Name:

Math 122 (Fall '12)

Final Exam

December 12, 2012

Time: 11:15-1:45

1. (25pts)	5. (25pts)
2. (25pts)	6. (25pts)
3. (25pts)	7. (25pts)
4. (25pts)	8. (25pts)
Total I (100pts)	Total II (100pts)

Total Score:

Basic Rules for the final exam:

- (1) Make sure that there is an empty seat to your right and left. Otherwise, the proctor will mark your exam and I will impose a heavy penalty (up to voiding the exam).
- (2) Make sure that you sign your exam. Make sure that you sign the photo roster when turning in the exam.
- (3) You are allowed 3 index cards (size 3x5), but nothing larger (i.e. you can not use a larger page as substitute for the 3 index cards).
- (4) **NO Calculator** is allowed.

1. (25pts) Solve the following equations:

$$(1) \ 2x + 5 = 3(x - 3)$$

$$(2) (2x-1)^2 = 3x - 2$$

$$(3) e^{2x} = 2 \cdot e^x$$

$$(4) \ln x + \ln 2x = \ln 3x$$

(5)
$$\sqrt{4x} = x^{\frac{5}{2}}$$

2. (25pts) Find the derivatives for each of the following functions:

$$(1) 3e^x - 2x^e$$

(2)
$$x^3 \ln x + 1$$

(3)
$$2xe^{x^2}$$

$$(4) \sqrt{e^x + e^{-x}}$$

(5) $\frac{x^2-1}{x^2+1}$ (Note: full simplification required in this case)

3. (25pts) Find an antiderivative for each of the following functions

(1)
$$x^3 + x^{-3}$$

$$(2) \ 2\sqrt{x} - \frac{3}{x}$$

$$(3) e^x \sqrt{e^x + 1}$$

$$(4) \ x^2(2x^3+1)^{100}$$

$$(5) \quad \frac{e^x \ln(e^x+1)}{e^x+1}$$

- **4. (25pts)** [Tests your understanding of the Fundamental Thm. of Calculus] A. Compute the following definite integrals
 - $(1) \int_1^4 \sqrt{x} \ dx$
 - (2) $\int_0^1 2x e^{x^2} dx$

B. Say whether each of the following formulas is true or false

(3)
$$\int x \ln x \, dx = \frac{1}{2}x^2 \ln x - \frac{x^2}{4} + C$$

(4)
$$\int \frac{x}{x^2+1} dx = \frac{1}{2} \ln(x^2+1) + C$$

C. Assume f(x) is the derivative of the function $F(x) = xe^2$. Compute the integral $\int f(x) dx$.

5. (25pts)

A. Let P(t) represent the price of a share of stock of a corporation at time t. What does each of the following statements tell us about the signs of the first and second derivatives of P(t)?

- i) "The price of the stock is rising faster and faster".
- ii) "The price of the stock is close to bottoming out".

B. An old rowboat has sprung a leak. Water is flowing into the boat at a rate, r(t), given in the following table

t minutes	0	5	10	15
r(t) liters/min	12	20	24	26

- i) Give a lower estimate for the volume of water that has flowed into the boat during the 15 minutes.
- ii) Give an upper estimate for the volume of water that has flowed into the boat during the 15 minutes.
- iii) Draw a graph to illustrate the lower estimate.

6. (25pts)

(A) Find the area under $y = x^3 + 2$ between x = 0 and x = 2. Sketch this area.

(B) Find the area enclosed by y = 3x and $y = x^2$.

(C) The equation of the circle of center (3,0) and radius 2 is $y^2 + (x-2)^2 = 9$, which is the same as saying $y = \pm \sqrt{9 - (x-2)^2}$. Use this information to compute

$$\int_{1}^{3} \sqrt{9 - (x - 2)^2} \ dx.$$

- 7. (25pts) Consider the function $f(x) = 3x^4 + 4x^3 12x^2 + 1$ on the interval $-3 \le x \le 3$.
 - (i) Compute f'(x) and f''(x).

(ii) Find all the critical points of f and decide which are local min/max.

- (iii) Find the global maximum and minimum of f.
- (iv) Find all the inflection points of f. (Hint: use the approximation $\sqrt{7} \cong 2.6$ in computations)

(v) Graph the function f (on the given interval)

8. (25pts) True/False/Fill-in

- (1) A linear function has a constant rate of change.
- (2) An exponential function has a constant rate of change.
- (3) The slope of the secant line between two points (a, f(a)) and (b, f(b)) gives the average rate of change for the function f(x) on the interval [a, b].
- (4) The quantity f'(a) represents the slope of the _____ line at the point _____.
- (5) A critical point for a function is always a point of local maximum or minimum.
- (6) The accumulated change for f(x) on the interval [a, b] is measured by the quantity ______.
- (7) A 4-term Riemann sum on the interval $4 \le t \le 6$ has $\Delta t = 2$.
- (8) If the graph of f(x) has more area below the x-axis than above the x-axis when $1 \le x \le 10$ then $\int_1^{10} f(x) dx > 0$.
- (9) Assume f(x) = F'(x), then $\int_a^b f(x) dx =$ _____.
- (10) If $\int_0^5 F'(t) dt < 0$, then F(0) > F(5).