
Math 312/ AMS 351 (Fall ’17)

Partial Solutions to Sample Questions
for Midterm 2

1. Let π, σ ∈ Σ5 be two permutations given by

π = (12)(345)

σ = (13)(24)

a) Compute πσ and σπ.

b) For each of the permutations π, σ, πσ, σπ find the order and sign.

Solution: What you need to know:

• the order of a cycle of length n is n

• the signature of a cycle of length n is (−1)n−1 (i.e. odd for trans-
positions, even for length 3, etc.)

• the oder of a product of disjoint cycles is the lcm of the lengths

• if you view the signature as ±1, the signature is multiplicative
(i.e. odd+odd=even, even+even=even, odd+even=odd) – here
you don’t even need to have disjoint cycles.

(Also good to know: the number of transposition in decomposing a
permutation is of the same parity to the signature, i.e. even or odd
depending on the signature)

In the examples above, order of π is lcm(2, 3) = 6, while for σ =
lcm(2, 2) = 2. The signature is (−1) · 1 = −1 (odd) for π and even for
σ.



3. Let G be a group and let c be a fixed element of G. Define a new
operation ‘∗’ on G by

a ∗ b = ac−1b.

Prove that the set G is a group under ∗.
Solution: What you need to check is

• (associativity) (x ∗ y) ∗ z = x ∗ (y ∗ z). Here we have

(x ∗ y) ∗ z = (xc−1y) ∗ z = (xc−1y)c−1z = xc−1yc−1z

Similarly
x ∗ (y ∗ z) = xc−1(yc−1z) = xc−1yc−1z

thus the same thing. (Note in the last step we are allowed to
drop the () because we know that G is a group, and thus the
multiplication is associative).

• (existence of a unit) I need e such that

x ∗ E = E ∗ x = x

Since x ∗ E = xc−1e, it is clear that I can take

E = c

as unit.

• (existence of inverse) Need to find y such that

x ∗ y = y ∗ x = E = c

This gives the equation for y

xc−1y = c

We get
y = cx−1c

(multiply by x−1 and then c to the left). Finally, we immediately
check

y ∗ x = E(= c)

showing that indeed y is the inverse of x (wrt to ∗).
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4. Consider the group U(9)(= Z∗
9) of invertible congruence classes mod 9.

a) Show that U(9) is cyclic of order 6.

b) Give an explicit isomorphism (U(9), ·) ∼= (Z6,+).

Solution: U(9) = {1, 2, 4, 5, 7, 8} since 22 = 4, 23 = 8, 24 = 7, 25 = 5,
and 26 = 1, we see that the order of 2 in (U(9), ·) is 6, thus the group
is cyclic.

To give an isomorphism from a cyclic group Cn = 〈a〉 = {e, a, a2, . . . , an−1}
to Zn, you only need to choose the generator a for Cn (i.e. an element
of order n). Then the isomorphism is

φ(aj) = j ∈ Zn

Concretely, in our example, we can take the generator a = 2 (similarly
we can a = 7). The isomorphism will be given explicitly as follows

φ : U(9) = {1, 2, 4, 5, 7, 8} → Z6 = {0, 1, 2, 3, 4, 5}

by

φ(1) = 0, φ(2) = 1, φ(4) = 2, φ(8) = 3, φ(7) = 4, φ(5) = 5,

(recall the general rule φ(2j) = j)
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5. a) Prove that in any finite group, the number of elements of order 3
is even.

b) Prove that any group of order 12 must contain an element of even
order.

c) Prove that any group of order 12 must contain an element of order
2.

Solution: Note that if x order 3, then x2 has order 3 as well, and
x−1 = x2 (and x 6= x−1). Clearly, I can group the elements of order 3
in pairs (x, x−1) showing the number of order 3 elements is even.

(b) The possible orders in a group of order 12 are 1, 2, 3, 4, 6, 12 (1 is only
for the unit, thus we are left with 2, 3, 4, 6, 12). There are 11 = 12− 1
non-unit elements in G. They can not be all of order 3 (from (a) the
number of order 3 elements is always even). Thus, at least one of those
11 elements must have order 2, 4, 6, 12, i.e. even order.

(c) Note the general fact: if x has order n and d | n, then y = x
n
d

has order d. In our situation, from (b), we know that there exists
an element of even order, since d = 2 divides any even number, the
conclusion follows. (e.g. x has order 6, then x3 has order 2)
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6. Let G = D(6) be the group of symmetries of the regular hexagon.

0) What is the order of G?

a) Let R be the set of all rotations in G. Show that R is a subgroup
of G. What is the order of R? Is R cyclic?

b) Let σ ∈ G be a reflection. Let S = 〈σ〉. What is the order of S?

c) What are the possible orders |H| of subgroups H in G? Are all
the possible orders realized?

d) Is there a cyclic subgroup of order 4 in G?

Solution: The order of the dihedral group D(n) is 2n. Thus in our
situation, the order of G is 12.

The rotation form a cyclic subgroup. Namely if r is a primitive rotation
(a rotation by 2π

n
), then

R = 〈r〉 = {e, r, r2, r3, r4, r5}

(nothing to prove here, except to say: all rotations are powers of a basic
rotation r, and thus R is cyclic.) The order of r (and R = 〈r〉) is 6.

Any reflection has order 2. Thus S = 〈σ〉 = {e, σ} has order 2.

Note that in a dihedral group, there are precisely n rotations (we con-
sider e to be the trivial rotation) and n reflections. The reflections
have order 2, while the rotations have order d where d | n (e.g. in our
situation r has order 6, r2 has order 3 and r3 has order 2). Thus, the
possible orders that occur in D(n) are 2 or d (divisors of n). In our
situation the possible orders are

{1, 2, 3, 6}

Thus, we miss 4 (this answers item d)) and 12 (D(12) is not cyclic.

The possible orders for H a subgroup of G are: 1, 2, 3, 4, 6, 12. Clearly
1, 2, 3, 6, we can take H = 〈a〉 cyclic. Order 12 also occurs: we can
take H = G (for any group G you always have 2 trivial subgroups:
{e} and G, thus the maximal order is always realized, but not for a
cyclic subgroup). It remains to produce a subgroup of order 4. This
is possible in this case: take σ1 and σ2 two reflections such that the
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axes of reflection are perpendicular on each other. This assumption
will imply σ1σ2 = σ2σ1. Then

H = {e, σ1, σ2, σ1σ2}

is a subgroup of order 4 of G. In conclusion, all orders allowed by
Lagrange occur as orders of subgroups H in G.
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7. Consider the groups Z2×Z4, D(3), Z2×Z3, Z6, U(5), Σ3, Z8, Z4. Find
the odd one out. Solution:

• Z2 × Z3
∼= Z6

• U(5) ∼= Z4

• D(3) ∼= Σ3

• Z2×Z4 6∼= Z8 (Z8 is cyclic, thus it has an element of order 8, while
the maximal order in Z2 × Z4 is 4)
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8. True or False or Complete

• The positive integers (wrt addition) form a group. F (the inverses
would be negative numbers)

• The set of square matrices of size n is a group with respect to
matrix multiplication.

• In a group (ab)−1 = b−1a−1

• In an abelian group, (ab)2 = a2b2. T

• (Z5, ·) is an abelian group. F (not a group; 0 is not invertible)

• Any group with 6 elements contains an element of order 6. F (if
G contains an order 6 element, G is cyclic. But Σ3 is an order 6
which is not cyclic - not even abelian)

• A group with 24 elements might contain a subgroup of order 10.
F (Lagrange’s Theorem)

• If G contains an element a of order |G|, then G is cyclic.

• The Chinese Remainder Theorem implies that Z4 × Z6
∼= Z24. F

(need relatively prime indices, e.g. Z3 × Z8
∼= Z24)

• The number of invertible elements in Z24 is φ(24) = φ(8)φ(3) = (8− 4)(3− 1) = 8.

• A group of oder 4 is always abelian. T (there are two groups of
order 4: Z4 (cyclic gp.) and Z2 × Z2 (Klein gp.))

Note: For the exam, T/F suffices (no explanation needed)
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