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A quick proof of nonvanishing for asymptotic syzygies

Lawrence Ein, Daniel Erman and Robert Lazarsfeld

Abstract

We give a quick new approach to proving the main cases of the nonvanishing theorems
of the first and third authors concerning the asymptotic behavior of the syzygies of a
projective variety as the positivity of the embedding line bundle grows. In particular, we
recover and extend the statements for Veronese syzygies, and we establish an effective
result for projectively Cohen–Macaulay varieties.

1. Introduction

The purpose of this note is to give a very quick new approach to the main cases of the nonva-
nishing theorems of [EL12] concerning the asymptotic behavior of the syzygies of a projective
variety as the positivity of the embedding line bundle grows. In particular, we present a surpri-
singly elementary and concrete approach to the asymptotic nonvanishing of Veronese syzygies,
and we obtain effective statements for arithmetically Cohen–Macaulay varieties.

Let X be an irreducible projective variety of dimension n over an algebraically closed field k,
and let L be a very ample divisor on X, defining an embedding

X ⊆ PH0(L) = Pr .

Write S = Sym(H0(L)) for the homogeneous coordinate ring of Pr, and for a fixed divisor B
on X consider the S-module

M = M(B;L) =
⊕
m

H0(B +mL) .

We are interested in the minimal graded free resolution E• = E•(B;L) of M over S:

0 // Er // . . . // E1
// E0

//M // 0 ,

with Ep = ⊕S(−ap,j). Denote by

Kp,q(B;L) = Kp,q(X,B;L)

the finite-dimensional vector space of degree p + q minimal generators of the pth module of
syzygies of M , so that

Ep(B;L) =
⊕
q

Kp,q(B;L)⊗k S(−p− q) .
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(When B = OX , we write simply Kp,q(X;L) or Kp,q(L) if no confusion seems likely.) It is
elementary that if L is very positive compared to B, then nonzero syzygies can only appear
in weights 0 6 q 6 n + 1, and it turns out that the extremal cases q = 0 and q = n + 1 are
easy to control. So the first interesting question is to fix B and 1 6 q 6 n, and to ask which
groups Kp,q(B;L) are nonvanishing when L becomes very positive. The main result of [EL12]
asserts in effect that—contrary to what one might have expected by extrapolating from the case
of curves—these groups are eventually nonzero for almost all values of p ∈ [1, r].

Perhaps the most natural instance of these matters occurs when X = Pn, B = OPn(b), and
L = Ld = OPn(d), so that one is looking at the syzygies of Veronese varieties. It was established
in [EL12] that if one fixes q ∈ [1, n] and b > 0, then for d� 0 one has

Kp,q(P
n, B;Ld) 6= 0

for every value of p satisfying(
d+ q

q

)
−
(
d− b− 1

q

)
− q 6 p 6

(
d+ n

n

)
−
(
d+ n− q
n− q

)
+

(
n+ b

n− q

)
− q − 1 . (1.1)

For example, when n = 2 and b = 0, this asserts that

Kp,2(P2;OP2(d)) 6= 0 for 3d− 2 6 p 6

(
d+ 2

2

)
− 3 , (1.2)

which was the main result of the interesting paper [OP01] of Ottaviani and Paoletti. The proof
in [EL12] of the Veronese nonvanishing theorem involved a rather elaborate induction on n to
show that certain well-chosen secant planes to the Veronese variety force the presence of nonzero
syzygies. For b = 0 the same statement was obtained independently in characteristic zero by
Weyman, who identified certain representations of SL(n+1) that appear nontrivially in the Kp,q.
Some other work concerning Veronese syzygies appears in [Rub04, BCR11b, BCR11a, EGHP05],
and a simplicial analogue of the results of [EL12] is given in [CJKW14].

The goal of the present paper is to present a much simpler and more elementary approach to
the nonvanishing of Veronese syzygies, and to use this method to establish effective statements
for arithmetically Cohen–Macaulay varieties. The idea is that one can reduce the question to
elementary computations with monomials by working modulo a suitable regular sequence. In
order to explain how this goes, consider the problem of proving the first case of the Ottaviani–
Paoletti statement (1.2), namely that if d > 3, then

K3d−2,2

(
P2;OP2(d)

)
6= 0 . (1.3)

Writing Sk for the degree k piece of the polynomial ring S = k[x, y, z], it is well known that the
group in question can be computed as the cohomology at the middle term of the Koszul-type
complex

. . . −→ Λ3d−1Sd ⊗ Sd −→ Λ3d−2Sd ⊗ S2d −→ Λ3d−3Sd ⊗ S3d −→ . . . .

The most naive approach to (1.3) would be to write down explicitly a cocycle representing
a nonzero element in K3d−2,2, but we do not know how to do this.1 On the other hand, consider
the ring

S = S/
(
xd, yd, zd

)
.

As xd, yd, zd form a regular sequence in S, the dimensions of the Koszul cohomology groups of S
are the same as those of S, and hence the question is equivalent to proving the nonvanishing of

1The argument in [OP01] proceeds by using duality to reformulate the question as the nonvanishing of a Kp′,0,
where one can exhibit directly the required class.
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the cohomology of

· · · −→ Λ3d−1Sd ⊗ Sd −→ Λ3d−2Sd ⊗ S2d −→ Λ3d−3Sd ⊗ S3d −→ · · · . (1.4)

Now view S as the ring spanned by monomials in which all variables have exponent at most d−1,
with multiplication governed by the vanishing of the dth powers of each variable. The plentiful
presence of zero-divisors in S means that one can write down by hand many monomial Koszul
cycles: for instance if m1, . . . ,m3d−2 are monomials of degree d, each divisible by x or y, then

c = m1 ∧ · · · ∧m3d−2 ⊗ xd−1yd−1z2

gives a cycle for the complex (1.4). Note next that xd−1yd−1z2 has exactly 3d − 2 monomial
divisors of degree d with exponents at most d− 1, namely

xd−1y , xd−2y2 , . . . , x2yd−2 , xyd−1 ,

xd−1z , xd−2yz , . . . , xyd−2z , yd−1z ,

xd−2z2 , xd−3yz2 , . . . , xyd−3z2 , yd−2z2 .

Taking these as the mi, we claim that the resulting cycle c represents a nonzero Koszul co-
homology class. In fact, suppose that c appears even as a term in the Koszul boundary of an
element

e = n0 ∧ n1 ∧ · · · ∧ n3d−2 ⊗ g ,
where the ni and g are monomials of degree d. After re-indexing and introducing a sign we can
suppose

c = n1 ∧ · · · ∧ n3d−2 ⊗ n0g .

Then the {nj} with j > 1 must be a re-ordering of the monomials {mi} dividing xd−1yd−1z2.
On the other hand n0g = xd−1yd−1z2, so n0 is also such a divisor. Therefore n0 coincides with
one of n1, . . . , n3d−2, and hence e = 0, giving a contradiction.

We show that this sort of argument gives the nonvanishing of Veronese syzygies appearing
in equation (1.1), as well as a few further cases that were conjectured in [EL12]. Moreover, we
obtain a new statement that subsumes the previous statement and includes all values of b, q,
and d (Theorem 2.1). More interestingly, whereas the results of [EL12] for varieties other than Pn

were ineffective, we are able here to give effective statements for a large class of general varieties.

Specifically, consider an arithmetically Cohen–Macaulay variety X ⊆ Pm of dimension n,
and for d > 0, b > 0 write

Ld = OX(d) , B = OX(b) .

Put c(X) = min{k |Hn(X,OX(k − n)) = 0}, the Castelnuovo–Mumford regularity of OX , and
write

rd = dimH0(X,OX(d)) , r′d = rd − (degX)(n+ 1) .

We prove the following result.

Theorem. Let q ∈ [1, n− 1], and fix d > b+ q + c(X) + 1. Then

Kp,q(X,B;Ld) 6= 0

for every value of p satisfying

deg(X)(q + b+ 1)

(
d+ q − 1

q − 1

)
6 p 6 r′d − deg(X)(d− q − b)

(
d+ n− q − 1

n− q − 1

)
.
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Analogous statements hold, with slightly different numbers, when q = 0 and q = n; see
Theorem 3.1 below. We note that Zhou [Zho14] has given effective results for adjoint-type (and in
particular, for very positive) line bundles B on an arbitrary smooth complex projective variety. It
would be interesting to know whether one could recover his statement by the present techniques;
see Remark 3.7.

2. Nonvanishing results for Pn

This section is devoted to the nonvanishing results for Veronese syzygies.

Let k be any field, and consider the polynomial ring S = k[x0, . . . , xn]. Given d > 1 we denote
by S(d) ⊆ S the Veronese subring

S(d) =
⊕
j∈Z

Sjd ⊆ S

of S. For an S-module M , we write M(b)(d) for the S(d)-module
⊕

j∈ZMb+jd. Note that M(b)(d)

is also naturally a Sym(Sd)-module. We denote by

Kp,q(n, b; d) = KSym(Sd)
p,q

(
S(b)(d)

)
the Koszul cohomology group of S(b)(d), where S(b)(d) is considered as a Sym(Sd)-module. Thus
Kp,q(n, b; d) is the cohomology of the Koszul-type complex

. . . −→ Λp+1Sd ⊗ S(q−1)d+b −→ ΛpSd ⊗ Sqd+b −→ Λp−1Sd ⊗ S(q+1)d+b −→ . . .

and

Kp,q(n, b; d) = Kp,q

(
Pn,OPn(b);OPn(d)

)
.

Since

Kp,q(n, b; d) = Kp,q+1(n, b− d; d) ,

we will always assume 0 6 b 6 d− 1.

The following result is more precise than those in [EL12], since in that paper, b was always
fixed and d > n+ 1.

Theorem 2.1. Fix any d, any b ∈ [0, d− 1], and any q ∈ [0, n+ 1− (n+ b)/d]. Define m and r
as the quotient and remainder of qd+ b by d− 1. Then

Kp,q(n, b; d) 6= 0

for all p in the range(
m+ d

m

)
−
(
m+ d− r − 1

m

)
−m 6 p 6

(
n+ d

n

)
+

(
n−m+ r

n−m

)
−
(
n−m+ d

n−m

)
−m− 1 .

If q /∈ [0, n+ 1− (n+ b)/d], then Kp,q(n, b; d) is automatically zero; see Remark 2.6. On the
other hand, if d > n+ b, then the nonvanishing holds for all 0 6 q 6 n.

For the proof, the idea is to work modulo a regular sequence to arrive at a situation where
we can work by hand with monomials. Specifically, by the technique of Artinian reduction, we
can compute syzygies modulo a linear regular sequence. Having fixed d > 0, we put

S
def
= S/

(
xd0, . . . , x

d
n

)
.

Slightly abusively, we view S as the graded ring spanned by monomials in the xi in which all
variables have exponent at most d, with multiplication determined by the vanishing of the dth
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power of each variable.

Since xd0, . . . , x
d
n is a linear regular sequence in Sym(Sd), working modulo these powers does

not affect the Koszul cohomology groups. In other words,

KSym(Sd)
p,q (S(b)(d)) ∼= KSym(Sd)

p,q

(
S(b)(d) ⊗Sym(Sd) Sym(Sd)

) ∼= KSym(Sd)
p,q

(
S(b)(d)

)
.

It thus suffices to compute this last group, which is the homology at the middle of∧p+1 Sd ⊗ S(q−1)d+b

∂p+1 //
∧p Sd ⊗ Sqd+b

∂p //
∧p−1 Sd ⊗ S(q+1)d+b . (2.1)

In particular, Kp,q(n, b; d) 6= 0 if and only if this complex has nontrivial homology, and we are
therefore reduced to studying cycles and boundaries in (2.1).

We start with some notation that will prove useful. Fix a finite set of elements P ⊆ S (which
in practice will be a collection of monomials).

Definition 2.2. We write ζ ∈
∧
P (or ζ ∈

∧s P ) if

ζ = m1 ∧ · · · ∧ms

with mi ∈ P for all i. We write ζ = detP if ζ is the wedge product of all elements in P (in some
fixed order). We say that a wedge product m1∧ · · · ∧ms is a monomial if each mi is a monomial.

The following lemma guarantees the existence of many nonzero monomial classes in the
cohomology of (2.1). It systematizes the computations worked out for a special case in the
introduction.

Lemma 2.3. Fix a nonzero monomial f ∈ Sqd+b, and denote by

Zf , Df ⊆ Sd
respectively the set of degree d monomials that annihilate or divide f .

(i) If ζ ∈
∧p Zf , then ζ ⊗ f ∈ ker ∂p.

(ii) Let ζ ∈
∧s Sd be any monomial such that detDf ∧ ζ ⊗ f is nonzero. Then

(detDf ∧ ζ)⊗ f /∈ im ∂(|Df |+s) .

Proof. For statement (i), write ζ = m1 ∧ · · · ∧ ms with mi ∈ Zf . Since mif = 0 ∈ S for all
i = 1, . . . , s, the assertion is immediate. Turning to statement (ii), assume

∂
(∑

ξj ⊗ gj
)

= (detDf ∧ ζ)⊗ f .

Then there must be some index j and some monomial appearing in ξj ⊗ gj that maps to the
monomial (detDf ∧ ζ)⊗ f . In particular, ξj ⊗ gj must contain a nonzero monomial of the form
(m ∧ detDf ∧ ζ) ⊗ g, where mg = f . But then m ∈ Df and hence m ∧ detDf = 0, giving
a contradiction.

Corollary 2.4. Given q, d, and b, let f ∈ Sqd+b be a monomial such that Df ⊆ Zf . Then any
nonzero monomial of the form

(detDf ∧ ζ)⊗ f ,
where ζ ∈

∧
Zf , represents a nonzero element of the cohomology of (2.1). In particular,

Kp,q(n, b; d) 6= 0

for every p satisfying

|Df | 6 p 6 |Zf | .
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Remark 2.5. The Koszul classes just constructed are linearly independent. In fact, keeping the
notation of the corollary, and with an appropriate degree twist, there is a natural map from the
Koszul complex on the linear forms in Zf to the minimal free resolution of S(b)(d) over Sym(Sd)
given by 1 7→ f . This induced map yields an inclusion of the Koszul subcomplex on the linear
forms

Zf\Df ⊆ Sym(Sd)

spanning homological degrees p = |Df |, |Df | + 1, . . . , |Zf |. In Conjecture B from [EEL15], we
conjectured that each row of the Betti table of a high degree Veronese variety looks roughly like
the Betti table of a Koszul complex. Although this result has a similar flavor, the lower bound on
the size of the Koszul cohomology groups constructed via this method is far too small to verify
the conjecture of [EEL15].

Theorem 2.1 now follows from Corollary 2.4 by choosing a convenient monomial f and com-
puting the number of elements in the resulting sets Zf and Df .

Proof of Theorem 2.1. Put

sd = dimSd =

(
n+ d

d

)
− (n+ 1) .

Let f be the “leftmost” monomial of S having degree dq + b; by our definition of m and r this
is the monomial of the form

f = xd−1
0 · xd−1

1 · . . . · xd−1
m−1 · x

r
m .

In order to establish the theorem, it suffices to prove three assertions:

(i) sd − |Zf | =
(
d+n−m

d

)
−
(
n+r−m

r

)
− n+m− 2.

(ii) |Df | =
(
m+d
m

)
−
(
m+d−r−1

m

)
−m.

(iii) Df ⊆ Zf .

For assertion (i), observe that Zf = (0 :S f)d contains all monomials of degree d that are divisible
by any of x0, . . . , xm−1 as well as those divisible by xrm. Hence among the sd monomials in Sd,
the ones not lying in Zf are the monomials of degree d appearing in the quotient

S/
(
x0, . . . , xm−1, x

d−r
m

)
.

We can compute this via the resolution

. . . −→ S(−d)

(x0, . . . , xm−1)

·xrm−→ S(−d+ r)

(x0, . . . , xm−1)

·xd−rm−→ S

(x0, . . . , xm−1)
−→ S

(x0, . . . , xm−1, x
d−r
m )

.

Therefore

sd − |Zf | = dimk

(
S/
(
x0, . . . , xm−1, x

d−r
m

))
d

= dim
(
S/(x0, . . . , xm−1)

)
d
− dim

(
S/(x0, . . . , xm−1)

)
r

+ dim
(
S/(x0, . . . , xm−1)

)
0

=

((
d+ n−m

d

)
− n+m− 1

)
−
(
n+ r −m

r

)
+ 1 .

For assertion (ii), observe that the set Df can be identified with the degree d monomials of
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S/(xr+1
m , xm+1, . . . , xn). A similar computation yields

|Df | = dim
(
S/
(
xr+1
m , xm+1, . . . , xn

))
d

= dim
(
S/(xm+1, . . . , xn)

)
d
− dim

(
S/(xm+1, . . . , xn)

)
d−r−1

+ dim
(
S/(xm+1, . . . , xn)

)
0

=

((
m+ d

d

)
−m− 1

)
−
(
d− r +m− 1

m

)
+ 1 .

Finally, since the exponent of xm in f is r 6 d− 1, it follows that any element of Df is divisible
at least by one of x0, . . . , xq−1, and hence any such element annihilates f .

Remark 2.6. If q < 0, then since b > 0, we clearly have Kp,q(n, b; d) = 0 for all p. If q >
n + 1 − (n+ b)/d, then we claim that we also get vanishing for all p. We define q′ := n + 1 − q
and note that the above inequality on q is equivalent to having q′d < n+ b. We then use duality
to compute

Kp,q(n, b; d)∗ = Krd−n−p,q′(n,−n− 1− b; d) .

Since O(−n− 1− b+ q′d) has no sections when q′d < n+ 1 + b, our assumptions imply that this
group equals zero for all rd − n− p > 0 and hence for all p > 0.

Remark 2.7. Zhou [Zho15] has recently established some results about the asymptotic distribu-
tion of torus weights appearing in the Kp,q of toric varieties. It would be interesting to know if
the present arguments can be used to give more refined information in the case X = Pn.

Remark 2.8. It is conjectured in [EL12, Conjecture 7.5] that for d > n + 1, the assertion of
Theorem 2.1 is optimal in the sense that the Kp,q in question vanish outside the stated range,
and we conjecture that the more general bounds in Theorem 2.1 are optimal as well.

For instance, in the case d = 2 and b = 0, the full resolution is known in characteristic zero
by work of Józefiak, Pragacz, and Weyman in [JPW81]. Their theorem shows that as long as
n+ 1 > 2q, we have Kp,q(n, 0; 2) = 0 starting with p = 2q2 − q, and this value lines up with the
lower bound in Theorem 2.1.

It would be exceedingly interesting to know whether one can use the approach introduced
here to make progress on this conjecture, at least in the case d � 0 as in [EL12, Problem 7.7].
Unfortunately, it seems that one cannot work only with monomials—it is possible for instance
that a monomial Koszul cocycle appears as the boundary of nonmonomial elements. It is tempting
to wonder whether there are Gröbner-like techniques that could be used to study the issue
systematically. We note that Raicu [Rai12] has reduced the general vanishing conjecture [EL12,
Conjecture 7.1] to the case of Veronese syzygies.

3. Nonvanishing for arithmetically Cohen–Macaulay schemes

In this section we extend the results of the previous section to the setting of arithmetically
Cohen–Macaulay (ACM) schemes.

Consider an arithmetically Cohen–Macaulay scheme X ⊆ Pm of dimension n over the field k,
and let

R = ⊕H0(X,OX(k))

be the homogeneous coordinate ring of X. Setting Ld = OX(d) and B = OX(b), we are interested
in the syzygies

Kp,q(X,B;Ld) = Kp,q

(
R(b)(d)

)
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of B with respect to Ld for d� 0. Put

c = c(X) = min
{
k |Hn(X,OX(k − n)) = 0

}
,

and write

rd = dimH0(X,OX(d)) = dimRd , r′d = rd − (degX)(n+ 1) .

Our first result holds when d > b+ q + c+ 1.

Theorem 3.1. Fix b ∈ [0, d− q − 1− c].
(i) If q ∈ [1, n− 1], then Kp,q(X,B;Ld) 6= 0 for

(degX)(q + b+ 1)

(
d+ q − 1

q − 1

)
6 p 6 r′d − (degX)(d− q − b)

(
d+ n− q − 1

n− q − 1

)
.

(ii) When q = n, one has Kp,n(X,B;Ld) 6= 0 when

(degX)(n+ b+ 1)

(
d+ n− 1

n− 1

)
6 p 6 r′d − degX .

(iii) When q = 0, one has Kp,0(X,B;Ld) 6= 0 when

0 6 p 6 r′d − (d− b)
(
n− 1 + d

n− 1

)
.

A somewhat more complicated but sharper statement appears in Remark 3.4 below.

Remark 3.2. If we fix b and q, we can interpret these bounds as asymptotic statements as d→∞.
Under these assumptions, we are saying that Kp,q(X,B;Ld) 6= 0 for all p in the range

deg(X)(q + b+ 1)

(q − 1)!
dq−1 +O

(
dq−2

)
6 p 6 r′d −

(
deg(X)

(n− q − 1)!
dn−q +O

(
dn−q−1

))
.

Conjecture 7.1 in [EL12] states that one should have Kp,q = 0 for p 6 O(dq−1); it would be
interesting to understand the optimal leading coefficients as well. In the ACM case this implies
that Kp,q = 0 also for p > rd−O(dn−q), but in the non-ACM case the groups in question can be
nonvanishing for p ≈ rd [EL12, Remark 5.3].

For the proof of the theorem, let IX ⊆ k[x0, . . . , xm] be the defining ideal of X, so that
R = k[x0, . . . , xm]/IX . The statement is independent of the ground field, so we may assume
that k is infinite. Then, after a general change of coordinates, we may assume that x0, . . . , xn
form a system of parameters for R. To help clarify the following arguments, we will relabel the
variables xn+1, . . . , xm as yn+1, . . . , ym.

Let S = k[x0, . . . , xn] ⊆ R, which is a Noether normalization since x0, . . . , xn is a system of
parameters. As R is Cohen–Macaulay of dimension n+ 1, it follows that it is a maximal Cohen–
Macaulay S-module, and hence a free S-module. We may choose a set Λ of monomials of the
form yβ ∈ R which form a basis for R as an S-module, so that

R =
⊕
yβ∈Λ

S · yβ .

We assume 1 ∈ Λ. Thus deg(X) = #Λ, and we observe that c(X) = max{deg yβ}.
Fix q ∈ [0, n], d > 0, and b > 0. Set

R = R/
(
xd0, . . . , x

d
n

)
,
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and define S as in the previous section. Thus R = R⊗S S, and R is a free S-module with basis Λ.
Since R is Cohen–Macaulay, we have

dimKp,q

(
R(b)(d)

)
= dimKp,q

(
R(b)(d)

)
for all p and q, where the group on the right is computed as the cohomology of the complex∧p+1Rd ⊗R(q−1)d+b

∂ //
∧pRd ⊗Rqd+b

∂ //
∧p−1Rd ⊗R(q+1)d+b .

In the natural way, we can speak of monomials in R: these are (the images in R of) elements of
the form xαyβ, where yβ ∈ Λ, and the degree of such a monomial is |α|+ |β|. Given a monomial
f ∈ S, we denote by

Zf , Ef ⊆ Rd
respectively the set of degree d monomials that annihilate f and the collection of degree d
monomials of the form xαyβ, where xα divides f and yβ ∈ Λ.

We start with an analogue of Lemma 2.3.

Lemma 3.3. Let

f ∈ Sqd+b ⊆ Rqd+b

be a monomial such that Ef ⊆ Zf . Then any nonzero monomial element

m = (detEf ∧ ζ)⊗ f

with ζ ∈
∧
Zf represents a nonzero Koszul cohomology class. In particular

Kp,q

(
X,OX(b);OX(d)

)
6= 0

for every p with

|Ef | 6 p 6 |Zf | .

Proof. Since Ef ⊆ Zf , the element m is evidently a Koszul cycle. It remains to prove that it is
not cohomologous to zero. In fact, we will show that m cannot occur as a monomial appearing in
the expansion (with respect to the chosen basis of R) of ∂(ξ⊗ g) for any monomials ξ ∈ Λp+1Rd
and g ∈ R(q−1)d+b. Suppose to the contrary that m appears as a term in ∂(ξ0 ∧ · · · ∧ ξp ⊗ g).
Then after possibly reindexing and introducing a sign, we can suppose

ξ1 ∧ · · · ∧ ξp = det(Ef ) ∧ ζ

and that f appears as a term in the expansion of ξ0g in terms of the basis Λ. Suppose

ξ0 = xαyβ , g = xγyδ ,

where yβ, yδ ∈ Λ. Then in R we can rewrite

yβ+δ = h0 · 1 +
∑
yλ∈Λ

hλ · yλ ,

where hλ ∈ S|β|+|δ|−|λ|. Therefore f = xα+γh0, and consequently xαyβ ∈ Ef . In particular ξ0

also appears as one of ξ1, . . . , ξp, and hence m = 0.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. As before, we take f to be the “leftmost” nonzero monomial of S of degree
dq + b:

f = xd−1
0 · xd−1

1 · . . . · xd−1
q−1 · x

q+b
q .
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We claim first of all that Ef ⊆ Zf provided that d > b+ q + c+ 1. In fact, suppose

w = xa00 · . . . · x
aq
q · yβ ∈ Ef .

Then aq 6 q + b, and hence

a0 + · · ·+ aq−1 = d− aq − |β| > d− (q + b)− c > 0 .

Therefore at least one of a0, . . . , aq−1 is strictly positive, and consequently w ∈ Zf .

In order to apply Lemma 3.3, it remains to estimate the sizes of Ef and Zf . Writing rd =
dimRd, we start by giving an upper bound on rd−|Zf |. Assume first q ∈ [1, n− 1], and consider
a monomial xα = xa00 · . . . · xann . Then a degree d monomial xαyβ lies in the complement of Zf if
and only if

a0 = · · · = aq−1 = 0 , aq 6 d− b− q − 1 .

The number of possibilities for xα is (rather wastefully) bounded above simply by the number
of degree d monomials in k[xq+1, . . . , xn], times the number of choices for aq, times the number
of choices for yβ. Since |Λ| = degX, this leads to the lower bound

rd − (degX)(d− q − b)
(
d+ n− q − 1

n− q − 1

)
6 |Zf | .

Turning to an upper bound on |Ef |, observe that xαyβ ∈ Ef if and only if

a0, . . . , aq−1 6 d− 1 , aq 6 q + b and aq+1 = · · · = an = 0 .

We can bound this (again wastefully) by the number of monomials of degree d in k[x0, . . . , xq−1],
times the number of choices for aq, times the number of choices for yβ. This leads to:

(degX)(q + b+ 1)

(
q − 1 + d

q − 1

)
> |Ef | .

So to obtain assertion (i) of Theorem 3.1, it remains only to observe that

rd =
∑
yβ∈Λ

dimSd−|β| >
∑
yβ∈Λ

(
dimSd−|β| − (n+ 1)

)
= dimRd − |Λ|(n+ 1) = r′d .

When q = n we get the same bound on |Ef |, but now we find that

rd − (degX) 6 |Zf | ,

and this yields statement (ii) of the theorem. Finally, when q = 0 we get the same lower bound
on |Zf | as above, and we can obtain nonvanishing starting with p = 0.

Remark 3.4. By separating the estimates into two terms depending on whether β is equal to
zero or not, one gets a slightly better upper bound on the size of Ef when q ∈ [1, n− 1]:

(degX − 1)(q + b+ 1)

(
q − 1 + d− 1

q − 1

)
+

(
q + d

q

)
−
(
d− b− 1

q

)
− q > |Ef | .

In particular, this reduces to the statements obtained for Pn in the previous sections.

Remark 3.5. By defining m and r as respectively the quotient and remainder of dq+ b by d− 1,
one can use an argument along the lines of the proof of Theorem 2.1 to extend this to some
additional values of q, d, and b. However, we felt the asymptotic behavior was more clear when
phrased in terms of q and b instead of r and m.
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Remark 3.6. The bounds for |Ef | and rd − |Zf | appearing in the proof of Theorem 3.1 could be
improved by a more precise count of the relevant possibilities, in particular taking into account
the degrees of the yβ. This amounts to computations involving the numerator of the Hilbert
series of R (that is, the Hilbert function of the Artinian reduction R), and confronted with a
specific example, it is often quite easy to use directly the method of the proof to get stronger
statements. For example, let X ⊆ P5 be the hypersurface

x3
0 + · · ·+ x3

5 = 0 .

Then Λ = {1, x5, x
2
5}, so c = 2. We take (q, b, d) = (3, 0, 8) and

f = x7
0x

7
1x

7
2x

3
3 .

Then R = k[x0, . . . , x5]/(x3
0 + · · ·+ x3

5) and R = R/(x8
0, . . . , x

8
4). The bounds from Theorem 3.1

and Remark 3.5 yield the nonvanishing result Kp,3(X;OX(8)) 6= 0 for p between 540 and 1005.

However, if we follow the method of the proof, we can compute the size of Ef directly. Let

A := k[x0, . . . , xq]/(x
d
0, . . . , x

d
q−1, x

q+b+1
q ) = k[x0, . . . , x3]/(x8

0, x
8
1, x

8
2, x

4
3). Then∑

yβ∈Λ

dimAd−deg yβ = dimA8 + dimA7 + dimA6 = 301 .

A similar computation shows that there are 14 monomials in the complement of Zf and so
|Zf | = 1030 − 14 = 1016, and the nonvanishing statement can be extended to all values of p
between 301 and 1016.

Remark 3.7. Let X ⊆ Pm be an arbitrary variety of dimension n, and suppose that B is a line
or vector bundle on X with the property that

H i
(
X,B ⊗OX(k)

)
= 0

for all k ∈ Z and 0 < i < n; in other words, M = ⊕H0
(
X,B ⊗OX(k)

)
is a Cohen–Macaulay

module over the homogeneous coordinate ring of Pm. Replacing B by a twist, one can assume
without loss of generality that M−1 = 0 but M0 6= 0. Then one can use the methods of this
section to obtain effective nonvanishing statements for the syzygies Kp,q(X,B;OX(d)). In fact,
the hypotheses on M imply that it has a generator in degree zero, and then in the arguments
above one can replace R by M . We leave the details to the interested reader. It would be
interesting to compare the resulting statements with the results [Zho14] of Zhou which fall under
this rubric.

Finally, we expect that nonvanishing statements similar to Theorem 3.1 hold for any finitely
generated, graded k-algebra R. More precisely, we conjecture the following analogue of part (i)
of Theorem 3.1.

Conjecture 3.8. Fix b and R and q ∈ [1, n], where n := dimR−1. Then there exist constants c
and C such that if d� 0, then

Kp,q(R(b)(d)) 6= 0 for all cdq−1 6 p 6 rd − Cdn−q .

We expect similar analogues of parts (ii) and (iii) of Theorem 3.1, as well as analogues of the
cases where b is close to d, as in Remark 3.5.
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