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Asymptotics of random Betti tables
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Abstract. This paper is motivated by the question of understanding the asymptotic be-
havior of the Betti numbers of the resolution of the ideal of a projective variety as the positivity
of the embedding line bundle grows. We present a conjecture asserting that these invariants ap-
proach a Gaussian distribution, and we verify this in the case of curves. Then we work out the
asymptotics of “random” Betti tables with a fixed number of rows, sampled according to a uni-
form choice of Boij–Söderberg coefficients. This analysis suggests that the normal distribution
of Betti numbers is in any event the typical behavior from a probabilistic viewpoint.

Introduction

The purpose of this paper is twofold. First, we present a conjecture to the effect that the
ranks of the syzygy modules of a smooth projective variety become normally distributed as
the positivity the embedding line bundle grows. Then, in an attempt to render the conjecture
plausible, we prove a result suggesting that this is in any event the typical behavior from a prob-
abilistic point of view. Specifically, we consider a “random” Betti table with a fixed number of
rows, sampled according to a uniform choice of Boij–Söderberg coefficients. We compute the
asymptotics of the entries as the length of the table goes to infinity, and show that they become
normally distributed with high probability.

Turning to details, we start by discussing at some length the geometric questions under-
lying the present work. Let X be a smooth projective variety of dimension n defined over some
field k, and for d > 0 put

Ld D dA C P;

where A is a fixed ample divisor and P is an arbitrary divisor on X . We assume that d is
sufficiently large so that Ld defines a normally generated embedding

X ✓ Prd ; where r D rd
defD h0.X; Ld / � 1 2 ‚.dn/:

(A function f .d/ is in ‚.g.d// if there are constants c1; c2 > 0 with c1g.d/  f .d/  c2g.d/

for all d � 0.)
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Write S D Sym H 0
�
X; Ld

�
for the homogeneous coordinate ring of Prd , denote by

J D JX ✓ S the homogeneous ideal of X , and consider the minimal graded free resolution
E✏ D E✏.X I Ld / of J :

0 JX
oo ˚S.�a1;j /oo ˚S.�a2;j /oo � � �oo ˚S.�ar;j /oooo 0.oo

E1 E2 Er

As customary, it is convenient to write

Ep.X I Ld / D
M

q

Kp;q.X I Ld / ˝k S.�p � q/:

Thus Kp;q.X I Ld / is a finite-dimensional vector space, whose non-zero elements are genera-
tors in degree p C q of the pth module of syzygies of S=JX . We refer to such an element as
a pth syzygy of weight q. The dimensions

kp;q.X I Ld /
defD dim Kp;q.X I Ld /

are the Betti numbers of Ld ; they are the entries of the Betti table of Ld . The basic problem
motivating the present paper (one that alas we do not solve) is to understand the asymptotic
behavior of these numbers as d ! 1.

Elementary considerations of Castelnuovo–Mumford regularity show that if d � 0, then

Kp;q.X I Ld / D 0 for q > n C 1:

Furthermore Kp;nC1.X I Ld / ¤ 0 if and only if

rd � n � .pg � 1/  p  rd � n;

where pg D h0.X; !X /. So the essential point is to understand the groups Kp;q.K; Ld / for
1  q  n and p 2 Œ1; rd ç. The main result of [6] is that as d ! 1 these groups become non-
zero for “essentially all” values of the parameters. Specifically, there exist constants C1; C2 > 0

(depending on X and the choice of the divisors A; P appearing in the definition of Ld ) such
that if one fixes 1  q  n, then

Kp;q.X I Ld / ¤ 0

for every value of p satisfying

C1 � dq�1  p  rd � C2 � dn�1:

However the results appearing in [6] do not give quantitative information about the asymptotics
in p of the corresponding Betti numbers kp;q.X I Ld / for fixed weight q 2 Œ1; nç and d � 0.

The question is already interesting in the case n D 1 of curves: here it is only the kp;1

that come asymptotically into play.1) Figure 1 shows plots of these Betti numbers for a divisor
of degree 75 on a curve of genus 0, and on a curve of genus 10. The figure suggests that the
kp;1 become normally distributed, and we prove that this is indeed the case.

1) If X is a curve of genus g > 2 and Ld is a divisor of degree d � 0 on X , then the Betti numbers
kp;1.X I Ld / depend on the geometry of X and Ld – in a manner that is not completely understood – when
rd � g  p  rd � 1. However elementary estimates show that when d is large the invariants in question are ex-
ponentially smaller than the kp;1 for p ⇡ rd

2 , and so they do not show up in the asymptotic picture. See Remark 2.4.
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Figure 1. Betti numbers kp;1 on curves of genus 0 and 10.

Proposition A. Let Ld be a divisor of large degree d on a smooth projective curve X

of genus g, so that rd D d � g. Choose a sequence πpd º of integers such that

pd ! rd

2
C a �

p
rd

2

for some fixed number a (i.e. limd!1
2pd �rdp

rd
D a). Then as d ! 1,

✓
1

2rd
�
s

2⇡

rd

◆
� kpd ;1.X I Ld / ! e�a2=2:

At the risk of some recklessness, we conjecture that the picture seen in dimension one
holds universally:

Conjecture B. Let X be a smooth projective variety of dimension n, and fix a weight
1  q  n. Then there is a normalizing function Fq.d/ (depending on X and geometric data)
such that

Fq.d/ � kpd ;q.X I Ld / ! e�a2=2

as d ! 1 and pd ! rd

2 C a �
p

rd

2 .

In other words, the prediction is that as d ! 1 one gets the same sort of normal distri-
bution of the Betti numbers kp;q.X I Ld /, considered as functions of p, as that which occurs
in the case of curves. Put another way, the conjecture asserts that the rows of the Betti table of
any very positive embedding display roughly the pattern that one would see in a large Koszul
complex.

As an illustration, we plot in Figure 2 the Betti numbers kp;1 for the embedding P2 ⇢ P14

defined by OP2.4/, which is the largest example we were able to run on Macaulay2. We hope
that the reader will agree that these data at least seem consistent with the conjectured picture.
We remark that in general the methods of [6] yield upper and lower bounds for kp;q.X I Ld /

having the shape predicted by the conjecture, but unfortunately the normalizing functions do
not match up.

Concerning the conjecture, the first point to stress is that we do not know how to verify
it for any variety of dimension n � 2. For example, it already seems a very interesting and
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Figure 2. Betti numbers kp;1 of 4-fold Veronese embedding of P2.

challenging problem to compute the asymptotics of the Betti numbers of the d -fold Veronese
embeddings of P2. In view of this state of affairs, it then becomes natural to ask whether one
can give any indirect evidence supporting the conjecture. For example, if one considers resolu-
tions with syzygies having fixed weights 1  q  n and lets the length of the resolution grow,
are the asymptotics predicted by the conjecture “typical” in some sense? Our main purpose
here is to prove a result suggesting that this is indeed the case: with high probability, the en-
tries in the rows of a “random” Betti table become normally distributed as the length of the
table goes to infinity.

In order to make this precise we start by introducing a model for the resolutions in ques-
tion; we will then apply the Boij–Söderberg theory established by Eisenbud and Schreyer [10]
to construct a sample space for studying random Betti tables. Specifically, fix a natural number
n � 2 and let R D kŒx1; : : : ; xr�nç be a polynomial ring in r � n variables, where r is a large
integer that will later go to infinity. Consider now a finite-length graded R-module M with the
property that

(0.1) Kp;q.M/ D 0 for q 62 Œ1; nç

and for every 0  p  n � r . Note that if X carries a line bundle B such that H i .X; B/ D 0

for all i – for instance B D OPn.�1/ on X D Pn – then the S -module associated to B will be
a Cohen–Macaulay module, and hence modules as in (0.1) can be constructed by modding out
by n C 1 general linear forms. We thus think of M as having a resolution that models in a sim-
plified manner the resolutions that occur for very positive embeddings of smooth projective
varieties of dimension n.

The theory of Eisenbud–Schreyer asserts that the Betti numbers kp;q.M/ are determined
by the Betti numbers of modules having a pure resolution. By definition, this is a module …

with the property that the pth syzygies of … all occur in a single weight q D q.p/. A module
with a pure resolution satisfying (0.1) determines an .n � 1/-element subset

I ✓ Œr ç
defD π1; : : : ; rº

encoding the values of p at which the weight q.p/ jumps: we denote by
� Œrç
n�1

�
the collection

of all such I . The corresponding module …I is not unique, but its Betti numbers kp;q.…I / are
determined up to a scalar that is normalized by fixing the multiplicity of each …I . The main
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result of [10] implies that given M as above, there exist non-negative rational numbers xI 2 Q
such that

(0.2) kp;q.M/ D
X

I2. Œrç
n�1/

xI � kp;q.…I /

for all p 2 Œ0; r � nç and q 2 Œ1; nç.2) In other words, the resolution of M is numerically
a Q-linear combination of the resolutions of the …I . Conversely, after possibly scaling one
can find a module M that realizes any given non-negative rational numbers xI . Thus up to
scaling, the possible numerical types of n-weight resolutions are parameterized by vectors

x D πxI º
I2. Œrç

n�1/

of Boij–Söderberg coefficients xI 2 Q�0.3) In order to emphasize the dependence on r , which
will shortly become important, we will henceforth write xr D πxr;I º to denote these coeffi-
cients and …r;I to denote the corresponding module.

We assume now (by scaling) that each xr;I  1, and since we are interested in numerical
questions, we allow the xr;I to be real. Denote by

�r D �r;n
defD Œ0; 1ç.

r
n�1/

the cube parameterizing the resulting coefficient vectors xr D πxr;I º. Then given

xr D πxr;I º 2 �r ;

set
kp;q.xr/ D

X

I2. Œrç
n�1/

xr;I � kp;q.…r;I /:

Thus the kp;q are functions on �r computing the Betti numbers of a module described by a
Boij–Söderberg coefficient vector xr .4)

We next imagine choosing xr 2 �r uniformly at random. The resulting real numbers
kp;q.xr/ can then be thought of as the entries of a random (and hence “typical”) Betti table
with n rows and r C 1 � n columns. This is illustrated when n D 2 in Figure 3, which shows
plots of kp;1.xr/ for random vectors xr 2 �r with r D 14 and r D 60. Fixing q 2 Œ1; nç, our
main result describes the asymptotics in p of the numbers kp;q.xr/ for such a randomly chosen
coefficient vector xr as r gets very large. It implies in particular that when r ! 1, the Betti
numbers kp;q.xr/ become normally distributed with high probability.

We start with a somewhat informal statement.

2) The set of indices I that arise here form in a natural way the vertices of a simplicial complex, and if
one takes into account the simplicial structure, one can arrange that the expression in (0.2) is unique. However for
reasons that we will discuss in Remark 1.3, we prefer to allow the indices I to vary independently. Therefore when
n � 3, the coefficients xI are not uniquely determined by M .

3) As explained in the previous footnote, this parameterization involves some repetitions.
4) In the following, we choose normalizations in such a way that each …r;I has formal multiplicity equal

to 1. There may be no actual module with this property, but since we are working only up to scale, this doesn’t
cause any problems.
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Figure 3. Betti numbers kp;1 of random Betti tables with r D 14 and with r D 60.

Theorem C. Fix a weight q 2 Œ1; nç. If one chooses xr 2 �r randomly, then as r ! 1
one expects

(0.3) kp;q.xr/ ⇠ 1

2n
�
 

r � n

p

!
�
✓

pq�1 � .r � p � n/n�q

.q � 1/ä � .n � q/ä

◆

provided that

p
r is bounded away from 0 and 1.

More precisely, given " > 0 denote by

†p;r;n."/ ✓ �r

the set of all coefficient vectors xr D πxr;I º 2 �r such that
ˇ̌
ˇ̌ kp;q.xr/�

RHS of (0.3)
� � 1

ˇ̌
ˇ̌ > ":

Now suppose that πprº is a sequence of positive integers 0  pr  r � n with the property
that

c <
pr

r
< 1 � c

for some small c > 0. Put the standard Lebesgue measure on the cube �r , so that vol.�r/ D 1.
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Then the assertion of the theorem is that

lim
r!1 vol

�
†pr ;r;n."/

�
D 0;

and that moreover the convergence is uniform in pr (given the bounding constant c).
The crucial term in (0.3) is the binomial coefficient. Stirling’s formula then implies that

as functions of p, the kp;q.x/ display the sort of normal distribution predicted by the conjecture
with high probability.

Corollary D. Fix n and q 2 Œ1; nç. There exists a function F.r/ D Fq;n.r/ with the

property that if πprº is a sequence with

pr ! r

2
C a �

p
r

2

for some a, then

F.r/ � kpr ;q.xr/ ! e�a2=2

for “most” choices of xr 2 �r .

We refer to Section 2 for the precise meaning of the last phrase.
Returning to the setting of Conjecture B, one most likely would not expect the modules

arising from geometry to be described by the sort of uniform choice of Boij–Söderberg coef-
ficients built into Theorem C and Corollary D. However it seems that the qualitative picture
coming out of our model is rather robust, and persists for other probability measures on �r .
We prove a specific result in this direction in Section 3.1.

The sort of probabilistic model discussed in the present paper is very different from the
notion of genericity that traditionally comes up in commutative algebra. Specifically, the stan-
dard perspective is to consider moduli spaces parameterizing flat families of graded modules
(or graded free resolutions) with fixed numerical invariants, and to examine what happens at
a general point of this moduli space. The random Betti tables studied here behave quite dif-
ferently than what one expects in the algebraic setting. For example, these two approaches
display essentially opposite semicontinuity properties. A random Betti table in our sense will
be drawn from the interior of the cone of Betti tables, and thus “more random Betti table D less
sparse Betti table.” By contrast, in the classical moduli perspective each individual Betti num-
ber is lower semicontinuous, and thus “more generic resolution D more sparse Betti table.” We
analyze this tension more explicitly in a particular case in Section 3.2. From this viewpoint,
Conjecture B predicts that the resolutions arising from geometry are extremely non-generic
algebraically.5)

We close with a philosophical remark. Based on experience with the case of curves,
it was expected in some quarters that high degree embeddings of algebraic varieties would
display rather sparse Betti tables. However the results of [6] showed that this is not at all the
case. On the other hand, the results of that paper do suggest that the syzygies of very positive
embeddings exhibit uniform asymptotic behavior. If one believes this, it becomes somewhat
hard to guess – given the computations here for random Betti tables – what one might expect
other than a statement along the lines of Conjecture B.

5) It is not surprising that this should be so. For instance, the ideal of a very positive embedding of any
variety is generated by quadrics, but of course the subspace spanned by these quadrics sits in very special position
within the linear system of all quadrics on the ambient projective space.
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Concerning the organization of the paper, in Section 1 we introduce random Betti tables
and carry out the computations leading to Theorem C. These are recast using Stirling’s formula
in Section 2, where we prove Corollary D and Proposition A. Finally, Section 3 is devoted to
some variants and open problems.

Acknowledgement. The computer algebra programs Macaulay2 and Mathematica
(see [13,19]) provided useful assistance in studying examples. We also thank David Eisenbud,
Milena Hering and Claudiu Raicu for valuable suggestions. We have particularly profited from
discussions with Kyungyong Lee, who helped us to understand the direction this project should
take. We also thank the anonymous referee for a close reading that improved the paper.

1. Random Betti tables

In this section we introduce some notation and definitions concerning Betti tables, and
carry out the main computations.

We fix once and for all a positive integer n � 2, and denote by r a large natural number
that will eventually go to infinity. Generally speaking we will render dependence on r visible in
the notation, but leave dependence on n implicit. We shall be concerned with n ⇥ .r C 1 � n/

matrices of real numbers: the columns will be numbered 0; : : : ; r � n and the rows 1; : : : ; n. As
in the Introduction such Betti tables arise upon tabulating the Betti numbers of a finite-length
graded module over the polynomial ring kŒx1; : : : ; xr�nç, but in fact we will only be concerned
with the tables themselves. Given a Betti table B , we denote by kp;q.B/ the entry of B in the
qth row and pth column. (Some authors work instead with p̌;j .B/ D kp;j �p.B/.)

The theorem of Eisenbud–Schreyer [10] implies that the cone of all Betti tables of mod-
ules as in the Introduction is spanned by so-called pure tables ⇡.r; I / constructed as follows.
Fix an .n � 1/-element subset

I D .i1 < � � � < in�1/

of Œr ç
defD π1; : : : ; rº, and write

π1; : : : ; rº � I D πd0; : : : ; dr�nº;

with d0 < d1 < � � � < dr�n. Then ⇡.r; I / is the Betti table with kp;j D 0 for j ¤ dp � p, and

(1.1) kp;dp�p

�
⇡.r; I /

�
D .r � n/ä �

✓Y

`¤p

1

jd` � dpj

◆
:

In other words, ⇡.r; I / is (up to scaling) the Betti table of a module all of whose syzygy mod-
ules are generated in a single degree. The integers .d0 < � � � < dr�n/ are the degree sequence

of ⇡.r; I /, and the subset I ✓ Œr ç determines the values of p at which the degree sequence skips
an integer. The numerical factors in (1.1) are such that ⇡.r; I / has (formal) multiplicity equal
to 1. (This follows from the formula for the multiplicity of a module with a pure resolution;
see, for instance, [2, p. 88].)

Example 1.1. Consider the table ⇡.7; π2; 4º/. This corresponds to the degree sequence

π1; 2; 3; 4; 5; 6; 7º n π2; 4º D π1; 3; 5; 6; 7º;
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and one has

⇡.7; π2; 4º/ D

0

@

0 1 2 3 4

1 1
10 � � � �

2 � 1
2 � � �

3 � � 3
2

8
5

1
2

1

A:

It will be useful to have an alternative expression for the entries of ⇡.r; I /. As a matter
of notation, for m 2 Z, write

mC D maxπm; 0º:
Then (1.1) yields the following, whose proof we leave to the reader:

Lemma 1.2. The entries of ⇡.r; I / are given by

(1.2) kp;q

�
⇡.r; I /

�
D .r � n/ä �

Qq�1
˛D1.p C q � i˛/C �Qn�1

˛Dq.i˛ � p � q/C
.p C q � 1/ä � .r � p � q/ä

:

We next consider random Betti tables. For each I 2
� Œrç
n�1

�
, let XI be a random variable

uniformly distributed on Œ0; 1ç. We take the XI to be independent. Then put

(1.3) Br D Br;n D
X

I2. Œrç
n�1/

XI � ⇡.r; I /:

Heuristically, one thinks of Br as the Betti table obtained by choosing independent random
Boij–Söderberg coefficients xI 2 Œ0; 1ç. More formally, Br is a random n ⇥ .r C 1 � n/ ma-
trix, and for each p; q the entry kp;q.Br/ is a random variable. We write ep;q.Br/ for the
expected value of this variable, i.e.

(1.4) ep;q.Br/
defD E

�
kp;q.Br/

�
:

Remark 1.3. When n D 2, the pure tables are indexed by a single integer

i 2 Œ1; r ç D
 

Œr ç

1

!
:

In this case the ⇡.r; i/ are linearly independent, and there is a unique way to express every
Betti table as a linear combination of pure tables. However when n � 3, chains in the set of
degree sequences determine the simplices of a simplicial complex whose structure must be
taken into account to get a unique decomposition. (See [2] or [10] for further details.) Here
we have chosen to ignore this additional structure. This choice is primarily motivated by a de-
sire to simplify the statements and computations, by avoiding some of the complicated geom-
etry of the cone of Betti tables. However there is also emerging evidence from other directions
that it can be advantageous to deal with all possible pure Betti tables, instead of just collections
from a single simplex. For instance, the recent work [12] provides a pleasingly simple descrip-
tion of a pure table decomposition of any complete intersection, but this description relies on a
collection of pure Betti tables that do not come from a single simplex. Lastly, due to the seem-
ing robustness of Corollary D (see Section 3.1), we expect that taking the simplicial structure
into consideration would not significantly alter the outcome.
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Our main result computes ep;q.Br/, and shows that if we fix q and let r tend to infinity,
then kp;q.Br;n/ converges (up to an essentially polynomial factor) to a binomial distribution
in p.

Theorem 1.4. The expected entries of Br are given by the formula

(1.5) ep;q.Br/ D 1

2n
�
 

r � n

p

!
�
✓

pq�1 � .r � p � n/n�q

.q � 1/ä � .n � q/ä
C o

�
p; r � p/n�1

◆
;

where the error term on the right indicates a quantity g where limp;r!1 g
pi .r�p/j D 0 for

some nonnegative integers i; j such that i C j D n � 1.

Remark 1.5. Note that we could replace the factor .r � p � n/ in (1.5) by .r � p/

without changing the statement. However we prefer to emphasize the symmetry between .p; q/

and .r � n � p; n C 1 � q/ inherent in the situation.

With n and q fixed, write

(1.6) �.r; p/ D �q;n.r; p/ D 1

2n
� pq�1 � .r � p � n/n�q

.q � 1/ä � .n � q/ä

for the expression appearing on the right in (1.5). The law of large numbers then implies that
kp;q.Br;n/ converges to ep;q.Br;n/. In fact:

Corollary 1.6. Fix a weight q 2 Œ1; nç, and let πprº be any sequence of positive integers

0  pr  r � n such that

c  pr

r
 1 � c

for some small c > 0. Then as r ! 1,

kpr ;q.Br/�r�n
pr

�
� �.r; pr/

! 1

in probability, and moreover the convergence is uniform in pr (for given c).

In other words, given "; ⌘ > 0, one can find an integer R such that if r � R, then

P
✓ˇ̌
ˇ̌ kpr ;q.Br/�r�n

pr

�
� �.r; pr/

� 1

ˇ̌
ˇ̌ > "

◆
< ⌘;

and furthermore one can take R to be independent of pr provided that c < pr=r < 1 � c.6)

A more concrete interpretation of this assertion is spelled out following the statement of Theo-
rem C in the Introduction.

Turning to the proof of Theorem 1.4, we begin with an elementary lemma. As a mat-
ter of notation, given positive integers a � b, and a b-element subset J 2

�Œaç
b

�
of Œaç, write

J D πj1 < � � � < jbº for the elements of J in increasing order.

6) Here and subsequently, we are writing P to denote the probability of an event.
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Lemma 1.7. For fixed b � 0, consider the function �b W Z�b ! Z given by

�b.a/ D
X

J 2.Œaç
b /

j1j2 � � � jb:

Then �b.a/ is a polynomial of degree 2b with leading coefficient

1
bä2b .

Proof. If b D 0, the statement is trivial. We then observe that

�b.a C 1/ � �b.a/ D .a C 1/�b�1.a/:

and the general case follows by induction on b.

Proof of Theorem 1.4. Throughout the proof we fix n and q 2 Œ1; nç. Note first from
Lemma 1.2 that

kp;q.⇡.r; I // D
✓

.p C q � i1/C � � � .p C q � iq�1/C � .iq � p � q/C � � � .in�1 � p � q/C
.p C q � 1/ � � � .p C 1/ � .r � p � q/ � � � .r � p � .n � 1//

◆

�
 

r � n

p

!
:

Given I 2
� Œrç
n�1

�
, define

(1.7)

YI;r;p D
✓

.p C q � i1/C � � � .p C q � iq�1/C � .iq � p � q/C � � � .in�1 � p � q/C
.p C q � 1/ � � � .p C 1/ � .r � p � q/ � � � .r � p � .n � 1//

◆
� XI :

Thus for fixed p; q and r :

(1.8)
kp;q.Br/�r�n

p

�
� �.r; p/

D
P

I2. Œrç
n�1/

YI;r;p

�.r; p/
;

where �.r; p/ is the quantity from (1.6).
Now since E.XI / D 1

2 , for fixed r; p and I , we have

E.YI;r;p/ D 1

2
�
✓

.p C q � i1/C � � � .p C q � iq�1/C � .iq � p � q/C � � � .in�1 � p � q/C
.p C q � 1/ � � � .p C 1/ � .r � p � q/ � � � .r � p � .n � 1//

◆
:

Hence for fixed p and r :

ep;q.Br;n/ D
 

r � n

p

!
�
X

I2. Œrç
n�1/

E.YI;r;p/

D
 

r � n

p

!
� 1

2
�
✓ P

I2. Œrç
n�1/

.p C q � i1/C � � � .p C q � iq�1/C

.p C q � 1/ � � � .p C 1/ � .r � p � q/ � � � .r � p � .n � 1//

� .iq � p � q/C � � � .in�1 � p � q/C
◆

D
 

r � n

p

!
� 1

2
�

⇣P
J 2.ŒpCq�1ç

q�1 / j1j2 � � � jq�1

⌘⇣P
J 02.Œr�p�qç

n�q / j 0
1 � � � j 0

n�q

⌘

.p C q � 1/ � � � .p C 1/ � .r � p � q/ � � � .r � p � .n � 1//
;
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where the last equality is given by a change of coordinates

I 7! .J; J 0/ D ..j1; : : : ; jq�1/; .j 0
1; : : : ; j 0

n�q//

where j` D p C q � i` for ` D 1; : : : ; q � 1 and j 0
`0�q�1

D i`0 � p � q for `0 D q; : : : ; n � 1.
This last expression further simplifies to

D
 

r � n

p

!
� 1

2
�
✓P

J 2.ŒpCq�1ç
q�1 / j1j2 � � � jq�1

.p C q � 1/ � � � .p C 1/

◆
�
✓ P

J 02.Œr�p�qç
n�q / j 0

1 � � � j 0
n�q

.r � p � q/ � � � .r � p � .n � 1//

◆
:

Lemma 1.7 then implies that

(1.9) ep;q.Br/ D
 

r � n

p

!
� �.r; p/ �

0

@
1 C A2q�3.p/

p2q�2

1 C B2q�3.p/

p2q�2

1

A �

0

@
1 C C2n�2q�1.r�p/

.r�p/2n�2q

1 C D2n�2q�1.r�p/

.r�p/2n�2q

1

A;

where A, B , C , and D are polynomials of the indicated degrees whose coefficients depend
on n and q. The theorem follows.

Remark 1.8. For later reference, we record a consequence of the proof just completed.
Specifically, suppose given a sequence πprº with

c  pr

r
 1 � c

for some c > 0. Then it follows from (1.9) that

(1.10) lim
r!1

✓P
E.YI;r;pr

/

�.r; pr/

◆
D 1;

and that moreover the convergence is uniform in pr given c.

Proof of Corollary 1.6. This is essentially just the weak law of large numbers, but for
keeping track of the dependence in p it is quickest to go through the argument leading to that
result, as in [4, Section 5.1]. As before, we fix n and q at the outset. Note to begin with that
the coefficient of XI in (1.7) is  1, and hence

Var.YI;r;p/  1

3

for every I , r and p. Furthermore, since the XI are independent, for given r and p the YI;r;p

are uncorrelated. Therefore, with r and p fixed and ı > 0, Chebyschev’s inequality yields

P
✓ˇ̌
ˇ̌
P

YI;r;p � E.
P

YI;r;p/

�.r; p/

ˇ̌
ˇ̌ > ı

◆
 1

ı2 � �.r; p/2
� Var

⇣X
YI;r;p

⌘

 1

ı2 � �.r; p/2
�
� r
n�1

�

3
:

Now fix a sequence πprº with pr

r bounded away from 0 and 1. Then

C1 � rn�1  �.r; pr/  C2 � rn�1

for suitable positive constants C1; C2 independent of pr . Hence there is a constant C3, inde-
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pendent of pr , such that

(1.11) P
✓ˇ̌
ˇ̌
P

YI;r;pr
� E.

P
YI;r;pr

/

�.r; pr/

ˇ̌
ˇ̌ > ı

◆
 C3

ı2 � rn�1
:

Note that as r ! 1, the term on the right goes to 0. Moreover, as we saw in Remark 1.8,

lim
r!1

E.
P

YI;r;pr
/

�.r; pr/
D 1;

uniformly in pr . It follows that given " > 0:

lim
r!1 P

✓ˇ̌
ˇ̌E.

P
YI;r;pr

/

�.r; pr/
� 1

ˇ̌
ˇ̌ > "

◆
D 0;

uniformly in pr . Recalling finally that

E.
P

YI;r;pr
/

�.r; pr/
D epr ;q.Br;n/�r�n

p

�
� �.r; pr/

;

we arrive at the required statement.

2. Betti asymptotics

This section contains two applications of Stirling’s formula. First, we recast the compu-
tations of the previous section to give asymptotic expressions for the entries of a random Betti
table. Then we return to the case of curves, and prove Proposition A from the Introduction.

In order to get clean statements for the Betti tables it will be helpful to replace conver-
gence in probability with almost everywhere convergence. So we start with some definitions
and observations in this direction. As before we fix once and for all an integer n � 2. Denote
by
� Œ1ç
n�1

�
the set of all .n � 1/-element subsets of Z>0, so that

 
Œ1ç

n � 1

!
D

[

r�n�1

 
Œr ç

n � 1

!
:

Then put
� D Œ0; 1ç.

Œ1ç
n�1/:

This is a countable product of copies of the unit interval, and there are natural projections

⇢r W � ! �r :

By a standard procedure (Kolmogorov’s extension theorem, [5, Theorem A.3.1]) there is a
unique probability measure on � compatible with pull-backs of the standard measures on
the �r . Via composition with ⇢r , the various functions considered in the previous section – no-
tably XI , YI;r;p and kp;q.Br/ – determine measurable functions on �. In other words, all these
quantities are random variables on �, and the computations of expectations and probabilities
carried out in the previous section remain valid in this new setting. As a matter of notation, for
x 2 �, we write xr D ⇢r.x/ 2 �r , and set

kp;q.xI r/
defD kp;q.Br/.xr/:

Thus kp;q.xI r/ is the indicated entry of the finite Betti table determined by the Boij–Söderberg
coefficient vector xr 2 �r .
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68 Ein, Erman and Lazarsfeld, Asymptotics of random Betti tables

The computations of the previous section then lead to the following:

Theorem 2.1. Fix a weight q 2 Œ1; nç, and a sequence πprº with

c  pr

r
 1 � c

for some small c > 0. Then for almost all x 2 �:

lim
r!1

kpr ;q.xI r/�r�n
pr

�
� �.r; pr/

D 1:

Sketch of Proof. Assuming first that n � 3, one can simply modify slightly the first part
of the proof of [4, Theorem 5.1.2]. In fact, keeping the notation of the previous section, put

Zr
defD
P

I2. Œrç
n�1/

�
YI;r;pr

� E.YI;r;pr
/
�

�.r; pr/
:

In view of equations (1.8) and (1.10), it suffices to show that Zr ! 0 almost everywhere on �.
But when n � 3, it follows directly from (1.11) that given ı > 0,

X

r

P
�
jZr j > ı

�
< 1;

and as in [4] this implies the desired convergence. When n D 2, this argument does not work
because the right-hand side of (1.11) then has order r�1. However in this case one can for
example adapt in a similar fashion the proof (cf. [5, Theorem 2.3.5]) of the strong law of large
numbers for independent random variables with finite second and fourth moments. We leave
details to the reader.

Stirling’s formula now implies the following, which in particular proves Corollary D
from the Introduction:

Corollary 2.2. Fix n and q, and let πprº be a sequence such that

pr ! r

2
C a �

p
r

2

for some a 2 R. Then for almost all x 2 �:

✓
.q � 1/ä � .n � q/ä �

p
2⇡r

2rC2�3n � rn�1

◆
� kpr ;q.xI r/ ! e�a2=2:

Remark 2.3. To simplify the formulas a bit, we have chosen to break the symmetry
between .p; q/ and .r � n � p; n C 1 � q/. One could obtain a similar formula for

pr ! r � n

2
C b �

p
r � n

2
:

Proof of Corollary 2.2. First, note that
 

r � n

p

!
D
 

r

p

!
� .r � p � n C 1/ � � � .r � p � 1/ � .r � p/

.r � n C 1/ � � � .r � 1/ � r
;
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and hence

lim
r!1

�r�n
pr

�
� r
pr

� D 1

2n
:

Next, observe that

lim
r!1

�.r; pr/

rn�1
D 1

22n�1 � .q � 1/ä � .n � q/ä
:

Finally, recall (cf. [5, Theorem 3.1.2]) that

lim
r!1

p
2⇡r

2rC1
�
 

r

pr

!
D e�a2=2:

The corollary follows upon putting these together with Theorem 2.1.

Changing gears slightly, we conclude this section by working out the asymptotics for
the Betti numbers of large degree embeddings of curves. In particular, we prove Proposition A
from the Introduction.

Proof of Proposition A. Let X be a smooth projective curve of genus g, and let Ld be
a divisor of degree d � 0 on X , so that

rd
defD h0

�
X; Ld

�
� 1 D d � g:

The first point is to compute kp;1.X I Ld /. This appears in [18, Proposition 3.2], but for the
benefit of the reader we recall the derivation. In fact, let Md be the rank rd vector bundle on X

defined as the kernel of the evaluation mapping

ev W H 0
�
X; Ld

�
˝ OX ! Ld :

Then, a well-known argument with Koszul cohomology (cf. [6, Section 3]) shows that

kp;1.X I Ld / D h0.ƒpMd ˝ Ld / � dim ƒpC1H 0.Ld /;

kp�1;2.X I Ld / D h1.ƒpML ˝ Ld /:

Furthermore,
kp�1;2.X; Ld / D 0 for p  rd � g

thanks to a theorem of Green [14, Theorem 4.a.1]. Thus for p  rd � g:

(⇤) kp;1.X I Ld / D �
�
X; ƒpMd ˝ Ld

�
�
 

rd C 1

p C 1

!
:

On the other hand, the Euler characteristic in (⇤) can be computed by Riemann–Roch. In fact,
�.Md / D �d

d�g
, and hence

�.ƒpMd ˝ Ld / D rank .ƒpMd / �
�
p � �.Md / C �.Ld / C 1 � g

�

D
 

d � g

p

!✓ �pd

d � g
C .d C 1 � g/

◆
:
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Writing  
rd C 1

p C 1

!
D
 

d � g

p

!
� d C 1 � g

p C 1
;

we find finally that

kp;1.X I Ld / D
 

d � g

p

!✓ �pd

d � g
C .d C 1 � g/ � d C 1 � g

p C 1

◆

provided that p  rd � g. Proposition A from the Introduction then follows as in the proof of
Corollary 2.2 by an application of Stirling’s formula.

Remark 2.4. When p > rd �g D d �2g, the Betti number kp;1.X I Ld / depends on X

and Ld in a manner that is not yet completely understood. On the other hand, the computa-
tion of syzygies as Koszul cohomology groups shows that Kp;1.X I Ld / is a sub-quotient of
ƒpH 0.Ld / ˝ H 0.Ld /, and therefore

kp;1.X I Ld / 
 

d C 1 � g

p

!
� .d C 1 � g/:

For p > d � 2g this becomes a polynomial upper bound that is much smaller than the value
of kp;1 for p ⇡ d�g

2 . Thus as far as asymptotics are concerned, the Kp;1 with p > d � 2g

are essentially negligible. Of course in the statement of Proposition A these ambiguities do not
even enter the picture.

3. Complements and open questions

In this section we establish some related results, and propose some open problems for
further research.

3.1. Weight functions. Here we discuss the possibility of generalizing our results by
taking non-uniform probability measures on �r . We will assume for simplicity that n D 2: in
this case pure tables are labeled by a single integer i 2 Œ1; r ç D

�Œrç
1

�
.

Fix a function
h W Œ0; 1ç ! Œ0; 1ç:

Then we can use h to define the weighted random Betti table

Bh
r

defD
rX

iD1

h

✓
i

r

◆
� Xi � ⇡.r; i/;

where Xi (1  i  r) as above are independent random variables uniformly distributed on
the interval Œ0; 1ç. Equivalently, we are weighting the pure table ⇡.r; i/ with a random vari-
able uniformly distributed on the interval Œ0; h. i

r /ç. This procedure is illustrated in Figure 4,
which shows a random Betti table with r D 500 weighted according to the somewhat whimsi-
cal choice

h.t/ D sin2.2⇡.t � :35//:

The upper plot displays random coefficients xi (1  i  500) chosen uniformly in the interval
Œ0; h.i=500/ç. The resulting Betti numbers kp;1 are plotted at the bottom.

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 9:56 PM



Ein, Erman and Lazarsfeld, Asymptotics of random Betti tables 71

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

ÊÊ

Ê

Ê

Ê

Ê

ÊÊ

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê
Ê
Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

ÊÊ

Ê
Ê
Ê
Ê

Ê
ÊÊÊ
ÊÊ
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊ
ÊÊÊÊÊÊ
ÊÊ

ÊÊ
Ê

Ê

Ê

Ê

Ê

ÊÊ
Ê
Ê

Ê
Ê
Ê
Ê

Ê

Ê

ÊÊÊ

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

ÊÊ
Ê
Ê

Ê
Ê

Ê

Ê

ÊÊÊÊÊ
ÊÊ
Ê
ÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊ
ÊÊ
ÊÊ
Ê
ÊÊÊ

Ê

ÊÊ

Ê
Ê
Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê
ÊÊ

Ê

Ê

ÊÊ

ÊÊ

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê
ÊÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

��� ��� ��� ��� ���
L

���

���

���

���

���

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊ
ÊÊ
ÊÊ
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
ÊÊ
ÊÊÊÊÊ
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

��� ��� ��� ��� ���
S

�¥ �����

�¥ �����

�¥ �����

�¥ �����

�¥ �����

�¥ �����

Figure 4. Weighted random Betti table with h.t/ D sin2.2⇡.t � :35// and r D 500.

Now for arbitrary h one cannot expect the rows of Bh
r .x/ to be normally distributed for

most x. For example if supp.h/ ⇢ Œ0; 1
2 ç, then

kp;1

�
Bh

r .x/
�

D 0

for every x whenever p > r
2 . However if h is smooth, and if one rules out the sort of problem

just illustrated, then the qualitative results established in the previous section – which corre-
spond to the case h.t/ ⌘ 1 – do remain valid.

Theorem 3.1. Assume that h W Œ0; 1ç ! Œ0; 1ç is smooth, and that it is not identically

zero on Œ0; 1
2 ç or on Œ1

2 ; 1ç. There exist functions F1.r/; F2.r/ with the property that if pr is

a sequence with

pr ! r

2
C a �

p
r

2

for some a 2 R, then

F1.r/ � kpr ;1

�
Bh

r .x/
�

! e�a2=2; F2.r/ � kpr ;2

�
Bh

r .x/
�

! e�a2=2

for almost all x 2 �.

This suggests that the picture established in the previous section is actually quite robust.
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Remark 3.2. Alternatively, one could consider the “deterministic” Betti table
rX

iD1

h

✓
i

r

◆
� ⇡.r; i/:

An evident analogue of the theorem remains true in this setting. See Problem 3.6 for the
potential interest in statements of this sort.

Remark 3.3. When n � 3, one expects that a similar result holds if one uses a smooth
function

h W Œ0; 1çn�1 ! Œ0; 1ç

to weight XI (I 2
� Œrç
n�1

�
) by h. i1

r ; : : : ; in�1

r /.

Sketch of Proof of Theorem 3.1. We will assume q D 1, the case q D 2 being similar.
Set

(3.1) H.r; p/ D 1

2
�
1 � pC1

r

�
Z 1

pC1
r

h.t/ �
✓

t � p C 1

r

◆
dt:

Observe that H.r; r
2/ ¤ 0 for r � 0 thanks to the fact that h is smooth and does not van-

ish identically on Œ1
2 ; 1ç. Furthermore, if pr ! r

2 C a �
p

r
2 , then H.r; pr/ ! H.r; r

2/. Now,
as in the proof of Theorem 1.4,

ep;1.Bh
r / D

 
r � 2

p

!
�
Pr

iD1 h. i
r /.i � p � 1/C

2.r � p � 1/

D
 

r � 2

p

!
�
Pr

iDpC2 h. i
r /.i � p � 1/

2.r � p � 1/

D
 

r � 2

p

!
�
✓

1

2
�
1 � pC1

r

�
◆

�
 

rX

iDpC2

h

✓
i

r

◆✓
i

r
� p C 1

r

◆!
:

But the product of the two right-hand terms is a Riemann sum for r � H.r; p/, and one checks
that with pr as above one in fact has

epr ;1.Bh
r /

�r�2
pr

�
� r � H.r; r

2/
! 1 as r ! 1:

On the other hand, as in Theorem 2.1,

kpr ;1

�
Bh

r .x/
�

epr ;1.Bh
r /

! 1

for almost all x 2 �. One then concludes with an application of Stirling’s formula as in the
proof of Corollary 2.2.

3.2. Some generic 2-regular modules. As noted in the Introduction, it is interesting
to compare the “random” Betti tables studied here with those arising from modules that are
generic in a more traditional sense. Once again we will assume that n D 2, where the algebraic
situation is particularly clear.
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Consider then a finite-length graded module M over the polynomial ring

R D kŒx1; : : : ; xr�2ç;

with
kp;q.M/ D 0 for q ¤ 1; 2:

Such a module is 2-regular, and so is given by two vector spaces M1, M2, say of dimensions
m1, m2, together with a mapping

(⇤) M1 ˝ R1 ! M2

determining the R-module structure. After choosing bases, (⇤) is in turn equivalent to specify-
ing an m2 ⇥ m1 matrix � of linear forms. We will write M� for the module corresponding to
a matrix �. Note that the possible choices of � are parameterized by an irreducible variety.

Returning for a moment to the setting of Section 1, fix now a Boij–Söderberg coefficient
vector

x D .x1; : : : ; xr/ 2 �r D Œ0; 1çr ;

and consider the corresponding Betti table. This is a sum of r pure tables, and the expected
value of each xi is 1

2 . Thus the expected formal multiplicity of the table in question is r
2 , and

the expected formal Hilbert function has values r
4 in degrees 1 and 2, and 0 for all other degrees.

This leads us to consider modules M with

dim M1 D dim M2 D s

for some integer s, which are described by an s ⇥ s matrix � of linear forms.
We prove:

Proposition 3.4. There are arbitrarily large integers s with the property that if � is

a general s ⇥ s matrix of linear forms, then the Betti table of M� is a sum of pure tables of

type ⇡.r; πb rC1
2 cº/ and ⇡.r; πd rC1

2 eº/. In particular, if r is odd, then M� has a pure resolution.

We note that a conjecture of Eisenbud–Fløystad–Weyman [9, Conjecture 6.1] implies that
the statement should hold for all sufficiently large s. In any event, the proposition shows that
genericity in the module-theoretic sense can lead to completely different behavior than that
which occurs for the random tables considered above. Observe that this does not contradict
Conjecture B: in fact, the results of [6] imply that the resolutions arising in the geometric
setting are very far from pure.

Proof of Proposition 3.4. For any given s, it suffices (by the semicontinuity of Betti
numbers) to produce one example where the statement holds. Any module whose Betti table
is a multiple of ⇡.r; πb rC1

2 cº/ C ⇡.r; πd rC1
2 eº/ will yield such an example, and the statement

then follows either from the existence of pure resolutions [9,10], or even from the special cases
of pure resolutions constructed in [8, A2.6] or [3].

3.3. Open questions. We conclude by proposing a few problems.
First, the reader will note that all our arguments are purely numerical in nature – they do

not give an a priori sense why one would expect to see normal distribution of Betti numbers.
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Problem 3.5. Find a probabilistic (or other) model that explains the behavior that we
have established for random Betti tables.

Returning to the geometric questions motivating the present work, consider as in the
Introduction a smooth projective variety

X ✓ Prd

of dimension n embedded by Ld D dA C P . Assuming for instance that H i
�
X; OX

�
D 0 for

0 < i < n, so that X is arithmetically Cohen–Macaulay when d � 0, one can consider the
Boij–Söderberg decomposition of the resolution of X . We pose the somewhat vague

Problem 3.6. Can one find a “nice” function h that governs this decomposition as in
Section 3.1? If so, what are its properties?

The problem is most immediately meaningful in the case n D 2, in which case Boij–
Söderberg coefficients xi are well-defined for each i 2 Œ1; rd � 2ç. The question then becomes
whether they interpolate a fixed smooth or continuous function h.7) At the moment an affirma-
tive solution seems out of reach, since a good answer to the problem would presumably imply
Conjecture B. On the other hand, the question is philosophically in keeping with recent work
on linear series (e.g. [15, Chapter 2.2.C], [7, 16]) and Hilbert series (e.g. [1, 17]), where it has
become apparent that one can often define asymptotic invariants that behave surprisingly well.
The asymptotic Boij–Söderberg coefficients of large degree embeddings of curves have been
analyzed by the second author [11].

Finally, we expect that Conjecture B, if true, is essentially an algebraic fact.

Problem 3.7. Find a purely algebraic statement that implies, or runs parallel to, Con-
jecture B.
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