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1 Introduction

The purpose of this paper is to study the growth of higher cohomology of line
bundles on a projective variety.

Let X be an irreducible complex projective variety of dimension d ≥ 1, and
let L be a Cartier divisor on X. It is elementary and well-known that the dimen-
sions of the cohomomology groups Hi(X, OX(mL)

)
grow at most like md, i.e.

dimC Hi(X, OX(mL)
)

= O(md) for all i ≥ 0
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(cf. [10, 1.2.33]). It is natural to ask when one of these actually has maximal
growth, i.e. when hi(X, OX(mL)

)
≥ Cmd for some positive constant C > 0

and arbitrarily large m. For i = 0 this happens by definition exactly when L is
big, and the geometry of big classes is fairly well understood. Here we focus
on the question of when one or more of the higher cohomology groups grows
maximally.

If L is ample, or merely nef, then of course hi(X, OX(mL)
)

= o(md) for i > 0.
In general the converse is false: for instance, it can happen that Hi(X, OX(mL)

)

= 0 for m > 0 and all i even if L is not nef (or, for that matter, pseudoeffective).
However our main result shows that if one considers also small perturbations of
the divisor in question, then in fact the maximal growth of higher cohomology
characterizes non-ample divisors:

Theorem A Fix any very ample divisor A on X. If L is not ample, then for
sufficiently small rational numbers t > 0, at least one of the higher cohomology
groups of suitable multiples of L− tA has maximal growth. More precisely, there
is an index i > 0 such that for any sufficiently small t > 0,

dimC Hi(X, OX(m(L − tA))
)

≥ C · md

for some constant C = C(L, A, t) > 0 and arbitrarily large values of m clearing
the denominator of t.

In other words, a divisor L is ample if and only if

hi(X, OX(m(L − tA))
)

= o(md) when i > 0

for all small t and suitably divisible m. We remark that the essential content of
the theorem is the maximal growth of higher cohomology when L is big but not
ample.

One can get a more picturesque statement by introducing asymptotic invari-
ants of line bundles. As above let X be an irreducible complex projective variety
of dimension d, and let L be a Cartier divisor on X. Define

ĥi(X, L)
def= lim sup

m→∞

dimC Hi(X, OX(mL)
)

md/d! .

The definition extends in the natural manner to Q-divisors. When i = 0 this is
the volume volX(L) of L, which has been the focus of considerable attention in
recent years [2,3,7,10]. The higher cohomology functions were introduced and
studied by the second author in [9]. It was established there that ĥi(L) depends
only on the numerical equivalence class of a Q-divisor L, and that it uniquely
determines a continuous function

ĥi = ĥi(X,
)

: N1(X)R −→ R
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on the real Néron–Severi space of X. This generalizes the corresponding results
for volX proved by the third author in [10, 2.2.C]. When X is a toric variety,
these functions were studied in [8]. We refer to [6] for a survey of the circle of
ideas surrounding asymptotic invariants.

Theorem A then implies:

Corollary B A class ξ0 ∈ N1(X)R is ample if and only if

ĥi(ξ) = 0

for all i > 0 and all ξ ∈ N1(X)R in a small neighborhood of ξ0.

One can see this as an asymptotic analogue of Serre’s criterion for amplitude,
and this was the motivation for our work on these questions. In the toric case,
a somewhat stronger statement appears in [8].

The proof of the theorem combines some algebraic constructions from [9]
with geometric facts about big line bundles that fail to be ample. Specifically,
choose a collection of very general divisors E1, . . . , Ep ∈ |A|, and assume for a
contradiction that L is not nef, but that

ĥi(X, L − tA
)

= 0

for i > 0 and small positive t. The first point is to show that this vanishing
descends to the divisors Eα . By induction it follows each of the restrictions L|Eα

is ample, and we can assume furthermore that they are all very ample. Now
consider the complex

H0(OX(mL)
) v−→

p
⊕ H0(OEα (mL)

) u−→
(p

2)⊕ H0(OEα∩Eβ (mL)
)
, (*)

the maps u and v being determined by restriction. The cohomology of this
injects into H1(X, OX(mL − pA)

)
. On the other hand, using the assumption

that L fails to be nef, we show that one can arrange things so that there is a
non-trivial ideal a ⊆ OX , vanishing on a set of dimension ≥1, such that the base
ideal of |mL| grows like am, i.e.

b
(
|mL|

)
⊆ am.

Therefore the image of v is contained in the subgroup

p
⊕ H0(OEα (mL) ⊗ am)

⊆
p
⊕ H0(OEα (mL)

)
,

and this leads to a lower bound on the dimension of ker(u)/ im(v). In fact, a
dimension count shows that if p ∼ mδ for 0 < δ + 1, then h1(mL − pA

)
will

grow like md, which produces the required contradiction.
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These issues are closely related to the paper [4] of Demailly, Peternell and
Schneider.1 Working on a smooth projective variety X, these authors study in
effect the vanishing of the groups Hi(X, OX(m(L − tA))

)
for small t and large

divisible m. It would be interesting to understand more precisely the circum-
stances under which the sub-maximal growth of cohomology studied here forces
the actual vanishing of cohomology.

Concerning the organization of the paper, we start in Sect. 3 with a lemma
about base ideals of big linear series. The main result appears in Sect. 4.

The first author would like to thank Eckart Viehweg for support during his
visit at the Universität Duisburg-Essen. We are grateful to Lawrence Ein and
Sam Payne for useful discussions.

2 Conventions and background

2.1

We work throughout over the complex numbers. A variety is a reduced and
irreducible scheme, and we always deal with closed points.

2.2

We follow the conventions of [10, Chap. 1] concerning divisors on a projec-
tive variety X. Thus a divisor on X means a Cartier divisor. A Q- or R-divisor
indicates an element of

DivQ(X) = Div(X) ⊗ Q or DivR(X) = Div(X) ⊗ R.

N1(X) is the Néron–Severi group of numerical equivalence classes of divisors,
while N1(X)Q and N1(X)R denote the corresponding groups for Q- and R-
divisors.

2.3

Given a projective variety X of dimension d, and a divisor L on X, we set

ĥi(X, L) = lim sup
m→∞

dimC Hi(X, OX(mL)
)

md/d! . (1)

1 We thank the referee for calling [4] to our attention. In an earlier version of the present paper,
we included a criterion, involving amplitude of restrictions, for certain of the ĥi to vanish. However
the statement we gave also follows from the results of [4] concerning “flag positivity,” so we have
removed it.
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It is established in [9, Proposition 5.15, Theorem 5.1] that this depends only on
the numerical equivalence class of L, and that it satisfies the homogeneity

ĥi(pL) = pd · ĥi(L). (2)

This allows one to define ĥi(L) for an arbitrary Q-divisor by clearing denom-
inators, giving rise to a function ĥi : N1(X)Q −→ R. The main result of [9] is
that this extends uniquely to a continuous function

ĥi : N1(X)R −→ R

satisfying the same homogeneity property ([9, Theorem 5.1]). When L is an
R-divisor, we typically write ĥi(L) to denote the value of this function on the
numerical equivalence class of L. The ĥi are called asymptotic cohomological
functions in [9], although we occasionally use some slight variants of this termi-
nology. Observe finally that the homogeneity (2) implies that if L is a Cartier
divisor, then

ĥi(X, L) = ĥi(X, pL)

pd = lim sup
m→∞

dimC Hi(X, OX(pmL)
)

(pm)d/d! . (3)

for every fixed integer p > 0. The analogous statement holds when L is a
Q-divisor, provided that p is sufficiently divisible to clear the denominators
of L.

3 A lemma on base-loci

This brief section is devoted to the proof of a useful fact concerning the base-
ideals of linear systems on a normal variety. The result in question asserts that
the base-ideals associated to multiples of a divisor which is not nef grow at least
like powers of the ideal of a curve. On a smooth variety this fact, which is a
small elaboration of [10, Corollary 11.2.13], is well-known to experts. The main
point here is to extend the statement to normal varieties.2

Proposition 3.1 Let D be a divisor on a normal projective variety V, and denote
by

b
(
|%D|

)
⊆ OV

the base-ideal of the indicated linear series. Assume that D is not nef. Then there
exist positive integers q and c, and an ideal sheaf a ⊆ OV vanishing on a set of

2 We thank Mircea Mustaţǎ for pointing out that in a first version of this paper, this reduction
contained an error.
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dimension ≥1, such that

b
(
|mqD|

)
⊆ am−c

for all m > c.

Proof The assertion being trivial otherwise, we may suppose that D has
non-negative Kodaira–Iitaka dimension κ(V, D) ≥ 0. Since D is not nef, there
exists an irreducible curve Z ⊂ V intersecting D negatively. We will show that
one can take a = IZ ⊂ OV to be the ideal sheaf of Z.

Let µ : V′ → V be a resolution of singularities, and set D′ = µ∗D. We may
suppose that

a · OV′ = OV′(−E),

where E is an effective divisor on V′ with simple normal crossing support. Note
that the projection formula implies that D′ intersects negatively every curve
C ⊂ V′ that dominates Z.

Given q ≥ 1, consider the asymptotic multiplier ideal sheaf

I
(
V′, ‖qD′‖

)
= I

(
‖qD′‖

)
⊆ OV′ .

Since D′ has non-negative Kodaira–Iitaka dimension, there exists a fixed divisor
A on V′ such that

OV′(qD′ + A) ⊗ I
(
‖qD′‖

)

is globally generated for every q; this follows from [10, Corollary 11.2.13] by
taking A = KV′ + (dim V′ + 1)H, where H is any very ample divisor on V′.
If C ⊂ V′ is an irreducible curve that is not contained in the zero locus of
I
(
‖qD′‖

)
, then one has

(
(qD′ + A) · C

)
≥ 0.

We conclude that if C ⊆ V′ is any curve dominating Z, then the ideal I
(
‖qD′‖

)

must vanish along C for q > −(A · C)/(D′ · C).
Lemma 3.2 There exists q > 0 such that I

(
‖qD′‖

)
⊆ OV′(−E).

Proof We observe that it is enough to prove that

I
(
‖kD′‖

)
⊆ OV′(−Ered) for some k > 0. (4)

Indeed, assuming this, if k is as in (4) and a is the largest coefficient appearing
in the divisor E, then by the subadditivity theorem for multiplier ideals ([10,
Corollary 11.2.4]) we have

I
(
‖akD′‖

)
⊆ I

(
‖kD′‖

)a ⊆ OV′(−aEred) ⊆ OV′(−E).

Hence we can take q = ak.
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Turning to (4), note to begin with that for some k0, the ideal sheaf I
(
‖k0D′‖

)

vanishes along all irreducible components of E that dominate Z. In fact, suppose
that F is such a component, and let C ⊂ F be a general complete intersection
curve that surjects onto Z. Then as we have seen, I

(
‖qD′‖

)
vanishes along C

for q 0 0. So this ideal must in fact vanish on all of F.
Now since V is normal, E = µ−1(Z) is connected. Therefore, in order to prove

(4), it suffices to prove the following claim: If Ei is an irreducible component
of E mapping to a point of Z, and if Ei meets another irreducible component
Ej of E along which I

(
‖kjD′‖

)
is known to vanish for some kj > 0, then there is

a ki ≥ kj such that I
(
‖kiD′‖

)
vanishes along Ei. (Note that then I

(
‖kiD′‖

)
also

vanishes along Ej since I
(
‖%D′‖

)
⊆ I

(
‖mD′‖

)
whenever % > m.)

So, let Ei and Ej be as in this scenario. Since I
(
‖kjD′‖

)
vanishes on Ej, we

have

I
(
‖mkjD′‖

)
⊆ I

(
‖kjD′‖

)m ⊆ OV′(−mEj) for all m > 0

thanks again to the subadditivity theorem. Now take a general complete inter-
section curve C ⊆ Ei that meets Ej in at least one point P, which we may assume
to be a smooth point of C. As above, we know that

OV′(mkjD′ + A) ⊗ I
(
‖mkjD′‖

)

is globally generated for m > 0. On the other hand, OC(D′) = OC since C maps
to a point in V, and hence

(
OV′(mkjD′ + A) ⊗ I

(
‖mkjD′‖

))
· OC ⊆ OC(A|C − mP).

Therefore, assuming that I
(
‖mkjD′‖

)
does not vanish along C, it follows that

(A · C) ≥ m. Thus if ki ≥ kj ·
(
(A · C) + 1

)
, then in fact I

(
‖kiD′‖

)
must vanish

along Ei. This completes the proof of the lemma. 12
We now complete the Proof of the Proposition. Note that H0(V, OV(%D)

)
=

H0(V′, OV′(%D′)
)

by normality, and in particular b
(
|%D′ |

)
= b

(
|%D|

)
· OV′ . On

the other hand, we have

b
(
|mqD′ |

)
⊆ I

(
‖mqD′‖

)
⊆ I

(
‖qD′‖

)m ⊆ OV′(−mE)

by [10, Corollary 11.2.4] and Lemma 3.2. Therefore

b
(
|mqD|

)
⊆ µ∗OV′(−mE) = am,

where as usual am denotes the integral closure of the ideal in question. But
quite generally, given any ideal a ⊆ OV , there exists an integer c > 0 such that
ak+1 = a · ak for k ≥ c (cf. [10, (**) on p. 218]) and hence am ⊆ am−c for m ≥ c.

12
Remark 3.3 We do not know whether the normality hypothesis is essential.
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4 A characterization of ample divisors

This section is devoted to the statement and proof of our main result.
We start by fixing notation. In what follows, X will be a projective variety of

dimension d over the complex numbers, and L will denote a Cartier divisor on X.
If the divisor L is ample, then the functions ĥi vanish identically in a neighbor-

hood of [L] in N1(X)R for every i ≥ 1; this follows easily from Serre vanishing,
the continuity of the functions ĥi, and the fact that the ample cone is open inside
N1(X)R. In particular these functions vanish at L − tA for every very ample
divisor A and every sufficiently small t ≥ 0. The main result of this section is
that this property characterizes amplitude.

Theorem 4.1 Let X be a projective variety, and let L be a Cartier divisor on X.
Assume that there exists a very ample divisor A on X and a number ε > 0 such
that

ĥi(X, L − tA) = 0 for all i > 0, 0 ≤ t < ε.

Then L is ample.

Theorem A from the Introduction follows immediately. We will deduce Corol-
lary B at the end of the section.

We now begin working towards the proof of Theorem 4.1. First of all, in
order to eventually be able to apply Proposition 3.1, we reduce to the situation
when the variety X is normal.

Lemma 4.2 Assume that Theorem 4.1 holds for normal projective varieties. Then
it holds in general.

Proof Let X be an arbitrary projective variety, and suppose that L and A are
divisors on X satisfying the assumptions of Theorem 4.1, so that L is Cartier,
A is ample, and there exists an ε > 0 such that ĥi(X, L − tA) = 0 for all i > 0
and 0 ≤ t < ε. Consider the normalization ν : X̃ → X of X. Since ν is a finite
morphism, ν∗A is ample. Moreover

ĥi(X̃, ν∗(L − tA)) = ĥi(X, L − tA).

thanks to the birational invariance of higher cohomology functions ([9, Propo-
sition 2.9]). Assuming the theorem for normal varieties we conclude that ν∗L
is ample, and hence L is ample as well. 12

So we henceforth assume that X is normal. The plan of the proof is now
to study the ĥi via restrictions to divisors and use induction on dimension.
Specifically, choose a sequence of very general divisors

E1 , E2 , . . . ∈ |A|.
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Given m, p > 0 we take the first p of the Eα and form the complex K•
m,p :

OX(mL) −→
p
⊕ OEα (mL) −→

(p
2)⊕ OEα∩Eβ (mL) −→ · · · , (5)

obtained as a twist of the p-fold tensor product of the one-step complexes
OX −→ OEα . Because it will be important to keep track of the number of
summands, we denote by

(p
i)⊕OEα1∩···∩Eαi

the direct sum of the sheaves OEα1 ∩···∩Eαi over all choices of i increasing indices.
It is established in [9, Corollary 4.2] that K•

m,p is acyclic, and hence resolves
OX(mL − pA). In particular,

Hr(X, OX(mL − pA)
)

= Hr(K•
m,p

)
. (6)

The hypercohomology group on the right in (6) is in turn computed by a first-
quadrant spectral sequence with

Ei,j
1 =






Hj
(
OX(mL)

)
i = 0

(p
i)⊕Hj(OEα1 ∩...∩Eαi (mL)

)
i > 0.

(7)

As in [10, 2.2.37] or [9, Sect. 5] we may – and do – assume that the dimensions
of all the groups appearing on the right in (7) are independent of the particular
divisors Eα that occur. We will write these dimensions as

hj(OE1(mL)
)
, hj(OE1∩E2(mL)

)

and so on.
The first point is to show that the vanishing hypothesis of the theorem

descends to very general divisors in |A|.

Lemma 4.3 Keeping notation as in Theorem 4.1, assume that there is a positive
real number ε > 0 such that

ĥi(X, L − tA
)

= 0 for all i > 0, 0 ≤ t < ε. (8)

Let E ∈ |A| be a very general divisor. Then

ĥi(E, (L − tA)|E) = 0 for all i > 0, 0 ≤ t < ε. (9)
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Proof Assuming (8), it’s enough to prove

ĥi(E, LE
)

= 0 for all i > 0. (10)

For then the more general statement (9) follows (using the homogeneity and
continuity of the higher cohomology functions on X and on E) upon replacing
L by L − δA for a rational number 0 < δ < ε.

Suppose then that (10) fails, and consider the complex K•
m,p. We compute

a lower bound on the dimension of the group E1,i
∞ in the hypercohomology

spectral sequence. Specifically, by looking at the possible maps coming into and
going out from the E1,i

r , one sees that

hi+1(X, mL − pA
)

+ hi(X, mL
)

≥ p · hi(OE1(mL)
)
−

(
p
2

)
· hi(OE1∩E2(mL)

)

−
(

p
3

)
· hi−1(OE1∩E2∩E3(mL)

)
− · · · .

Now we can find some fixed constant C1 > 0 such that for all m 0 0:

hi(OE1∩E2(mL)
)

≤ C1 · md−2,

hi−1(OE1∩E2∩E3(mL)
)

≤ C1 · md−3, etc.

Moreover, since we are assuming for a contradiction that ĥi(E, LE
)

> 0, we can
find a constant C2 > 0, together with a sequence of arbitrarily large integers m,
such that

hi(OE1(mL)
)

≥ C2 · md−1. (11)

Putting this together, we find that there are arbitrarily large integers m such
that

hi+1(X, mL − pA
)

+ hi(X, mL
)

≥ C3 ·
(

pmd−1 − p2md−2 − p3md−3 − · · ·
)

(12)

for suitable C3 >0. Note that this constant C3 is independent of p. At this point,
we fix a very small rational number 0 < δ + 1. By the homogeneity of ĥi on E1,
we can assume that the sequence of arbitrarily large values of m for which (11)
and (12) hold is taken among multiples of the denominator of δ (see 0.3). Then,
restricting m to this sequence and taking p = δm, the first term on the RHS of
(12) dominates provided that δ is sufficiently small. Hence

hi+1(X, mL − pA
)

+ hi(X, mL
)

≥ C4 · δmd
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for a sequence of arbitrarily large m, and some C4 > 0. But this implies that

ĥi+1(X, L − δA
)

+ ĥi(X, L
)

> 0,

contradicting the hypothesis. 12
Proof of Theorem 4.1 By Lemma 4.2, we can suppose without loss of generality
that X is normal. We assume that there exists ε > 0 such that

ĥi(X, L − tA
)

= 0 for all i > 0, 0 ≤ t < ε, (13)

but that L is not ample, and we’ll aim to get a contradiction.
Note that the Theorem fails for L if and only if it fails for integral multiples

of L − δA when 0 < δ + 1. So we can suppose that we have a non-nef divisor
L satisfying (13).

Let E ∈ |A| be one of the very general divisors fixed at the outset. Thanks
to Lemma 4.3, we can assume by induction on dimension that OE(L) is ample.
Replacing L again by a multiple, we can suppose in addition that OE(L) is very
ample with vanishing higher cohomology. This combination being an open con-
dition in families, we can further assume that OEα (L) is very ample for each of
the Eα .

As above, form the complex K•
m,p, and consider in particular the beginning

of the bottom row of the spectral sequence (7):

H0(OX(mL)
) vm,p−→

p
⊕ H0(OEα (mL)

) um,p−→
(p

2)⊕ H0(OEα∩Eβ (mL)
)
.

There is a natural injection

ker(um,p)

im(vm,p)
⊆ H1(X, mL − pA

)
,

and the plan is to estimate from below the dimension of this subspace.
As in the proof of Lemma 4.3 there is a uniform bound having the shape

h0(OE1∩E2(mL)
)

≤ C1 · md−2.

Therefore, considering ker(up,m) as a subspace of
p
⊕ H0(OEα (mL)

)
, one has

codim ker(um,p) ≤ C2 · p2md−2 (14)

for some C2 > 0 and all m 0 0.
By Proposition 3.1, after possibly replacing L by a suitable multiple, we can

find an ideal sheaf a ⊆ OX vanishing on a set of dimension ≥ 1, together with
an integer c ≥ 0 such that

b
(
|mL|

)
⊆ am−c for all m > c.
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Then vm,p admits a factorization

H0(X, OX(mL) ⊗ am−c) v′
m,p !! p

⊕ H0(Eα , OEα (mL) ⊗ am−c)
! "

""

H0(X, OX(mL)
) vm,p !! p

⊕ H0(Eα , OEα (mL)
)

.

We claim that there is a constant C3 > 0 such that for all m 0 0:

H0(OEα (mL) ⊗ am−c) has codimension ≥ C3 · md−1 in H0(OEα (mL)
)
.

(15)
Granting this, we have

dim
ker(um,p)

im(vm,p)
≥ C4 ·

(
pmd−1 − p2md−2

)
(16)

for some constant C4 > 0 and all m 0 0. Once again fixing 0 < δ + 1, limiting
m to multiples of the denominator of δ, and setting p = δm, one finds that

h1(X, OX(m(L − δA))
)

≥ C5 · δmd

for m large enough. This implies that ĥ1(X, L − δA
)

> 0, giving the required
contradiction.

It remains to prove (15). Choose any point x = xα ∈ Zeroes(a) ∩ Eα , and
write mx ⊆ OEα for its maximal ideal: here we use that dim Zeroes(a) ≥ 1 to
know that such a point exists. Since

H0(OEα (mL) ⊗ am−c) ⊆ H0(OEα (mL) ⊗ mm−c
x

)
,

it is enough to bound the codimension of H0(OEα (mL) ⊗ mm−c
x

)
in

H0(OEα (mL)
)
. But since OEα (L) is very ample, it follows that OEα (mL) sepa-

rates (m − c)-jets at the point x. The dimension of the space of (m − c)-jets at
a point of a possibly singular variety is no smaller than the dimension of the
space of (m − c)-jets at a smooth point of a variety of the same dimension, and
thus we have

codim H0(OEα (mL) ⊗ mm−c
x

)
≥

(
m − c + d

d − 1

)
,

as required. 12
Finally, we give the proof of Corollary B from the Introduction.

Proof of Corollary B Consider the following three statements concerning a
Cartier divisor L on X:
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(a) L is ample.
(b) For all i > 0 the function ĥi vanishes in a neighborhood of [L].
(c) ĥi(L − tA

)
= 0 for some ample divisor A and all i > 0 and 0 ≤ t + 1.

We have (a) ⇒ (b) by Serre’s vanishing and the continuity of ĥi, the implica-
tion (b) ⇒ (c) is obvious, and Theorem 4.1 yields (c) ⇒ (a). Therefore (a) ⇔ (b),
which is the content of the Corollary. 12
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