Math 312/ AMS 351 (Fall '17) Partial Solutions to Sample Questions for Midterm 2

1. Let $\pi, \sigma \in \Sigma_5$ be two permutations given by

$$\pi = (12)(345)$$

 $\sigma = (13)(24)$

- a) Compute $\pi\sigma$ and $\sigma\pi$.
- b) For each of the permutations $\pi, \sigma, \pi\sigma, \sigma\pi$ find the order and sign.

Solution: What you need to know:

- the order of a cycle of length n is n
- the signature of a cycle of length n is $(-1)^{n-1}$ (i.e. odd for transpositions, even for length 3, etc.)
- the oder of a product of disjoint cycles is the lcm of the lengths
- if you view the signature as ±1, the signature is multiplicative (i.e. odd+odd=even, even+even=even, odd+even=odd) – here you don't even need to have disjoint cycles.

(Also good to know: the number of transposition in decomposing a permutation is of the same parity to the signature, i.e. even or odd depending on the signature)

In the examples above, order of π is lcm(2,3) = 6, while for $\sigma = lcm(2,2) = 2$. The signature is $(-1) \cdot 1 = -1$ (odd) for π and even for σ .

3. Let G be a group and let c be a fixed element of G. Define a new operation '*' on G by

$$a * b = ac^{-1}b.$$

Prove that the set G is a group under *.

Solution: What you need to check is

• (associativity) (x * y) * z = x * (y * z). Here we have

$$(x * y) * z = (xc^{-1}y) * z = (xc^{-1}y)c^{-1}z = xc^{-1}yc^{-1}z$$

Similarly

$$x * (y * z) = xc^{-1}(yc^{-1}z) = xc^{-1}yc^{-1}z$$

thus the same thing. (Note in the last step we are allowed to drop the () because we know that G is a group, and thus the multiplication is associative).

• (existence of a unit) I need e such that

$$x * E = E * x = x$$

Since $x * E = xc^{-1}e$, it is clear that I can take

$$E = c$$

as unit.

• (existence of inverse) Need to find y such that

$$x * y = y * x = E = c$$

This gives the equation for y

$$xc^{-1}y = c$$

We get

$$y = cx^{-1}c$$

(multiply by x^{-1} and then c to the left). Finally, we immediately check

$$y * x = E(=c)$$

showing that indeed y is the inverse of x (wrt to *).

- 4. Consider the group $U(9)(=\mathbb{Z}_9^*)$ of invertible congruence classes mod 9.
 - a) Show that U(9) is cyclic of order 6.
 - b) Give an explicit isomorphism $(U(9), \cdot) \cong (\mathbb{Z}_6, +)$.

Solution: $U(9) = \{1, 2, 4, 5, 7, 8\}$ since $2^2 = 4$, $2^3 = 8$, $2^4 = 7$, $2^5 = 5$, and $2^6 = 1$, we see that the order of 2 in $(U(9), \cdot)$ is 6, thus the group is cyclic.

To give an isomorphism from a cyclic group $C_n = \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$ to \mathbb{Z}_n , you only need to choose the generator a for C_n (i.e. an element of order n). Then the isomorphism is

$$\phi(a^j) = j \in \mathbb{Z}_n$$

Concretely, in our example, we can take the generator a = 2 (similarly we can a = 7). The isomorphism will be given explicitly as follows

$$\phi: U(9) = \{1, 2, 4, 5, 7, 8\} \to \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

by

$$\phi(1) = 0, \ \phi(2) = 1, \ \phi(4) = 2, \ \phi(8) = 3, \ \phi(7) = 4, \ \phi(5) = 5,$$

(recall the general rule $\phi(2^j) = j$)

- 5. a) Prove that in any finite group, the number of elements of order 3 is even.
 - b) Prove that any group of order 12 must contain an element of even order.
 - c) Prove that any group of order 12 must contain an element of order 2.

Solution: Note that if x order 3, then x^2 has order 3 as well, and $x^{-1} = x^2$ (and $x \neq x^{-1}$). Clearly, I can group the elements of order 3 in pairs (x, x^{-1}) showing the number of order 3 elements is even.

(b) The possible orders in a group of order 12 are 1, 2, 3, 4, 6, 12 (1 is only for the unit, thus we are left with 2, 3, 4, 6, 12). There are 11 = 12 - 1 non-unit elements in G. They can not be all of order 3 (from (a) the number of order 3 elements is always even). Thus, at least one of those 11 elements must have order 2, 4, 6, 12, i.e. even order.

(c) Note the general fact: if x has order n and $d \mid n$, then $y = x^{\frac{n}{d}}$ has order d. In our situation, from (b), we know that there exists an element of even order, since d = 2 divides any even number, the conclusion follows. (e.g. x has order 6, then x^3 has order 2)

- 6. Let G = D(6) be the group of symmetries of the regular hexagon.
 - 0) What is the order of G?
 - a) Let R be the set of all rotations in G. Show that R is a subgroup of G. What is the order of R? Is R cyclic?
 - b) Let $\sigma \in G$ be a reflection. Let $S = \langle \sigma \rangle$. What is the order of S?
 - c) What are the possible orders |H| of subgroups H in G? Are all the possible orders realized?
 - d) Is there a cyclic subgroup of order 4 in G?

Solution: The order of the dihedral group D(n) is 2n. Thus in our situation, the order of G is 12.

The rotation form a cyclic subgroup. Namely if r is a primitive rotation (a rotation by $\frac{2\pi}{n}$), then

$$R = \langle r \rangle = \{e, r, r^2, r^3, r^4, r^5\}$$

(nothing to prove here, except to say: all rotations are powers of a basic rotation r, and thus R is cyclic.) The order of r (and $R = \langle r \rangle$) is 6.

Any reflection has order 2. Thus $S = \langle \sigma \rangle = \{e, \sigma\}$ has order 2.

Note that in a dihedral group, there are precisely n rotations (we consider e to be the trivial rotation) and n reflections. The reflections have order 2, while the rotations have order d where $d \mid n$ (e.g. in our situation r has order 6, r^2 has order 3 and r^3 has order 2). Thus, the possible orders that occur in D(n) are 2 or d (divisors of n). In our situation the possible orders are

$$\{1, 2, 3, 6\}$$

Thus, we miss 4 (this answers item d)) and 12 (D(12) is not cyclic.

The possible orders for H a subgroup of G are: 1, 2, 3, 4, 6, 12. Clearly 1, 2, 3, 6, we can take $H = \langle a \rangle$ cyclic. Order 12 also occurs: we can take H = G (for any group G you always have 2 trivial subgroups: $\{e\}$ and G, thus the maximal order is always realized, but not for a cyclic subgroup). It remains to produce a subgroup of order 4. This is possible in this case: take σ_1 and σ_2 two reflections such that the axes of reflection are perpendicular on each other. This assumption will imply $\sigma_1 \sigma_2 = \sigma_2 \sigma_1$. Then

$$H = \{e, \sigma_1, \sigma_2, \sigma_1\sigma_2\}$$

is a subgroup of order 4 of G. In conclusion, all orders allowed by Lagrange occur as orders of subgroups H in G.

- 7. Consider the groups $\mathbb{Z}_2 \times \mathbb{Z}_4$, D(3), $\mathbb{Z}_2 \times \mathbb{Z}_3$, \mathbb{Z}_6 , U(5), Σ_3 , \mathbb{Z}_8 , \mathbb{Z}_4 . Find the odd one out. Solution:
 - $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$
 - $U(5) \cong \mathbb{Z}_4$
 - $D(3) \cong \Sigma_3$
 - Z₂×Z₄ ≇ Z₈ (Z₈ is cyclic, thus it has an element of order 8, while the maximal order in Z₂ × Z₄ is 4)

- 8. True or False or Complete
 - The positive integers (wrt addition) form a group. **F** (the inverses would be negative numbers)
 - The set of square matrices of size *n* is a group with respect to **matrix multiplication**.
 - In a group $(ab)^{-1} = b^{-1}a^{-1}$
 - In an abelian group, $(ab)^2 = a^2b^2$. **T**
 - (\mathbb{Z}_5, \cdot) is an abelian group. **F** (not a group; 0 is not invertible)
 - Any group with 6 elements contains an element of order 6. **F** (if G contains an order 6 element, G is cyclic. But Σ_3 is an order 6 which is not cyclic not even abelian)
 - A group with 24 elements might contain a subgroup of order 10. F (Lagrange's Theorem)
 - If G contains an element a of order |G|, then G is cyclic.
 - The Chinese Remainder Theorem implies that Z₄ × Z₆ ≃ Z₂₄. F (need relatively prime indices, e.g. Z₃ × Z₈ ≃ Z₂₄)
 - The number of invertible elements in \mathbb{Z}_{24} is $\phi(\mathbf{24}) = \phi(\mathbf{8})\phi(\mathbf{3}) = (\mathbf{8}-\mathbf{4})(\mathbf{3}-\mathbf{1}) = \mathbf{8}$.
 - A group of oder 4 is always abelian. T (there are two groups of order 4: Z₄ (cyclic gp.) and Z₂ × Z₂ (Klein gp.))

Note: For the exam, T/F suffices (no explanation needed)