! S
a,12

(V ) ! S
a,1(V ) ! S

a
V

S
a(")��! Ia ! 0 (2-3)

of vector bundles on M. This complex is exact provided that either " is surjective or Z has codimension

equal to rank(V ).

Observe from Remark 2.1(i) that this complex has the same length as the Koszul complex of ".

Proof. Returning to the setting of Lemma 2.2, denote by "̃ : F ! OP(V ) the composition of the inclusion
F ,! ⇡⇤

V with ⇡⇤" : ⇡⇤
V ! ⇡⇤OM . The zero-locus of "̃ defines the natural embedding of P(I) in P(V ).

Now consider the Koszul complex of "̃. After twisting by OP(V )(a) this has the form

· · · ! 32
F ⌦OP(V )(a) ! F ⌦OP(V )(a) ! OP(V )(a) ! OP(I)(a) ! 0. (⇤)

In view of Lemma 2.2, (2-3) arises by taking direct images. If " is surjective, or defines a regular section
of V

⇤, then the Koszul complex (⇤) is exact. Since the higher direct images of all the terms vanish, (⇤)
pushes down to an exact complex. Furthermore, in this case ⇡⇤OP(I)(a) = Ia (see [Fulton and Lang
1985, Theorem IV.2.2]), and the exactness of (2-3) follows. ⇤
Example 2.4 (Macaulay’s theorem). Suppose as in the Introduction that f0, . . . , f p 2 C[x0, . . . , xr ] are
homogeneous polynomials of degrees d0 � · · · � dp that generate a finite colength ideal J . This gives
rise to a surjective map

V =
M

OPr (�di ) ! OPr ! 0

of bundles on projective space. Keeping in mind Remark 2.1(iv), Macaulay’s statements (1) and (2) follow
by looking at the cohomology of the resulting complex (2-3). When p = r this complex has length r + 1,
so one can also read off the nonsurjectivity of

H
0(Pr , S

a
V (t)) ! H

0(Pr ,OPr (t))

when t < ad0 + d1 + · · · + dr � r .

Example 2.5 (complete intersection ideals). Suppose that Z ✓ Pr is a complete intersection of dimen-
sion � 0. Applying (2-3) to the Koszul resolution of its homogeneous ideal IZ , one sees that I

a

Z
is

saturated for every a � 1. This is a result of Zariski.
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2B. Pushforwards from a blowing-up. We compute here the direct images of multiples of the exceptional
divisor under the blowing-up of a smooth subvariety.

Consider then a smooth variety M and a nonsingular subvariety X ✓ M having codimension e � 2 and
ideal sheaf I = IX ✓ OM . We consider the blowing-up

µ : M
0 = BlX (M) ! M

of M along X . Write E ✓ M
0 for the exceptional divisor of M

0, so that I ·OM 0 = OM 0(�E). We recall
that if a > 0 then

µ⇤OM 0(�a E) = Ia and R
jµ⇤OM 0(�a E) = 0 for j > 0. (2-4)

The following proposition gives the analogous computation for positive multiples of E.

Proposition 2.6. Fix a > 0. Then

R
jµ⇤OM 0(a E) = Ext

j

OM
(Ia�e+1,OM).5 (2-5)

In particular, µ⇤OM 0(a E) = OM , R
jµ⇤OM 0(a E) = 0 if j 6= 0, e � 1, and

R
e�1µ⇤OM 0(a E) = Ext

e�1
OM

(Ia�e+1,OM).

Proof. This is a consequence of duality for µ, which asserts that

Rµ⇤ RHomO
M 0 (F, !µ) = RHomOM

(Rµ⇤F,OM) (⇤)

for any sheaf F on M
0, where !µ denotes the relative dualizing sheaf for µ [Huybrechts 2006, (3.19) on

page 86]. We apply this with
F = OM 0((e � 1 � a)E).

Then Rµ⇤F = Ia�e+1 thanks to (2-4) (and a direct computation when 0 < a < e � 1), and !µ =
OM 0((e � 1)E). Therefore the first assertion of the proposition follows from (⇤). The vanishing of
Ext

j

OM
(Ia�e+1,OM) for j 6= 0, e � 1 follows from the perfection of powers of the ideal of a smooth

variety (which in turn is a consequence, e.g., of Proposition 2.3). ⇤
Remark 2.7 (generalization to multiplier ideal sheaves). Let b ✓ OM be an arbitrary ideal sheaf, and let
µ : M

0 ! M be a log resolution of b, with b ·OM 0 = OM 0(�E). A completely parallel argument shows
that for a > 0,

R
jµ⇤OM 0(a E) = Ext

j

OM
(J (ba),OM),

where J (ba) is the multiplier ideal of ba . The formula (2-5) is a special case of this.

Corollary 2.8. Continuing to work in characteristic zero, fix a � 1 and denote by N = NX/M the normal

bundle to X in M. If a  e � 1, then

R
e�1µ⇤OM 0(a E) = 0.

5When 0 < a < e � 1 we take Ia�e+1 = OM .
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If a � e, then R
e�1µ⇤OM 0(a E) has a filtration with successive quotients

S
k
N ⌦ det N for 0  k  a � e.

Proof. The first statement follows directly from the previous proposition. For the second, recall first that
if E is any locally free OX -module, then — X being nonsingular of codimension e in M —

Ext
e

OM
(E,OM) = E

⇤ ⌦ det N ,

while all the other Ext
j vanish. The claim then follows from Proposition 2.6, using the exact sequences

0 ! Ik+1 ! Ik ! S
k
N

⇤ ! 0

together with the isomorphism (S
k(N

⇤))⇤ = S
k
N valid in characteristic zero. ⇤

Remark 2.9. Recalling that E = P(N
⇤), one can inductively prove Corollary 2.8 directly, circumventing

Proposition 2.6, by pushing forward the exact sequences

0 ! OM 0((k � 1)E) ! OM 0(k E) ! OE(k E) ! 0.

However, it seemed to us that Proposition 2.6 may be of independent interest.

2C. A vanishing theorem for normal bundles. This final subsection is devoted to the proof of:

Proposition 2.10. Let X ✓ Pr
be a smooth complex projective variety of dimension n, and denote by

N = NX/Pr the normal bundle to X. Then

H
i (X, S

k
N ⌦ det N ⌦OX (`)) = 0

for all i > 0, k � 0 and ` � �r .

Here OX (k) denotes OPr (k)|X . We remark that similar statements were established by Schneider and
Zintl [1993], but this particular vanishing does not seem to appear there. Other vanishings for normal
bundles played a central role in [Ein and Lazarsfeld 1993].

Proof of Proposition 2.10. We use the abbreviation P = Pr . Starting from the exact sequence 0 ! T X !
T P|X ! N ! 0, we get a long exact sequence

· · · ! S
k�2

T P|X ⌦ 32
T X ! S

k�1
T P|X ⌦ T X ! S

k
T P|X ! S

k
N ! 0. (⇤)

By adjunction, det N ⌦OX (`) = !X ⌦OX (`+ r + 1). So after twisting through by det N ⌦OX (`) in (⇤),
we see that the proposition will follow if we prove

H
i
�
X, S

k� j
T P|X ⌦ 3 j

T X ⌦ !X ⌦OX (` + r + 1))
�
= 0 for i � j + 1 (⇤⇤)

when 0  j  k and ` � �r . It follows from the Euler sequence that S
m

T P|X has a presentation of the
form

0 !
M

OX (m � 1) !
M

OX (m) ! S
m

T P|X ! 0,
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so for (⇤⇤) it suffices in turn to verify that

H
i (X, 3 j

T X ⌦ !X ⌦OX (`1)) = 0

for i � j + 1 and `1 > 0. But 3 j
T X ⌦ !X = �

n� j

X
, so finally we’re asking that

H
i (X, �

n� j

X
⌦OX (`1)) = 0 for i � j + 1 and `1 > 0,

and this follows from Nakano vanishing. ⇤

3. Proof of Theorem A

We now turn to the proof of Theorem A from the Introduction.
Consider then a nonsingular scheme X ✓ Pr that is cut out as a scheme by hypersurfaces of degrees

d0 � · · · � dp. Equivalently, we are given a surjective homomorphism of sheaves,

" : U ! IX , U =
M

OPr (�di ).

Let µ : P0 = BlX (Pr ) ! Pr be the blowing-up of X , with exceptional divisor E ✓ P0, so that IX ·OP0 =
OP0(�E). Write H for the pullback to P0 of the hyperplane class on Pr , and set U

0 = µ⇤
U . Thus on P0

we have a surjective map of bundles,

"0 : U
0 ! OP0(�E). (3-1)

Noting that

H
0(P0,OP0(t H � a E)) = H

0(Pr , Ia

X
⌦OPr (t)),

one sees as in Lemma 1.1 that the question is to prove the surjectivity of

H
0(P0, S

a
U

0 ⌦OP0(t H)) ! H
0(P0,OP0(t H � a E)) (3-2)

for t � ad0 + d1 + · · · + dr � r .
To this end, we pass to the Buchsbaum–Eisenbud complex (2-3) constructed from

U
0 ⌦OP0(E)

"0
! OP0 ! 0.

Twisting through by OP0(t H � a E), we arrive at a long exact sequence of vector bundles on P0 having
the following form:

· · ·! S
a,12

U
0⌦OP0(t H+2E)

=

C2

! S
a,1

U
0⌦OP0(t H+E)

=

C1

! S
a
U

0⌦OP0(t H)

=

C0

!OP0(t H�a E)!0
(3-3)

With indexing as indicated, the i-th term of this sequence is given by

Ci = S
a,1i

(U 0) ⌦OP0(t H + i E).
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In order to establish the surjectivity (3-2) it suffices upon chasing through (3-3) to prove that

H
i (P0, Ci ) = 0 for 1  i  r (3-4)

provided that t � ad0 + d1 + · · · + dr � r . But now recall (Remark 2.1) that if i  r then S
a,1i

(U 0) is a
sum of line bundles OP0(m H) with

m � �ad0 � d1 � · · · � di � �ad0 � d1 � · · · � dr .

Hence, when t � ad0 + d1 + · · · + dr � r , Ci is a sum terms of the form

OP0(`H + i E) with ` � �r.

Therefore (3-4) — and with it Theorem A — is a consequence of:

Proposition 3.1. If ` � �r , then

H
i (P0,OP0(`H + i E)) = 0 for i > 0.

Proof. Thanks to the Leray spectral sequence, it suffices to show

H
j (Pr , R

kµ⇤OP0(`H + i E)) = 0 when j + k = i > 0. (⇤)

For k = 0, observe that µ⇤OP0(`H + i E) = OPr (`), and these sheaves have no higher cohomology when
` � �r . Suppose that k > 0. Suppose first that X is smooth and irreducible of codimension e. By
Proposition 2.6, the only nonvanishing higher direct images are the R

e�1µ⇤OP0(`H + i E), which do not
appear when i  e � 1. So (⇤) holds when j = 0 and k = e � 1. It remains to consider the case k = e � 1
and i � e, so that j = i � (e � 1) > 0. Here Corollary 2.8 implies that the R

e�1 have a filtration with
quotients

S
↵

N ⌦ det N ⌦OX (`),

where as above N = NX/Pr is the normal bundle to X in Pr . But since we are assuming ` � �r ,
Proposition 2.10 guarantees that these sheaves have vanishing higher cohomology. This completes the
proof when X is irreducible. When X has several components of possibly different dimensions one argues
similarly, one component at a time: we leave the details to the interested reader. ⇤

Remark 3.2. Observe that if X is defined by p < r equations, then the argument just completed goes
through taking dp+1 = · · · = dr = 0.
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